-
汞 (Hg) 是环境中生物毒性很强的金属污染物,具有持久性、易迁移性和高度的生物富集性等特点[1]。汞可通过地球化学循环和食物链富集,给人类和生态环境造成极大危害[2]。目前,燃煤电厂排放的汞是最大的人为汞排放源。作为以煤为主的能源消费大国,我国汞污染较为严重[3-5],每年煤炭燃烧向大气中排放810 t汞,占各种人为源汞排放总量的35%[6]。2013年,《关于汞的水俣公约》规定了汞的长期减排控制措施。我国现行的《火电厂大气污染物排放标准》也对汞的排放控制提出了明确限值[7],即自2015年起全面执行火电厂汞排放质量浓度不超过30 μg·m−3的规定。煤炭燃烧产生的汞有单质汞 (Hg0) 、氧化汞 (Hg2+) 和颗粒汞 (Hgp) 3种形态。Hg2+易溶于水,故可通过湿法脱硫设备去除[8];HgP易吸附在尘粒、飞灰颗粒表面,可通过除尘装置捕获去除。然而,Hg0因具有较高的挥发性 (2.46×10−1 Pa,25 ℃) 和较低的水溶性 (6×10−5 g·L−1,25 ℃) ,极易在大气中通过长距离运输而造成全球性汞污染,为最难控制的汞形态[9]。因此,有效控制Hg0是实现汞污染减排的关键。
催化脱除Hg0是一种行之有效的方法。传统选择性催化还原 (selective catalytic reduction,SCR) 催化剂 (V2O5-MoO3/TiO2和V2O5-WO3/TiO2) 在催化还原NOx的同时,可将Hg0氧化为Hg2+,并进一步利用后续脱硫装置进行协同脱除,从而提高设备经济性,因此被认为是应用前景良好的控制技术[10-11]。然而,SCR脱硝系统通常布置在高温、高尘、高酸性气体环境中,会降低催化剂的使用寿命[12]。由于其较高的工作温度,因而适用于非电行业的中低温催化氧化技术受到关注。目前,中低温钒钛SCR催化剂催化氧化Hg0,易受烟气组分 (如O2、NO、NH3、HCl、SO2、H2O) 和温度影响[13-16]。烟气中O2和NO可提供活性氧物种,从而促进Hg0的氧化。NH3会与Hg0竞争吸附催化剂活性位点,进而抑制Hg0氧化[17-20]。然而,烟气中SO2对Hg0氧化的影响机理还存在较大争议。有研究表明,SO2对Hg0的氧化表现为促进作用[21-22]。一方面,在O2存在的情况下,低浓度SO2会氧化生成SO3,与Hg0反应生成HgSO4;另一方面,SO2吸附在催化剂表面生成硫酸盐,可为Hg0氧化提供活性中心。然而,在某些情况下,SO2会与催化剂表面晶格氧反应生成硫酸盐和亚硫酸盐,使得催化剂表面活性氧位点减少,从而抑制Hg0氧化[23-26]。除此之外,多烟气组分共存时,Hg0的脱除机理尚不明确。
现有研究中,Cu作为活性组分,具有良好的氧化还原性[27]和抗硫性[28],添加到催化剂表面可极大地提升Hg0氧化效率。本研究以低温V2O5-MO3/TiO2脱硝催化剂为基础配方、Cu2O为改性组分,采用浸渍法制备Cu2O-V2O5-MoO3/TiO2催化剂,通过固定床反应器考察O2、NO、NH3、HCl、SO2、H2O等烟气组分对Hg0氧化性能的影响;并在此基础上,进一步探讨多烟气组分共存条件下Hg0的脱除机理,以期为SCR脱硝催化剂协同汞氧化提供参考。
不同烟气组分对Cu2O改性V2O5-MoO3/TiO2脱硝催化剂汞氧化性能的影响
Effect of different flue gas components on mercury oxidation performance of Cu2O modified V2O5-MoO3/TiO2 De-NOx catalyst
-
摘要: 为提高传统选择性催化还原 (Selective Catalytic Reduction,SCR) 催化剂的低温汞氧化效率,采用Cu2O对钒钛催化剂进行改性,通过浸渍法制备了系列Cu2O-V2O5-MoO3/TiO2催化剂,利用固定床反应器研究催化剂在不同烟气组分条件下对单质汞的氧化特性。结果表明,在200 ℃时,2%Cu2O-V2O5-MoO3/TiO2催化剂的Hg0氧化率稳定在99.9%,NO转化率保持在90.9%,具有较好的脱硝协同汞氧化性能。单独的烟气组分如O2、NO、HCl、SO2均有利于Hg0的氧化,而NH3和NO+NH3会抑制Hg0氧化为Hg2+。随着反应温度升高,Hg0氧化率呈现先平稳后降低的趋势,在350 ℃时,Hg0氧化率仅为64.1%。比表面积测试法 (BET) ,X射线光电子能谱技术 (XPS) 和H2程序升温还原 (H2-TPR) 分析表明,Cu2O改性后的V2O5-MoO3/TiO2催化剂,表面Cu和V存在相互作用,使催化剂表面产生不饱和化学键和氧空位,有利于化学吸附氧的增加,从而促进Hg0的氧化。本研究可为提升SCR脱硝催化剂对汞的协同氧化性能提供参考。
-
关键词:
- Cu2O-V2O5-MoO3/TiO2催化剂 /
- 低温选择性催化还原(SCR) /
- Hg0氧化 /
- 烟气组分
Abstract: To improve the mercury oxidation efficiency over conventional traditional Selective Catalytic Reduction (SCR)catalysts at low temperatures, the vanadium-titanium catalysts were modified by Cu2O. A series of Cu2O-V2O5-MoO3/TiO2 catalysts were prepared by the impregnation method. The effects of different flue gas components on the oxidation of mercury over the catalysts were investigated by using a fixed-bed reactor. The results suggested that the Hg0 oxidation efficiency was stabilized at 99.9% and the NO conversion efficiency was maintained at 90.9% over 2%Cu2O-V2O5-MoO3/TiO2 catalyst at 200 ℃, which showed a good performance of synergistic De-NOx and mercury oxidation. The individual flue gas components, such as O2, NO, HCl, and SO2 were conductive to the oxidation of Hg0, while NH3 and the coexistence of NO and NH3 inhibited the oxidation of Hg0 to Hg2+. With the increase of reaction temperature, the Hg0 oxidation efficiency presented a trend of stability and then decrease.The oxidation rate was only 64.1% when the reaction temperature reached 350 ℃. Specific surface area testing (Brunauer-Emmett-Teller, BET), X-ray photoelectron spectroscopy (XPS) and H2 temperature programmed reduction (H2-TPR) analysis demonstrated that when loaded with Cu2O, the interaction between Cu and V existed over the Cu2O-V2O5-MoO3/TiO2 catalyst surface produced unsaturated chemical bonds and oxygen vacancies on the surface of the catalyst,which was conductive to the increase of chemisorbed oxygen, thus promoting the oxidation of Hg0. This study can provide a reference for improving the co-oxidation performance of SCR denitrification catalyst for mercury. -
表 1 CuVMT催化剂的比表面积及孔道结构
Table 1. Specific surface area and pore structure of CuVMT catalysts
催化剂 比表面积/ (m2·g−1) 孔容/ (cm3·g−1) 介孔平均孔径/nm 0CuVMT 68.4 0.36 19.0 2CuVMT 57.3 0.33 21.3 -
[1] HU Y A, CHENG H F. Control of mercury emissions from stationary coal combustion sources in China: current status and recommendations[J]. Environmental Pollution, 2016, 218: 1209-1221. doi: 10.1016/j.envpol.2016.08.077 [2] GOLDING G R, KELLY C A, SPARLING R, et al. Evaluation of mercury toxicity as a predictor of mercury bioavailability[J]. Environmental Science & Technology, 2007, 41(16): 5685-5692. [3] CHIU C H, KUO T H, CHANG T C, et al. Multipollutant removal of Hg0/SO2/NO from simulated coal-combustion flue gases using metal oxide/mesoporous SiO2 composites[J]. International Journal of Coal Geology, 2017, 170: 60-68. doi: 10.1016/j.coal.2016.08.014 [4] 左朋莱, 王晨龙, 佟莉, 等. 小型燃煤机组烟气重金属排放特征研究[J]. 环境科学研究, 2020, 33(11): 2599-2604. doi: 10.13198/j.issn.1001-6929.2020.06.07 [5] 魏忠秋, 刁永发, 姚跃辉. 活性焦配方型吸附剂脱除模拟烟气中Hg0[J]. 环境工程学报, 2017, 11(2): 1003-1008. doi: 10.12030/j.cjee.201509220 [6] STREETS D G, HAO J M, WU Y, et al. Anthropogenic mercury emissions in China[J]. Atmospheric Environment, 2005, 39(40): 7789-7806. doi: 10.1016/j.atmosenv.2005.08.029 [7] 国家质量监督检验检疫总局, 中国国家标准化管理委员会. 火电厂大气污染物排放标准: GB 13223—2011[S]. 北京: 中国环境科学出版社, 2012. [8] 鹿存房, 刘清才, 全学军. 利用污泥脱除燃煤电厂烟气中的汞[J]. 环境工程学报, 2017, 11(10): 5559-5564. doi: 10.12030/j.cjee.201611166 [9] 黄永健. 大气气溶胶汞污染研究[D]. 成都: 成都理工大学, 2002. [10] ESWARAN S, STENGER H G. Understanding mercury conversion in selective catalytic reduction (SCR) catalysts[J]. Energy & Fuels, 2005, 19(6): 2328-2334. [11] SCHWÄMMLE T, BERTSCHE F, HARTUNG A, et al. Influence of geometrical parameters of honeycomb commercial SCR-DeNOx-catalysts on DeNOx-activity, mercury oxidation and SO2/SO3-conversion[J]. Chemical Engineering Journal, 2013, 222: 274-281. doi: 10.1016/j.cej.2013.02.057 [12] 陈进生. 火电厂烟气脱硝技术: 选择性催化还原法[M]. 北京: 中国电力出版社, 2008. [13] WAN Q, YAO Q, DUAN L, et al. Comparison of elemental mercury oxidation across vanadium and cerium based catalysts in coal combustion flue gas: catalytic performances and particulate matter effects[J]. Environmental Science & Technology, 2018, 52(5): 2981-2987. [14] ZHAO L K, LI C T, ZHANG J, et al. Promotional effect of CeO2 modified support on V2O5-WO3/TiO2 catalyst for elemental mercury oxidation in simulated coal-fired flue gas[J]. Fuel, 2015, 153: 361-369. doi: 10.1016/j.fuel.2015.03.001 [15] MEI J, SUN P X, XIAO X, et al. Influence mechanism of the compositions in coal-fired flue gas on Hg0 oxidation over commercial SCR catalyst[J]. Journal of Industrial and Engineering Chemistry, 2019, 75: 130-137. doi: 10.1016/j.jiec.2019.03.013 [16] 陶莉, 张旭楠, 李彩亭, 等. 选择性催化还原催化剂氧化脱除烟气中单质汞[J]. 环境工程学报, 2015, 9(6): 2925-2932. doi: 10.12030/j.cjee.20150664 [17] STOLLE R, KOESER H, GUTBERLET H. Oxidation and reduction of mercury by SCR DeNOx catalysts under flue gas conditions in coal fired power plants[J]. Applied Catalysis B:Environmental, 2014, 144: 486-497. doi: 10.1016/j.apcatb.2013.07.040 [18] LI Y, MURPHY P D, WU C Y, et al. Development of silica/vanadia/titania catalysts for removal of elemental mercury from coal-combustion flue gas[J]. Environmental Science & Technology, 2008, 42(14): 5304-5309. [19] YANG J, YANG Q, SUN J, et al. Effects of mercury oxidation on V2O5-WO3/TiO2 catalyst properties in NH3-SCR process[J]. Catalysis Communications, 2015, 59: 78-82. doi: 10.1016/j.catcom.2014.09.049 [20] BERETTA A, USBERTI N, LIETTI L, et al. Modeling of the SCR reactor for coal-fired power plants: impact of NH3 inhibition on Hg0 oxidation[J]. Chemical Engineering Journal, 2014, 257: 170-183. doi: 10.1016/j.cej.2014.06.114 [21] YANG B, LI Z, HUANG Q, et al. Synergetic removal of elemental mercury and NO over TiCe0.25Sn0.25Ox catalysts from flue gas: performance and mechanism study[J]. Chemical Engineering Journal, 2019, 360: 990-1002. doi: 10.1016/j.cej.2018.09.193 [22] CHIU C H, HSI H C, LIN H P, et al. Effects of properties of manganese oxide-impregnated catalysts and flue gas condition on multipollutant control of Hg0 and NO[J]. Journal of Hazardous Materials, 2015, 291: 1-8. doi: 10.1016/j.jhazmat.2015.02.076 [23] SUN X M, WU J, TIAN F G, et al. Synergistic effect of surface defect and interface heterostructure on TiO2/BiOIO3 photocatalytic oxide gas-phase mercury[J]. Materials Research Bulletin, 2018, 103: 247-258. doi: 10.1016/j.materresbull.2018.03.040 [24] WANG T, YANG Y H, WANG J W, et al. Preadsorbed SO3 inhibits oxygen atom activity for mercury adsorption on Cu/Mn doped CeO2(110) surface[J]. Energy & Fuels, 2020, 34(4): 4734-4744. [25] 宗晨曦, 纪蕾朋, 陈奎续, 等. Cu/SAPO-34对模拟烟气中零价汞的脱除性能[J]. 环境工程学报, 2018, 12(6): 1691-1701. doi: 10.12030/j.cjee.201710163 [26] 范红兵, 刁永发, 李攀, 等. 烟气成分对负载V2O5-WO3/TiO2聚苯硫醚纤维脱除烟气中Hg0的影响[J]. 环境工程学报, 2014, 8(7): 2957-2962. [27] YAMAGUCHI A, AKIHO H, ITO S. Mercury oxidation by copper oxides in combustion flue gases[J]. Powder Technology, 2008, 180(1/2): 222-226. [28] LIU Y, WANG Y J, WANG H Q, et al. Catalytic oxidation of gas-phase mercury over Co/TiO2 catalysts prepared by Sol-gel method[J]. Catalysis Communications, 2011, 12(14): 1291-1294. doi: 10.1016/j.catcom.2011.04.017 [29] ZHAO L K, LI C T, WANG Y, et al. Simultaneous removal of elemental mercury and NO from simulated flue gas using a CeO2 modified V2O5-WO3/TiO2 catalyst[J]. Catalysis Science & Technology, 2016, 6(15): 6076-6086. [30] ZHANG X N, LI C T, ZHAO L K, et al. Simultaneous removal of elemental mercury and NO from flue gas by V2O5-CeO2/TiO2 catalysts[J]. Applied Surface Science, 2015, 347: 392-400. doi: 10.1016/j.apsusc.2015.04.039 [31] 李海龙. 新型SCR催化剂对汞的催化氧化机制研究[D]. 武汉: 华中科技大学, 2011. [32] SHEN M Q, LI C X, WANG J Q, et al. New insight into the promotion effect of Cu doped V2O5/WO3-TiO2 for low temperature NH3-SCR performance[J]. RSC Advances, 2015, 5(44): 35155-35165. doi: 10.1039/C5RA04940G [33] LI H L, ZHAO J X, ZHANG W L, et al. NH3 inhibits mercury oxidation over low-temperature MnOx/TiO2 SCR catalyst[J]. Fuel Processing Technology, 2018, 176: 124-130. doi: 10.1016/j.fuproc.2018.03.022 [34] LI H L, WU S K, WU C Y, et al. SCR atmosphere induced reduction of oxidized mercury over CuO-CeO2/TiO2 catalyst[J]. Environmental Science & Technology, 2015, 49(12): 7373-7379. [35] SENIOR C L, SAROFIM A F, ZENG T F, et al. Gas-phase transformations of mercury in coal-fired power plants[J]. Fuel Processing Technology, 2000, 63(2/3): 197-213. [36] ZHAO L K, LI C T, ZHANG X N, et al. A review on oxidation of elemental mercury from coal-fired flue gas with selective catalytic reduction catalysts[J]. Catalysis Science & Technology, 2015, 5(7): 3459-3472. [37] 胡鹏, 段钰锋, 陈亚南, 等. Mo-Mn/TiO2催化剂的协同脱硝脱汞特性[J]. 中国环境科学, 2018, 38(2): 523-531. doi: 10.3969/j.issn.1000-6923.2018.02.014 [38] XU W Q, WANG H R, ZHOU X, et al. CuO/TiO2 catalysts for gas-phase Hg0 catalytic oxidation[J]. Chemical Engineering Journal, 2014, 243: 380-385. doi: 10.1016/j.cej.2013.12.014 [39] LI H L, WU C Y, LI Y, et al. CeO2-TiO2 catalysts for catalytic oxidation of elemental mercury in low-rank coal combustion flue gas[J]. Environmental Science & Technology, 2011, 45(17): 7394-7400. [40] HUANG W J, XU H M, QU Z, et al. Significance of Fe2O3 modified SCR catalyst for gas-phase elemental mercury oxidation in coal-fired flue gas[J]. Fuel Processing Technology, 2016, 149: 23-28. doi: 10.1016/j.fuproc.2016.04.007 [41] CHI G L, SHEN B X, YU R R, et al. Simultaneous removal of NO and Hg0 over Ce-Cu modified V2O5/TiO2 based commercial SCR catalysts[J]. Journal of Hazardous Materials, 2017, 330: 83-92. doi: 10.1016/j.jhazmat.2017.02.013 [42] HE S, ZHOU J S, ZHU Y Q, et al. Mercury oxidation over a vanadia-based selective catalytic reduction catalyst[J]. Energy & Fuels, 2009, 23(1): 253-259. [43] ZHAO L K, LI C T, LI S H, et al. Simultaneous removal of elemental mercury and NO in simulated flue gas over V2O5/ZrO2-CeO2 catalyst[J]. Applied Catalysis B:Environmental, 2016, 198: 420-430. doi: 10.1016/j.apcatb.2016.05.079 [44] ZHANG Q L, XU L S, NING P, et al. Surface characterization studies of CuO-CeO2-ZrO2 catalysts for selective catalytic reduction of NO with NH3[J]. Applied Surface Science, 2014, 317: 955-961. doi: 10.1016/j.apsusc.2014.09.017 [45] LEE S. M, HONG S. C. Promotional effect of vanadium on the selective catalytic oxidation of NH3 to N2 over Ce/V/TiO2 catalyst[J]. Applied Catalysis B:Environmental, 2015, 163: 30-39. doi: 10.1016/j.apcatb.2014.07.043 [46] ZHAO X, HUANG L, LI H, et al. Highly dispersed V2O5/TiO2 modified with transition metals (Cu, Fe, Mn, Co) as efficient catalysts for the selective reduction of NO with NH3[J]. Chinese Journal of Catalysis, 2015, 36(11): 1886-1899. doi: 10.1016/S1872-2067(15)60958-5 [47] DONG L, ZHANG L, SUN C, et al. Study of the properties of CuO/VOx/Ti0.5Sn0.5O2 catalysts and their activities in NO+CO reaction[J]. Acs Catalysis, 2011, 1(5): 468-480. doi: 10.1021/cs200045f [48] CHEN B, XU R, ZHANG R, et al. Economical way to synthesize SSZ-13 with abundant ion-exchanged Cu+ for an extraordinary performance in selective catalytic reduction (SCR) of NOx by ammonia[J]. Environmental Science & Technology, 2014, 48(23): 13909-13916.