-
由于工农业废水和市政污水中的含氮化合物排放进入自然水体中,导致富营养化、水生态功能障碍等一系列的环境问题[1-2]。随着国家和地方排放标准日益严苛[3],总氮达标排放已成为污水处理厂提标改造的重要目标。目前城市污水处理厂主要采用好氧硝化-缺氧反硝化的传统生物脱氮工艺,有机碳源的短缺,已成为总氮达标的重大挑战[4]。
在以反硝化脱氮为目标的污水处理厂提标改造中,往往需要外加有机碳源,如甲醇、乙醇、乙酸盐和葡萄糖。有机碳源的投加,不仅增加了运行成本,且有机碳源过量或不足时,可能导致二次污染或不完全反硝化[5]。尤其是进水基质浓度波动情况下,投加有机碳源的剂量难以控制,使得出水指标难以达标[1,6]。这种以高能耗、高物耗换取污染物削减工艺,已经不符合当前“控污降碳”的可持续发展理念。污水厂提标改造,总氮控制是关键[7],因此,亟待开发低碳高效反硝化生物脱氮工艺。
自养反硝化因无需外源有机碳源、不产生二次污染和剩余污泥产量少等优点[8-9],在低COD/N废水处理中具有良好的应用价值。按电子供体的不同,主要分为硫自养、铁自养和氢自养反硝化。硫自养反硝化效能较高,但对pH要求较高,需外加石灰石调节[10-11]。反应中间产物有生物毒性,且生成的硫酸盐是水体污染物。铁自养反硝化长期运行中易在铁表面形成一层钝化膜,影响传质效率,且反硝化会产生NH4+,并未实现彻底反硝化[12-13]。氢自养反硝化是清洁、经济的生物处理技术,但其受限制于氢气的储存、传质率及利用率[14-15],近些年,膜曝气生物反应器的研发有效改善了这一局限性。
氢基质膜生物膜反应器(H2-MBfR)将生物膜技术与中空纤维膜曝气扩散相结合,利用膜内外压力差为传质动力,H2以无泡曝气的方式传递到生物膜内部,微生物附着生长在中空纤维膜表面,H2利用率高,避免了H2泄漏的风险[16]。MBfR以H2为电子供体,将氧化性污染物还原为低毒或无毒的低价态产物[17],广泛应用于硝酸盐/亚硝酸盐、高氯酸盐/氯酸盐、铬酸盐、硫酸盐等氧化态污染物的研究[18-19]。TANG等[20]将H2-MBfR应用于实际地下水的反硝化效能,在初始NO3−质量浓度为11.9 mg·L−1时,反硝化速率为0.8~2.9 g·(m2·d)−1,亚硝酸盐累积率低,H2利用率100%。H2-MBfR反硝化体系的效能,受NO3−-N浓度、pH和氢通量等众多因素的影响。RITTMANN等发现在H2-MBfR中,自养反硝化的最佳pH在7.7~8.6, pH超过8.6,NO3−去除率显著下降、NO2−急剧积累[21]。增加H2压力,氢通量由0.04 mg·(cm2·d)−1增加到0.13 mg·(cm2·d)−1,可提高生物膜的还原效能[22]。H2-MBfR进行反硝化脱氮,有效解决H2溶解度和利用率低的局限性,无需外加有机碳源、无二次污染,在污水处理厂总氮提标改造中具有良好的应用前景。前期大部分研究主要以地下水中低浓度硝酸盐为对象,对于其在污水处理厂深度反硝化脱氮的研究尚不多见。本研究以H2作为电子供体,考察了MBfR反应器的反硝化性能,此外,考察了NO3−-N浓度、pH、氢通量等关键因素对H2-MBfR反硝化过程的影响,在此基础上分析了系统的微生物群落特征,为H2-MBfR致力于污水厂深度脱氮的工程化应用提供参考。
H2-MBfR反硝化效能及影响因素
Denitrification efficiency and impact factors of a hydrogen-based membrane biofilm reactor
-
摘要: 氢自养反硝化因资源节约、无二次污染,是可持续的低碳污水处理工艺。为探究氢基质膜生物膜反应器(hydrogen-based membrane biofilm reactor)反硝化的快速启动及其脱氮性能,考察了不同进水浓度、pH、氢通量(Jm)等关键因素对H2-MBfR反硝化过程的影响,分析了系统的微生物群落特征。结果表明:不同接种污泥14 d内反应器的反硝化效率均可稳定在98%以上,接种反硝化污泥更有利于快速启动;在氢气足够的条件下,通过提高进水NO3--N浓度和缩短水力停留时间(HRT),反应器运行负荷提高了3.3倍,系统维持稳定、高效的反硝化性能,相对于异养反硝化,可节省CO2的理论排放量约为0.83~1.25 g(以NO3--N计);最佳初始pH在7.5左右,反硝化过程中亚硝酸盐的积累率最低;Jm与反硝化速率具有很好的一致性,提高Jm有利于提高反硝化效率。16s rRNA高通量测序结果表明,变形菌门Proteobacteria是H2-MBfR系统中主导菌门,随着系统反硝化性能提升,该门类菌属达到47.5%。unclassified_f__Comamonadaceae、norank_f__Blastocatellaceae、Hydrogenophaga和Rhodobacter是H2-MBfR系统中典型的反硝化菌属,在稳定期总丰度可达到46%左右。
-
关键词:
- 氢基质膜生物膜反应器 /
- 自养反硝化 /
- 影响因素 /
- 高通量测序 /
- 生物膜群落
Abstract: Hydrogen autotrophic denitrification is a sustainable low carbon wastewater treatment process due to resource conservation and no secondary pollution. In order to study the rapid start-up of denitrification and its denitrification performance in a hydrogen-based membrane biofilm reactor (H2-MBfR), the effects of key factors such as different influent concentrations, pH and hydrogen flux (Jm) on the denitrification process of H2-MBfR were investigated, and the microbial community characteristics of the system were analyzed. The results showed that: the denitrification efficiency of the reactors with different inoculated sludge could all be stabilized above 98% within 14 d, and the inoculation of denitrification sludge was more conducive to the rapid start-up than others. Under the condition of sufficient hydrogen, the reactor operating load increased by 3.3 times through increasing the influent NO3--N concentration and shortening the hydraulic retention time (HRT), and the system maintained a stable and efficient denitrification performance, and could save theoretical CO2 emissions of about 0.83-1.25 g (as NO3--N) comparing to heterotrophic denitrification. The optimal initial pH was around 7.5, and the lowest accumulation rate of nitrite during denitrification occurred accordingly. Jm had a good agreement with denitrification rate, and the increase of Jm was beneficial to improving denitrification efficiency. The results of 16s rRNA high-throughput sequencing showed that, the phylum Proteobacteria was the dominant phylum in the H2-MBfR system, and the genus of this phylum reached 47.5% as the denitrification performance of the system was improved. Unclassified_f__Comamonadaceae, norank_f__Blastocatellaceae, Hydrogenophaga and Rhodobacter were typical denitrifying genera in the H2-MBfR system, and the total abundance could reach about 46% in the stable phase. -
表 1 反应器性能提升过程对应的运行工况
Table 1. Operating conditions corresponding to the reactor performance improvement process
阶段 运行
时间/dNO3−-N浓度/
(mmol·L−1)H2压力/
MPaHTR/h pH Ⅰ 15~28 1 0.05 15 6.8~7.0 Ⅱ 29~37 2 0.05 15 6.8~7.0 Ⅲ 38~47 3 0.05 15 6.8~7.0 Ⅳ 48~59 4 0.06 15 6.8~7.0 Ⅴ 60~65 4 0.06 6 6.8~7.0 Ⅵ 66~73 5 0.06 6 6.8~7.0 表 2 不同电子供体的反硝化性能与CO2排放量比较
Table 2. Comparison of denitrification performance and CO2 emissions of different electron donors
电子供体 反应方程式 NO3--N去除率/% 反应器 CO2排放量 /g 参考文献 甲醇 5CH3OH + 6NO3-→3N2 + 5CO2 + 7H2O + 6OH- 92.8~98.7 附着生长填充床 0.83 [27] 乙醇 5C2H5OH + 12NO3-→6N2 + 10CO2 + 9H2O + 12OH- 100 流化床 0.83 [28] 乙酸盐 5CH3COO- + 13H+ + 8NO3-→4N2 + 10CO2 + 14H2O 99 连续搅拌反应器 1.25 [29] 葡萄糖 5C6H12O6 + 24NO3-+ 24H+→12N2 + 30CO2 + 42H2O 88~92 填充床 1.25 [30] 氢气 2NO3-+5H2+2H+→N2+6H2O 98.5 膜生物膜反应器 0 本研究 -
[1] CHU L B, WANG J L. Denitrification performance and biofilm characteristics using biodegradable polymers PCL as carriers and carbon source[J]. Chemosphere, 2013, 91(9): 1310-1316. doi: 10.1016/j.chemosphere.2013.02.064 [2] CONLEY D J, PAERL H W, HOWARTH R W, et al. Controlling eutrophication: Nitrogen and phosphorus[J]. Science, 2009, 323(5917): 1014-1015. doi: 10.1126/science.1167755 [3] 郝晓地, 方晓敏, 李季, 等. 污水碳中和运行潜能分析[J]. 中国给水排水, 2018, 34(10): 11-16. doi: 10.19853/j.zgjsps.1000-4602.2018.10.003 [4] WANG Y L, WANG D B, YANG Q, et al. Wastewater opportunities for denitrifying anaerobic methane oxidation[J]. Trends in Biotechnology, 2017, 35(9): 799-802. doi: 10.1016/j.tibtech.2017.02.010 [5] MARIN J A, CARAVELLI A H, ZARITZKY N E, et al. Nitrification and aerobic denitrification in anoxic-aerobic sequencing batch reactor[J]. Bioresource Technology, 2016, 200: 380-387. doi: 10.1016/j.biortech.2015.10.024 [6] CHU L B, WANG J L. Comparison of polyurethane foam and biodegradable polymer as carriers in moving bed biofilm reactor for treating wastewater with a low C/N ratio[J]. Chemosphere, 2011, 83(1): 63-68. doi: 10.1016/j.chemosphere.2010.12.077 [7] XIE G J, CHEN C, HU S H, et al. Complete nitrogen removal from synthetic anaerobic sludge digestion liquor through integrating anammox and denitrifying anaerobic methane oxidation in a membrane biofilm reactor[J]. Environmental Science & Technology, 2017, 51(2): 819-827. [8] CAPUA F D, PIROZZI F, ESPOSITO G, et al. Electron donors for autotrophic denitrification[J]. Chemical Engineering Journal, 2019, 362: 922-937. doi: 10.1016/j.cej.2019.01.069 [9] WEI X, WANG Y, HAO T Y, et al. pH control and microbial community analysis with HCl or CO2 addition in H2-based autotrophic denitrification[J]. Water Research, 2020, 168: 115200. doi: 10.1016/j.watres.2019.115200 [10] LIU L H, KOENIG A. Use of limestone for pH control in autotrophic denitrification batch experiments[J]. Process Biochemistry, 2002, 37: 885-893. doi: 10.1016/S0032-9592(01)00302-8 [11] MOON H S, AHN K H, LEE S, et al. Use of autotrophic sulfur-oxidizers to remove nitrate from bank filtrate in a permeable reactive barrier system[J]. Environmental Pollution, 2004, 129: 499-507. doi: 10.1016/j.envpol.2003.11.004 [12] 姚鹏程, 袁仪, 龙震宇, 等. 单质硫自养反硝化研究现状及展望[J]. 现代化工, 2018, 38(6): 28-33. doi: 10.16606/j.cnki.issn0253-4320.2018.06.007 [13] PANG Y M, WANG J L. Various electron donors for biological nitrate removal: A review[J]. Science of the Total Environment, 2021, 794: 148699. doi: 10.1016/j.scitotenv.2021.148699 [14] GHAFARI S, HASAN M, AROUA M K. Nitrate remediation in a novel upflow bio-electrochemical reactor (UBER) using palm shell activated carbon as cathode material[J]. Electrochimica Acta, 2009, 54(17): 4164-4171. doi: 10.1016/j.electacta.2009.02.062 [15] TANG Y N, ZHOU C, MEYER K, et al. Comparing heterotrophic and hydrogen-based autotrophic denitrification reactors for effluent water quality and post-treatment[J]. Water Scuence & Technology:Water Supply, 2012: 227-233. [16] LEE K C, RITTMANN B E. Applying a novel autohydrogenotrophic hollow-fiber membrane biofilm reactor for denitrification of drinking water[J]. Water Research, 2002, 36: 2040-2052. doi: 10.1016/S0043-1354(01)00425-0 [17] RITTMANN B E. The membrane biofilm reactor is a versatile platform for water and wastewater treatment[J]. Environmental Engineering Research, 2007, 12(4): 157-175. doi: 10.4491/eer.2007.12.4.157 [18] ZHAO H P, GINKEL A V, TANG Y N, et al. Interactions between perchlorate and nitrate eductions in the biofilm of a hydrogen-based membrane biofilm reactor[J]. Environmental Science & Technology, 2011, 45(23): 10155-10162. [19] 夏四清, 梁郡, 李海翔, 等. 利用氢基质生物膜反应器同步去除多种污染物[J]. 同济大学学报(自然科学版), 2012, 6: 876-881. doi: 10.3969/j.issn.0253-374x.2012.06.013 [20] TANG Y N, MICHAL Z E, ZHOU C, et al. Bioreduction of nitrate in groundwater using a pilot-scale hydrogen-based membrane biofilm reactor[J]. Frontiers of Environmental Science & Engineering in China, 2010, 4(3): 280-285. [21] LEE K C, RITTMANN B E. Effects of pH and precipitation on autohydrogenotrophic denitrification using the hollow-fiber membrane-biofilm reactor[J]. Water Research, 2003, 37(7): 1551-1556. doi: 10.1016/S0043-1354(02)00519-5 [22] MICHAL Z E, RITTMANN B E. Systematic evaluation of nitrate and perchlorate bioreduction kinetics in groundwater using a hydrogen-based membrane biofilm reactor[J]. Water Research, 2009, 43(1): 173-181. doi: 10.1016/j.watres.2008.09.035 [23] 冉雅郡, 周云, 杨潇潇, 等. MBfR处理水中氧化性污染物的研究进展[J]. 中国环境科学, 2018, 38(12): 4484-4493. doi: 10.3969/j.issn.1000-6923.2018.12.011 [24] XIA S Q, LI H X, ZHANG Z Q, et al. Bioreduction of para-chloronitrobenzene in drinking water using a continuous stirred hydrogen-based hollow fiber membrane biofilm reactor[J]. Journal of Hazardous Materials, 2011, 192(2): 593-598. doi: 10.1016/j.jhazmat.2011.05.060 [25] WANG R C, TERADA A, LACKNER S, et al. Nitritation performance and biofilm development of co- and counterdiffusion biofilm reactors: modeling and experimental comparison[J]. Water Research, 2009, 43(10): 2699-2709. doi: 10.1016/j.watres.2009.03.017 [26] ZHOU C, AURA O V, WANG Z C, et al. Palladium recovery in a H2-based membrane biofilm reactor: Formation of Pd(0) Nanoparticles through enzymatic and autocatalytic reductions[J]. Environmental Science & Technology, 2016, 50(5): 2546-2555. [27] RAJAPAKSE J P, SCUTT J E. Denitrification with natural gas and various new growth media[J]. Water Research, 1999, 33(18): 3723-3734. doi: 10.1016/S0043-1354(99)00088-3 [28] CONSTANTIN H, FICK M. Influence of C-sources on the denitrification rate of a highnitrate concentrated industrial wastewater[J]. Water Research, 1997, 31(3): 583-589. doi: 10.1016/S0043-1354(96)00268-0 [29] JESUS R A, ELIAS R F, JORGE G. Simultaneous biological removal of nitrogen, carbon and sulfur by denitrification[J]. Water Research, 2004, 38(14/15): 3313-3321. [30] XU Z S, DAI X H, CHAI X L. Effect of different carbon sources on denitrification performance, microbial community structure and denitrification genes[J]. Science of the Total Environmental, 2018, 634: 195-204. doi: 10.1016/j.scitotenv.2018.03.348 [31] 曹相生, 钱栋, 孟雪征. 乙酸钠为碳源时的污水反硝化规律研究[J]. 中国给水排水, 2011, 27(21): 76-79. doi: 10.19853/j.zgjsps.1000-4602.2011.21.022 [32] 孙洪伟, 王淑莹, 王希明, 等. 低温SBR反硝化过程亚硝态氮积累试验研究[J]. 环境科学, 2009, 30(12): 3619-3623. doi: 10.3321/j.issn:0250-3301.2009.12.029 [33] REZANIA B, CICEK N, OLESZKIEWICZ J A. Kinetics of hydrogen-dependent denitrification under varying pH and temperature conditions[J]. Biotechnology & Bioengineering, 2010, 92(7): 900-906. [34] REZANIA B, OLESZKIEWICZ J A, CICEK N, et al. Hydrogen-dependent denitrification in an alternating anoxic-aerobic SBR membrane bioreactor[J]. Water Science & Technology, 2005, 51(6/7): 403. [35] GINKEL S V, LAMENDELLA R, RITTMANN B E, et al. Microbial community structure during nitrate and perchlorate reduction in ion-exchange brine using the hydrogen-based membrane biofilm reactor (MBfR)[J]. Bioresource Technology, 2010, 101: 3747-3750. doi: 10.1016/j.biortech.2009.12.028 [36] XIA S Q, DUAN L, SONG Y H, et al. Bacterial community structure in geographically distributed biological wastewater treatment reactors[J]. Environmental Science & Technology, 2010, 44(19): 7391-7396. [37] LU H J, CHANDRAN K, STENSEL D. Microbial ecology of denitrification in biological wastewater treatment[J]. Water Research, 2014, 64: 237-254. doi: 10.1016/j.watres.2014.06.042 [38] 高春娣, 张娜, 韩徽, 等. 低温下丝状菌膨胀污泥的微生物多样性[J]. 环境科学, 2020, 41(7): 3373-3383. doi: 10.13227/j.hjkx.201912048 [39] XING W, LI J L, LI P, et al. Effects of residual organics in municipal wastewater on hydrogenotrophic denitrifying microbial communities[J]. Journal of Environmental Sciences, 2018, 65: 262-270. doi: 10.1016/j.jes.2017.03.001