-
我国造纸行业废水年排放量达40×109 t,占全国工业废水排放量的1/6[1]。造纸废水中含有大量的半纤维素、木质素及化学药品,耗氧量大,对生态环境造成严重破坏,因此,造纸废水的处理是社会关注的热点之一[2-4]。在碳达峰和碳中和的目标下,既要保证造纸行业的增产,提高造纸行业的经济效益,也要减少造纸废水的排放,实现节能减排的目标,提高环境效益[5]。造纸废水的处理可分为化学处理法、物化处理法、生化处理法[6]。化学处理法和物化处理法虽可实现造纸废水的达标排放,但处理成本较高,易消耗更多的能源和物料,不符合节能降耗的理念。而生化处理法具有环保性和经济可行性,处理效果好,适用于有机物浓度高的造纸废水[7-8]。
由于造纸废水中含有难降解物质,造纸废水的可生化性较低,导致生物处理的有效性降低[9],因此,对传统生物处理技术的优化和改进成为研究热点[10]。生物电化学系统(bio-electrochemical systems,BES)是近年来环境领域一种新型的厌氧处理反应器,因其在电活性微生物介导的生物电化学作用下通过细菌代谢能够消除废水中存在的各种污染物,如难降解有机物和氮物质,而受到越来越多的关注[11-12],目前应用最广泛的为微生物电解池(microbial electrolysis cell,MEC)和微生物燃料电池(microbial fuel cell,MFC)[13]。有研究表明,在pH=7、外加电压为0.6 V、(30±2) °C的条件下,用MEC系统处理造纸废水,在7 d的批量循环中,500 mL废水的化学需氧量(以COD计)去除率为34%,显著提高了造纸废水的处理效率[14]。LIU等研究表明MEC-AD系统可加速碳的生物转化,生物甲烷生成速率提高了3倍[15]。有研究将厌氧生物膜反应器和MFC相结合,用于处理制浆造纸废水,22 d后添加陶粒的MFC表现出更好的生物电性能,COD去除率达到65.6%[16]。当向造纸废水中加入磷酸盐缓冲溶液时,在500 h的间歇循环中,可溶化学需氧量(SCOD)去除了(73±1)%,总化学需氧量(TCOD)去除了(76±4)%,纤维素几乎完全被去除[17]。除BES外,外加金属导电材料也是一种强化厌氧发酵的新方法[18]。有研究提出向级联暗发酵和厌氧消化体系中引入200 mg·L−1导电材料纳米磁铁矿(Fe3O4NPs),生物甲烷产量提高了22.9%,酪氨酸类蛋白质的荧光响应从59.11%下降到52.38%[19],证实了Fe3O4NPs可用于有机废物稳定、高速的生物甲烷化[20]。MEC、MFC和外加金属导电材料都可以创新开发高效稳定的生物处理新工艺,但针对不同厌氧发酵系统处理造纸废水的对比研究相对较少。
基于上述研究结果,本文以造纸废水为研究对象,构建了不同的厌氧发酵系统,测定了不同厌氧发酵系统中生物甲烷组分、液体组分、液体DOM以及微生物群落结构,通过对比生物甲烷量、总磷(TP)去除率、COD去除率、NH4+-N去除率、溶解性有机质(DOM)变化特征和菌群群落结构,优选出微生物降解造纸废水高效的处理系统。
-
本研究采用的造纸废水来源于河南省焦作市某造纸厂,通过造纸废水的水质分析可得:pH为8.80、SCOD为7 197.93 mg·L−1、TP为26.33 mg·L−1、NH4+-N为43.45 mg·L−1。不同厌氧发酵系统实验所用菌源来源于实验室长期驯化的菌液。
-
1)构建对照组。对照组为传统微生物厌氧发酵系统(AD),以1 000 mL的锥形瓶作为厌氧发酵的反应容器,造纸废水的添加量为900 mL,菌液的添加量为100 mL;往反应容器中通入氮气除氧,密封后放入35 ℃的恒温培养箱。
2)构建实验组。实验组分别为微生物单室电解池系统(MEC-AD)、微生物双室燃料电池系统(MFC-AD)和微生物加导电材料厌氧发酵系统(AD+Fe3O4NPs)。实验组A:MEC-AD用碳毡作为阳极,不锈钢网作为阴极,并用钛丝连接阴阳两极。反应容器、造纸废水和菌液的添加量同AD,通入氮气除氧,密封后置于磁力搅拌器上进行搅拌,转速350 r·min−1,温度设置为35 ℃,串联10 Ω的电阻,外接0.6 V的直流电压。实验组B:MFC-AD阴阳两极材质、反应容器及阳极室造纸废水和菌液的添加量同MEC-AD,阴极室以乙酸盐作为底物,阳极室与阴极室通过质子交换膜传递质子,阳极室除氧后密封置于磁力搅拌器上(参数同MEC-AD),串联1 000 Ω的电阻。实验组C:AD+Fe3O4NPs造纸废水和菌液的添加量同AD, Fe3O4NPs的添加量为2 g·L−1,除氧密封后放入35℃培养箱。(实验组①和②中所用碳毡跟不锈钢网大小均为10 cm×6 cm,在使用前要先进行预处理,先用1 moL·L−1的HCL浸泡24 h后用蒸馏水冲洗至中性,再用1 moL·L−1的NaOH浸泡24 h后用蒸馏水冲洗至中性,放到干燥箱中进行烘干)。
3) 4种厌氧发酵系统中各接1个500 mL的集气袋,每隔2 d分析生物甲烷组分且记录生物甲烷量。4种厌氧发酵系统隔10 d取1次液体,测定pH、COD、TP和NH4+-N,测定厌氧发酵反应前后液体DOM,并对生物甲烷高峰期的菌群结构进行鉴定。
-
1)不同厌氧发酵系统生物甲烷组分测定采用Agilent 7890A GC型气相色谱仪,检测器温度100℃,载气为He,流速为30 mL·min−1,采用进样针手动进样,每次进样体积1 mL。
2)产生物甲烷动力学分析。根据改进的Gompertz模型(式(1))[21]对不同厌氧发酵系统产生物甲烷阶段进行拟合修正。
式中:Gt为t时生物甲烷累计产量,mL;Go为模拟的生物甲烷累计产量,mL;Rmax为模拟的生物甲烷最大日产量,mL;λ为延滞期,d;t为厌氧发酵时间,d。
3)液体组分分析。pH利用pH计(型号:PHS-3C)测定;COD、TP和NH4+-N:取1 g液体进行稀释,按照标准方法测定(型号:多通道水质快速测定仪 TR-408),设定3个平行样。
4)液体三维荧光测试(3D-EEM)。将厌氧发酵前后的液体进行离心取上清液,经过0.45 μm微孔滤膜抽滤后,采用Hitachi F-7000荧光光度计测定,采用Origin软件进行处理3D-EEM数据,结合特定区域的光谱值进行分析表征。
5)菌群结构的鉴定。取50 mL生物甲烷高峰期的液体,在10 000 r·min−1下离心20 min,取离心后沉淀物质进行DNA提取、PCR扩增、高通量测序鉴定菌群结构。选取349F(5′-GYGCASCAGKCGMGAAW-3′)和806R(5′-GACTACHVGGGTATCTAATCC-3′)作为引物,高通量测序交付上海生工完成[22]。
-
不同厌氧发酵系统的生物甲烷量情况如图1所示。AD系统的生物甲烷高峰值出现在第16天左右,为162.95 mL,生物甲烷总量为1 277.81 mL。MEC-AD系统的生物甲烷高峰值出现在第8天左右,为266.11 mL,相比于AD系统提前了8 d,相比于AD系统增加了103.16 mL;生物甲烷总量为898.91 mL,相比于AD系统下降了29.65%。MFC-AD系统的生物甲烷高峰值出现在第12天左右,为260.99 mL,相比于AD系统增加了98.04 mL,相比于AD系统提前了4 d;生物甲烷总量为1 248.24 mL,相比于AD系统下降了2.31%。有机质的厌氧发酵过程可分为水解、产酸、产乙酸、产甲烷4个阶段。MEC-AD系统和MFC-AD系统在水解阶段可以加速大分子和不溶性物质水解成可溶性小分子有机物,并在酸化阶段中加速小分子有机物进一步分解为挥发性脂肪酸、乙酸、丙酮酸等,而后通过产甲烷菌将酸化阶段的产物转化为生物甲烷[23],加快了造纸废水各组分降解速率和生物甲烷生成速率,对厌氧发酵具有明显的促进作用。厌氧发酵后期MEC-AD、MFC-AD系统内微生物可降解利用的碳源不足,抑制了厌氧发酵进程[24];此外,MEC-AD、MFC-AD系统在利用底物产生物甲烷的同时也会损耗一部分能量产电。上述2种原因导致MEC-AD、MFC-AD系统的生物甲烷产率急速降低,生物甲烷总量比AD系统低。AD+Fe3O4NPs系统的生物甲烷高峰出现在第14天左右,相比于AD系统提前了2 d,高峰值为185.15 mL,相比于AD增加了22.2 mL;生物甲烷总量为1 548.74 mL,相比于AD提高了21.20%。只有AD+Fe3O4NPs系统提高了生物甲烷总量,可能由于磁铁矿与菌群形成了复杂的聚集结构,介导了产乙酸菌与产甲烷菌之间的种间直接电子传递(DIET),在这个过程中保留了更多的生物量并改善了厌氧微生物的代谢活性,从而降低短链脂肪酸的积累,提高生物甲烷产率和总量[20,25]。
使用修正的Gompertz模型计算Rmax和λ以研究造纸废水在不同厌氧发酵系统中的消化机制,参数如表1所示。图1(c)反映了不同厌氧发酵系统用修正的Gompertz模型拟合的Go。基于拟合的参数,采用λ和Rmax评估各厌氧发酵系统厌氧消化周期内的产生物甲烷性能。λ反映了厌氧发酵系统中微生物对底物的降解情况,λ值越低,产甲烷菌对底物适应能力越强[26],MEC-AD系统、MFC-AD系统、AD+Fe3O4NPs系统相较于AD系统均可以有效缩短生物甲烷的迟滞期,促进生物甲烷的快速产出,由于生物电化学和Fe3O4NPs的刺激进一步促进了微生物的生长和增殖,增强了增溶、水解酸化的过程;Rmax表示厌氧发酵系统中底物的消耗率[27],λ值和Rmax值保持负相关性,表明产生物甲烷速率与微生物适应性具有协同性。此外,R2均大于0.99证明了修正的Gompertz模型可靠的预测精度。
-
图2为经不同厌氧发酵系统处理前后造纸废水中各组分浓度和去除率的变化情况。在第10天各系统pH降到最小值,这是由于水解阶段与产酸发酵阶段AD、AD+Fe3O4NPs系统中高分子有机物在菌群的作用下生成了大量的小分子酸类,引起pH的降低,同时也造成了SCOD的升高。此外,MEC-AD、MFC-AD系统中SCOD下降。分析原因为,废水中可见的不溶性大分子有机物经厌氧消化而溶于水中,变成了均质溶液,随着厌氧发酵的进行,SCOD呈降低趋势。MEC-AD系统结束后SCOD为1 598.43 mg·L−1、TP为3.50 mg·L−1、NH4+-N为10.44 mg·L−1,其去除率分别为77.79%、86.71%和75.97%。由于MEC-AD系统外加电压刺激了菌群的活性,促进了菌群的生长,废水中更多的SCOD被菌群降解利用,余下的SCOD作为有机碳源为反硝化菌群提供了可靠的电子供体在反硝化脱氮过程中被消耗,降解磷的生物群落在缺氧环境中同时以硝态氮或者亚硝态氮替代氧气作为电子受体,从而达到生物除磷的目的[28]。MFC-AD系统结束后SCOD为1 992.54 mg·L−1、TP为4.20 mg·L−1、NH4+-N为13.23 mg·L−1,其去除率分别为72.32%、84.05%和69.55%。MFC-AD系统阳极表面电化学活性微生物厌氧降解废水中的SCOD产生电子通过质子交换膜达到阴极,与阴极含氮、含磷化合物发生氧化还原反应从而实现脱氮除磷。AD+Fe3O4NPs系统结束后SCOD为3 588.71 mg·L−1、TP为9.46 mg·L−1、NH4+-N为19.03 mg·L−1,其去除率分别为50.14%、64.07%和56.23%。AD+Fe3O4NPs系统中Fe3O4NPs可以协助促进菌群与废水中矿物之间的电子传递交互过程,可促进微生物代谢和能量的流动,从而提高了脱氮除磷的效率。4个厌氧发酵系统中的菌群从造纸废水中获得能量,一部分用于产气,一部分用于脱氮除磷,MEC-AD、MFC-AD系统更适合脱氮除磷,因而产气较少;AD、AD+Fe3O4NPs系统更适合产气,因而对废水中各组分去除效果较差。由此可见,相比AD,MEC-AD、MFC-AD、AD+Fe3O4NPs系统均可提高废水中各组分的去除率,去除效果表现为MEC-AD >MFC-AD>AD+Fe3O4NPs>AD。
-
对微生物降解前后的造纸废水进行三维荧光测试及解析,分析液体DOM的变化。根据激发波长(Ex)和发射波长(Em)的不同对3D-EEM光谱进行区域划分可得:Ⅰ区(Ex=200~250 nm,Em=240~330 nm)为类酪氨酸、Ⅱ区(Ex=200~250 nm,Em=330~380 nm)为类色氨酸、Ⅲ区(Ex=200~250 nm,Em=380~600 nm)为类富里酸、Ⅳ区(Ex=250~420 nm,Em=240~380 nm)为溶解性微生物产物、Ⅴ区(Ex=250~420 nm,Em=380~600 nm)为类腐殖质[29]。由图3中可以看出,厌氧降解之前原水包含2个荧光峰,解析出3种物质,分别为酪氨酸类蛋白质、色氨酸类蛋白质和溶解性微生物代谢物,蛋白质样峰在造纸废水中占主导地位。经厌氧降解后的废水均包含4个荧光峰且荧光峰对应位置相同,仅荧光强度不同,解析出5种物质,分别为酪氨酸类蛋白质、色氨酸类蛋白质、类富里酸物质、溶解性微生物代谢物和类腐殖酸物质。与原水相比,处理过后的废水多了类富里酸和类腐殖酸2种物质。这说明原造纸废水经过4个厌氧发酵系统处理后,废水中大分子和不可溶性物质被微生物分解成可溶性小分子有机物,导致可溶性微生物副产物及分解的荧光机质DOM显著增加,表现为类富里酸和类腐殖酸。由图3中可以看出,4种厌氧发酵系统对不同物质均可降解,污水中的DOM均有不同程度的降低。说明微生物群落能更好的利用可溶性小分子物质进行生长代谢,最终由产甲烷菌生成生物甲烷。由荧光峰强度的大小来看,MEC-AD系统对于酪氨酸类蛋白质、色氨酸类蛋白质和溶解性微生物代谢物降解效果最显著;MFC-AD系统对于类富里酸和类腐殖酸两种物质降解效果最显著;AD、AD+Fe3O4NPs系统对4种组分降解效果都不显著,但相比AD,AD+Fe3O4NPs系统对类腐殖质物质降解效果更好。由图3可见,降解能力整体依然表现为MEC-AD>MFC-AD>AD+Fe3O4NPs>AD。这与4种厌氧发酵系统对造纸废水各组分去除能力的结论相一致。
-
为了查明反应体系菌群结构对造纸废水降解程度的影响,对不同厌氧发酵系统在产生物甲烷高峰期进行微生物群落结构鉴定,各系统物种丰富度呈MEC-AD>MFC-AD> AD+Fe3O4NPs>AD,菌群种类及相对丰度见图4。由图4(a)可见,4个厌氧发酵系统原始混合菌群中优势细菌为Proteobacteria、Bacteroidetes、Pseudomonas、Macellibacteroides,丰度分别为6.1%~40.3%、7.2%~18.1%、4.2%~28.1%、9.3%~30.2%。其中Proteobacteria和Bacteroidetes是生物降解碳氮磷的主要细菌门类[30]。Proteobacteria为革兰氏阴性菌,在降解去除有机物和硝酸盐等方面具有重要作用[31]。Bacteroidetes为发酵菌门,多为厌氧细菌,可以将小分子的有机物转化成水溶性醇类、各种有机酸以及H2O、CO2、H2等,并且在蛋白质的降解中起重要作用[32-33]。Proteobacteria和Bacteroidetes在MEC-AD、MFC-AD系统的相对丰度远大于其他2个厌氧发酵系统,说明反应系统中的有机物可以在厌氧发酵阶段被快速降解,促进生物甲烷的快速产出。Macellibacteroides属于化能自养型微生物,主要参与大分子如蛋白质、糖、纤维素等的降解,其次也参与单糖的发酵产生酸、氢气和二氧化碳[34],在AD+Fe3O4NPs系统中相对丰度高。Pseudomonas属于假单胞菌科,本属细菌大多数为化能有机营养型,是一种降解能力极强的菌属,其对短链及长链烷烃、芳烃均有降解能力,同时也能参与碳水化合物的发酵[35],在AD系统中相对丰度高。Macellibacteroides和Pseudomonas在提高生物甲烷产量方面具有很大贡献。由图4(b)可知四个厌氧发酵系统原始混合菌群中优势古菌为Methanobacterium、Methanosaeta、Methanosarcina,相对丰度分别为8.1%~34.9%、5.1%~33.1%、9.2%~40.1%。Methanobacterium为氢营养型产甲烷菌,能将H2和CO2还原生成生物甲烷[36],为MEC-AD系统中的优势古菌。Methanosaeta是专性乙酸营养型产甲烷菌的代表,只利用乙酸产生甲烷,而且利用乙酸的效率很高,可将所利用乙酸分子中98%~99%的甲基转化成甲烷[37],为MFC-AD系统中的优势古菌。Methanosarcina为严格厌氧型,为甲基类发酵型产甲烷菌的主要菌属,能量代谢表现为甲基胺或甲醇转化为CH4、CO2和NH3,在H2存在时,其可以结合H2将小分子化合物还原为CH4,Methanosarcina为AD、AD+Fe3O4NPs系统中的优势古菌。4个厌氧发酵系统中均有较多的产甲烷菌群,可以利用细菌分解有机物提供的各种底物,通过不同途径产生CH4,但AD+Fe3O4NPs系统中丰度最高的Macellibacteroides可以广泛利用单糖和双糖作为电子供体,为微生物合成甲烷提供丰富的碳源和能量,这说明AD+Fe3O4NPs系统可提高生物甲烷总产量。
-
1) MEC-AD、MFC-AD、AD+Fe3O4NPs系统均可以促进生物甲烷的快速产出,MEC-AD系统促进效果最为显著,且可使产气高峰期提前8 d; AD+Fe3O4NPs系统不仅促进了生物甲烷的产出,还提高了生物甲烷的总产量,产率提高了21.20%。
2)各系统对废水中各组分的去除率整体表现为MEC-AD>MFC-AD>AD+Fe3O4NPs>AD,MEC-AD系统SCOD、TP和NH4+-N去除率分别为77.79%、86.71%和75.97%。
3)由荧光峰强度的大小来看,MEC-AD系统降解能力最强且对酪氨酸类蛋白质、色氨酸类蛋白质和溶解性微生物代谢物这3种物质降解效果最显著。
4) Proteobacteria和Bacteroidetes是MEC-AD系统中生物降解碳氮磷的主要细菌门类,更适合造纸废水厌氧发酵处理。
5) MEC-AD系统是微生物降解造纸废水最高效的处理系统。
不同厌氧发酵系统在造纸废水处理中的应用
Application of different anaerobic digestion systems in paper mill wastewater treatment
-
摘要: 在“碳达峰和碳中和”目标下寻求高效处理造纸废水的方法尤为迫切。以某造纸厂的废水为研究对象,利用不同的厌氧发酵系统对其进行微生物降解,分别对厌氧发酵过程中的生物甲烷组分、液体组分、液体DOM、微生物群落结构进行了测定和分析,优化了处理系统。结果表明:不同厌氧发酵系统对废水中各组分降解去除能力依次为MEC-AD>MFC-AD>AD+磁铁矿>AD;MEC-AD处理造纸废水具有高效性,可促使生物甲烷高峰期相对AD提前8 d,SCOD、TP和NH4+-N去除率分别达到了77.79%、86.73%和75.98%,废水DOM中酪氨酸类蛋白质、色氨酸类蛋白质和溶解性微生物的含量显著降低,生物甲烷高峰期菌群的优势菌属为Proteobacteria、Bacteroidetes。Abstract: It is particularly urgent to seek high-efficiency treatment of papermaking wastewater under the goal of 'Carbon peaking and carbon neutrality'. In this study, the wastewater from a paper mill was selected as the research object, and different anaerobic digestion systems were used to microbially degrade it. The biomethane composition, liquid composition, liquid DOM and microbial community structure in the anaerobic digestion process were determined to optimize the treatment system. The results showed that the order of degradation and removal ability of the components in wastewater by different systems was MEC-AD > MFC-AD > AD + magnetite > AD. Compared to AD, MEC-AD presented high-efficiency in papermaking wastewater treatment, which could promote 8 days in advance for the occurrence of biomethane peak period. The removal rates of SCOD, TP and NH4+-N reached 77.79 %, 86.73 % and 75.98 %, respectively. The tyrosine protein, tryptophan protein and soluble microorganisms in the wastewater DOM were significantly reduced. The dominant bacteria in biomethane production peak in MEC-AD were Proteobacteria and Bacteroidetes.
-
城市河道是城市景观生态系统的重要组成部分,具有提供水源、运输、防洪排涝、调节气候、降低环境污染的作用,对城市的生态环境建设和优化有着重要的意义[1-3]。随着经济技术的发展,沿海发达城市已经基本解决了河道水的黑臭问题,水环境质量也获得了阶段性的提升,但是城市河道水的总体品质并不高,尤其体现在水体感官性方面。河水的色度和透明度是人们最能够直观感受到的水质指标,因此,本研究通过尝试降低水体较高的色度,同时提高水体透明度,从而提高水体感官品质。导致河道水体感官品质不高的原因比较复杂,且与环境因素、河水的理化性质等有密切联系。河水中对感官品质有直接影响的物质主要有浮游植物及其产生的叶绿素a、悬浮固体和溶解性有机碳[4-6]。水中的基质对光线进行吸收、散射以及阻碍,或者对某一特定波段有强烈吸收光谱,从而导致本身带有一定颜色,这会导致水体色度较高或者透明度较低,进而降低感官品质[7-8]。
目前,提升水体感官品质的措施包括有物理处理法、生化生态处理法和物化处理法。物理处理方法包括引水换水和底泥疏浚等,其缺点是工程量大且费用昂贵。生化生态处理法包括人工湿地和生物滤池等物化处理法,但是此法占地大且处理速度慢。物化处理法包括混凝沉淀和加药气浮法等,其优势比较明显,但是在药剂投加和工艺流程等方面需要优化[9]。
滤布滤池是一种表层过滤技术,过滤介质(即滤布,一般由高分子纤维堆积而成)的网孔直径约为10~20 μm,其具有较高的除污精度,加之高分子纤维材质对水中有机物及SS等具有更好的黏附性能,因而能够在极小的过滤深度(约1~2 cm)条件下有效地去除污水中的颗粒污染物[10]。但在实际应用中,滤布滤池存在容易堵塞、过滤阻力大、需要频繁清洗等问题,而强化混凝技术与滤布滤池相结合可以有效改善以上这些不足。本研究以苏州市姑苏区河道水为研究对象,通过现场实验,考察强化混凝-滤布滤池系统对河水水质的净化效果,重点关注浮游植物、悬浮固体和溶解性有机碳这3类物质的变化情况,研究结果可为沿海发达城市解决河道水感官品质不高的问题提供借鉴和参考。
1. 实验装置和分析方法
1.1 现场实验装置的设计加工
强化混凝-沉淀-滤布滤池一体化装置如图1所示,装置总体积为8 m3,主要包括加药系统、混凝沉淀系统以及滤布滤池系统。装置进水量可调节,最大进水量为2.5 t·h−1。加药系统为2个带搅拌装置的水箱,可以通过计量泵调节加药量。沉淀区设计停留时间为1 h,体积为2.5 m3,并加装斜板以改善沉淀效果。滤布滤池系统选择转盘过滤池,共有2个转盘,直径为1 m,转盘材质为不锈钢,滤布材料为PE和PA纤维,网孔直径为5 μm,绒毛长度为10~14 mm,滤布重量为700~850 g·m−2,过滤滤速为10~12 m3·(h·m2)−1,反抽吸强度不超过333 L·(m·s)−1。沉淀池部分设备规格为1.5 m×0.5 m×2.2 m,纤维转盘设备规格为1.5 m×1.5 m×2.5 m,装置整体尺寸为3 m×1.5 m×2.2 m,装机功率为3 kW。设备体积小,运行管理方便,均为自动化处理流程。
1.2 实验分析方法
以苏州市姑苏区外城河为研究对象,选择平门附近的十字洋河汇入点安装现场实验装置,此处河水流量较大,对苏州外成河以及姑苏区各个水系均有较大影响。实验期间气温为25~35 ℃,水温为20~25 ℃。通过进水泵从河道抽水至强化混凝滤布滤池一体化装置,连续运行并监测分析进水、混凝沉淀以及过滤出水水质,以考察系统对河道水质的改善效果。现场检测的指标主要为温度、浊度和透明度等,其余指标则通过在进水处、沉淀池上清液和出水口取样,在4 ℃环境中密封保存,并尽快于上海交通大学实验室进行检测分析。采样频率为每周2次,中试期间共采样6次。分析指标主要包括有机碳、总氮、色度、三维荧光吸光度、浮游植物及其产生的叶绿素a、悬浮颗粒粒径分布等。其中三维荧光吸光度和有机碳、总氮在经过0.45 μm的玻璃纤维膜过滤后的水样中测定。
浊度采用HACH-2100Q哈希浊度仪现场测定;色度使用哈希DR6000分光光度计测定;透明度通过将水样注入圆筒柱,并对透明度盘进行目测得到;三维荧光图谱采用日立F-7000荧光仪进行扫描;TOC、DIC和TN使用德国耶拿分析仪器股份公司生产的multi3100型总有机碳/氮分析仪分析;TP采用高温消解-钼酸铵分光光度法进行测定;水样颗粒粒径分析使用美国BECKMAN COULTER生产的Delsa Nano C型粒度分析仪进行分析测定;藻细胞及叶绿素a采用流式细胞仪Beckman Cytoflex (Beckman Coutler)和浮游植物荧光仪进行分析测定。
基础数据采用Excel和Origin pro8进行分析;三维荧光数据预处理和分析工作采用Matlab 2018a完成,水质参数的相关性分析使用SPSS 24.0完成。
2. 结果与讨论
在前期实验室混凝优化实验的基础上,现场实验以聚合氯化铝(PAC)为混凝剂,投加量为10 mg·L−1,纳米四氧化三铁为助凝剂,颗粒粒径为100 nm,投加量为2.5 mg·L−1。将进水量稳定在2 000 L·h−1,持续运行,观察装置的运行效果。
2.1 河道水浊度和颗粒物的去除分析
图2为2019年6月5—24日强化混凝滤布滤池一体化装置对河道水浊度的平均去除效果。6月份的河道水水质较差,浊度较高,这主要是由于气温逐渐升高,河水中的浮游植物生长繁殖旺盛,同时6月份进入梅雨季节,雨水以及风的搅动使得河水底部的沉沙悬浮颗粒物进入河水之中,导致河水感官品质下降。由图2可知,强化混凝滤布滤池一体化装置可以有效改善河道水浊度较高且波动大的问题,尽管6月份整体河水的浊度为27.9~49.8 NTU,但沉淀区出水以及过滤出水浊度较为稳定,分别为7.4~11.4 NTU和2.5~5.1 NTU,总去除率为84.8%~94.1%,因此,可有效改善河水品质。
河道水中大量的悬浮固体对光线的阻碍是造成河水浊度较高的主要原因。使用粒度分析仪对进水、沉淀出水以及滤池出水进行颗粒粒径分布分析,结果如图3所示。可以看出,水中的颗粒粒径分布与正态分布相似,并且进水区、沉淀区、出水区粒径范围逐渐减小,平均粒径大小有所下降。对比沉淀区和出水区,可以看出,混凝沉淀环节能有效去除粒径范围大于1 200 nm的颗粒物,出水中颗粒物粒径基本分布在500~1 000 nm。聚合氯化铝溶解进入水中之后,能够通过压缩双电层、吸附电中和及吸附架桥等作用对胶体和大颗粒的悬浮物进行有效去除,而纳米铁的使用不仅减少了PAC的投加量,也加速了沉淀过程。对比出水区和沉淀区的颗粒粒径可以看到,滤布滤池可进一步降低颗粒物的平均粒径,转盘上的浓密纤维绒毛去除了混凝沉淀过程中没有得到有效去除的粒径范围为800~1 000 nm的悬浮物。
2.2 对有机碳、氮磷及溶解性物质的去除效果
有机碳可对河道水中的水生生态系统以及微生物的生存和生长起到重要的作用,是影响水质的重要指标;氮磷含量可以直接影响水体富营养化程度和河水中浮游植物的生长情况。一体化装置对有机碳、总氮、总磷的去除效果如表1所示。
表 1 装置对有机碳、总氮、总磷的去除效果Table 1. Removal effect of TOC,TN,TP by the equipmentmg·L−1 区域 TOC TP TN 进水区 7.25 0.25 2.11 沉淀区 5.53 0.13 1.93 出水区 3.84 0.07 0.94 由表1可知,滤布滤池系统对TOC、TP、TN均有不同程度的去除效果,其去除率分别为47.1%、72.0%、55.2%。在混凝-沉淀阶段,主要去除大部分的胶体和絮凝物,在这个过程中,也去除了吸附在胶体或者悬浮颗粒物上的有机物和氮磷;在滤布滤池处理阶段,河水中的有机碳和氮磷能够被滤布上的纤维绒毛截留。因此,混凝沉淀与滤布滤池的结合能够对水中的溶解性物质有一定的去除效果。装置对有机碳和总氮的去除效果接近,而对总磷的去除效果最好,这是因为河水中的
PO3−4 可与Al3+、Fe3+等金属离子形成沉淀物。除此之外,磷元素有一部分是以颗粒态的形式存在于河水中的,而滤布滤池系统能够有效去除颗粒态的物质。氮磷元素的去除降低了富营养化的可能性,也能够抑制出水的藻类生殖繁衍潜力。河道水中有机物对水质有一定影响,其中有色溶解性污染物(CDOM)主要由腐烂物质释放的单宁酸引起,这不仅对水环境中的生物活动有重要影响,而且在短波段有强烈的吸收光谱,使得含有CDOM的水体带有颜色,与河水色度有较高相关性[11]。为进一步考察装置对有机物的去除效果,使用三维荧光分光光度计对处理后的水样进行扫描,三维荧光图谱如图4所示。
由图4可以看出,3个水样的荧光图并没有发生本质上的变化,但从进水到出水,荧光强度均有一定程度的减弱。图4中总共有2个峰值,分别在Ex/Em=225 nm/340 nm和Ex/Em=275 nm/325 nm。有研究[12-13]表明,这2种有机物分别为外来有机物和类色氨酸基团。类色氨酸基团源于生物降解类蛋白质,外来有机物可能来自河道中排放的有害有机物,如PAH、杀虫剂、表面活性剂等。将三维荧光图谱重点指标进行汇总,结果如表2所示。
表 2 三维荧光图谱重点指标及CDOM的去除Table 2. Key indicators in three-dimensional fluorescence and CDOM removal区域 荧光指数(FI) 自生源指标(BIX) 腐殖化指数(HIX) 有色溶解性有机物相对含量(CDOM) 进水区 0.93 0.22 −0.20 4.0 沉淀区 0.85 0.22 0.022 3.2 出水区 0.88 0.17 0.73 2.8 荧光指数(FI)反映了芳香与非芳香氨基酸对CDOM荧光强度的相对贡献率,是衡量CDOM的来源及降解程度的指标。FI<1.4,说明河水中的溶解性腐殖质是来自陆生植物和土壤有机质等外源输入。自生源指标(BIX)反映了新产生的CDOM在整体CDOM中占的比例。自生源指数越高,表明CDOM的降解程度越高,内源碳产物越容易生成。BIX在0.2左右,说明河水中的CDOM较为稳定。因此,河道水中对色度有影响的CDOM难以通过河水的降解自动消除。腐殖化指数(HIX)反映了CDOM的输入源特征。HIX指数较小,证明CDOM主要来源于生物活动,而且其腐殖化程度较小[14]。这一结果也表明,经过滤布滤池处理之后再回水至河道,也不会对河道水的有机组成产生明显影响。虽然装置对CDOM有一定去除效果,但由于CDOM是一种小分子难降解有机物,因此,其去除率仅为30.2%,相对于有机碳和氮磷较低。
2.3 基于流式细胞仪对藻细胞的去除分析
浮游植物及其产生的叶绿素a是影响河水品质的重要因素[15]。因此,提升河道水的综合品质需要对浮游植物及叶绿素a进行有效去除。用流式细胞仪对进水、沉淀出水以及滤池出水中的藻细胞进行分析,结果如图5所示。流式细胞仪分析的主要指标有FSC(表征细胞的大小)、SSC(细胞复杂程度)、PE(藻红蛋白含量)、PC-5.5(叶绿素a含量)、APC(藻蓝蛋白)[16-17]。将水样各个指标之间进行作图可以得到二维分布图,最终可将水样中的藻细胞分成3类,分别用黄、青、蓝3种颜色进行区分。
在图5中,红色区域为荧光珠,稀释后的浓度为9.2×104个·mL−1,占比为92.2%,可作为藻细胞的参照。由图5可以看出:第1组黄色区域FSC,SSC最低,PE较少,而APC较高,经过初步判断这组藻细胞是小型的聚球藻;第2组青色区域FSC、SSC、PE、PC-5.5均高于第1组,藻蓝蛋白与第1组类似,经过初步判断这部分主要为微囊藻,聚球藻和微囊藻为蓝藻;第3组蓝色区域FSC、SSC、PE、PC-5.5与第2组类似,藻蓝蛋白APC低于第1组和第2组,经过初步判断这部分主要为绿藻。
由此可见,6月份苏州河道水优势藻种主要是微囊藻和绿藻,小型聚球藻的含量较低,细胞最小。绿藻的PC-5.5(叶绿素a)指标较高,因此,相对其他2种藻类,绿藻会产生更多的叶绿素a。从进出水的藻细胞组成来看,进水区、沉淀区和出水区并没有发生变化,各组藻细胞形成的相对位置没有发生变化,而藻细胞呈现的密集度明显下降。
对这3种组分以及叶绿素a的含量分别进行浓度统计,结果如图6所示。叶绿素a和藻类均在混凝沉淀阶段得到有效去除,并在滤布滤池阶段进一步降低。叶绿素a、微囊藻、绿藻、聚球藻的去除率分别为53.4%、95.0%、99.7%、99.8%。藻细胞的去除率接近浊度的去除率,这是因为藻细胞体积较大,均在1 000 nm以上,可在强化混凝滤布滤池一体机中得到有效去除。如图5所示,FSC(细胞形体大小)指标微囊藻低于其他几种藻,因此,去除率相对较小。相较于藻细胞,叶绿素a在混凝沉淀阶段的去除效果明显较弱。这说明,在混凝沉淀阶段的搅拌过程和混凝沉淀过程中,叶绿素a有一部分残留在河水之中,而没有随藻细胞的沉降而去除。
2.4 河道水色度和透明度改善效果分析
装置进水区、沉淀区和出水区水样平均色度和透明度结果如表3所示。
表 3 感官品质重点指标分析Table 3. Key indicators analysis of sensory quality区域 色度/度 透明度/m 进水区 31±9 0.31±0.1 沉淀区 16±3 2.2±0.5 出水区 10±2 3±1 对比出水和进水可以看到,强化混凝-滤布滤池一体化装置可以有效提升感官品质,并且出水色度能够降低到10度左右,平均去除率为67.7%,透明度能够提高到3 m,相对于进水,平均提高10倍。为了进一步分析色度和透明度的影响因素,对中试期间6次采集水样感官品质重点指标进行相关性分析,结果如表4所示。
表 4 感官品质重点指标相关性分析Table 4. Correlation analysis of key sensory quality indicators指标 色度 浊度 叶绿素a TN TOC TP 透明度 聚球藻 微囊藻 绿藻 CDOM 色度 NA 浊度 0.813* NA 叶绿素a 0.895* 0.698* NA TN 0.41 0.598 0.559 NA TOC 0.571 0.576 0.508 0.579 NA TP 0.698* 0.789* 0.619 0.238 0.338 NA 透明度 −0.602* −0.899** −0.56 −0.483 −0.678 −0.724* NA 聚球藻 0.597 0.667* 0.629* 0.489 0.523 0.499 −0.7* NA 微囊藻 0.589 0.738* 0.689* 0.405 0.598 0.503 −0.78* 0.891* NA 绿藻 0.683* 0.767* 0.723* 0.447 0.606 0.529 −0.811* 0.887* 0.901* NA CDOM 0.897* 0.595 0.432 0.532 0.544 0.361 −0.631* 0.472 0.432 0.501 NA 注:*表示在α=0.05水平上,呈显著相关;**表示α=0.01水平上,呈极显著相关。 由表4可以看出,与色度呈显著相关的指标有总磷、浊度、叶绿素a、绿藻和CDOM。水体色度主要可分为表色度和真色度,其中,表色度主要是由河水中悬浮固体导致的,因此,河水的色度与浊度有较高相关性;而真色度则主要是由浮游植物产生的叶绿素a以及河水中的CDOM等物质导致的。装置对叶绿素a和CDOM的去除效果相对于悬浮固体较差,去除率在60%以下,因此,强化混凝-滤布滤池一体化装置对色度的去除率(67.7%)低于浊度的去除率(84.8%~94.1%)。在3种藻细胞之中,绿藻与色度呈显著相关,主要原因是绿藻的叶绿素含量相对其他2种藻更高,因此,相对于其他藻类,其对水体的色度有较大的影响。氮磷元素过剩是水体营养化的必要条件,但是并不会直接导致水质色度变化。在表4中,TP与色度、透明度以及浊度具有显著相关性,这是因为磷元素中的一部分是以颗粒态的形式存在于河水中的,与悬浮固体具有一定的共性,因此,随着悬浮固体的减少,色度、透明度和浊度出现了类似的下降趋势,所以具有显著相关性。
和透明度呈显著相关的指标有总磷、浊度和3种藻细胞,其中浊度和透明度呈极显著相关。经过装置处理后的出水透明度得到了较大程度地提高,这是因为透明度主要取决于水体对光线的阻碍程度,故其与浊度的去除效果高度相关,而河水的浊度由25~50 NTU在装置进行一定处理后下降至2.5~5.1 NTU,因此,河水透明度也同样得到大幅度提高。同时藻细胞平均粒径较大,并且在温度较高的夏季繁衍较为旺盛,数量逐渐呈增长趋势,因此对河水透明度也会造成影响。在透明度和色度都得到有效改善的情况下,河水的感官品质得到了显著提高。
3. 结论
1)滤布滤池一体机能连续稳定运行,并有效降低河水中的悬浮颗粒物的含量,对体积较大的颗粒(粒径为1 000 nm以上的颗粒)有较好的去除效果,出水的颗粒粒径为480~1 200 nm,可有效降低浊度,出水浊度为2.5~5.1 NTU,去除率为84.8%~94.1%。
2)装置对溶解碳、总氮和总磷也有一定去除效果。对溶解性有机碳的平均去除率为47.1%,对总氮的去除率为41.1%,对总磷的去除率为72%,对有CDOM的去除率为30.2%。出水中的有机物以及氮磷元素含量降低,可以减少藻细胞增殖潜力,CDOM的去除能降低河道水色度。
3)装置出水藻细胞的含量明显减少,装置对叶绿素a的去除率为53.4%,对聚球藻、微囊藻和绿藻的去除率分别为95.0%、99.7%、99.8%,并且不改变出水中浮游植物的组成和相对数量。
4)河道水色度的主要影响因素有浊度、叶绿素a和CDOM的含量,透明度与浊度以及浮游植物有较高相关度。装置对这些物质均有一定的去除效果,这是能够改善水质提升感官品质的主要原因。此外,装置还有体积小、处理能力大、能耗低、操作容易等优点,且装置可移动,机动性较好,可随时应用于提升河道水品质的应急处理的过程中。
-
表 1 修正的Gompertz模型对不同厌氧系统中甲烷进行模拟的动力学参数
Table 1. Kinetic parameters of Modified Gompertz model for the simulation of methane in different anaerobic digestion systems
系统 修正的Gompertz模型 Go/mL λ/d Rmax/(mL·d−1) R2 MEC-AD 892.70 4.42 130.06 0.999 MFC-AD 1 251.60 7.07 114.66 0.998 AD+磁 1 746.51 7.66 88.67 0.999 AD 1 400.14 7.89 76.76 0.999 -
[1] SING A K, KUMAR A, BILAL M, et al. Organometallic pollutants of paper mill wastewater and their toxicity assessment on Stinging catfish and sludge worm[J]. Environmental Technology & Innovation, 2021, 24: 101831. [2] LIANG J, MAI W, WANG J, et al. Performance and microbial communities of a novel integrated industrial-scale pulp and paper wastewater treatment plant[J]. Journal of Cleaner Production, 2021, 278: 123896. doi: 10.1016/j.jclepro.2020.123896 [3] KRISHNA K V, SARKAR O, MOHAN S V. Bioelectrochemical treatment of paper and pulp wastewater in comparison with anaerobic process: Integrating chemical coagulation with simultaneous power production[J]. Bioresource Technology, 2014, 174: 142-151. doi: 10.1016/j.biortech.2014.09.141 [4] SONKAR M, KUMAR V, DUTT D. Use of paper mill sludge and sewage sludge powder as nitrogen and phosphorus sources with bacterial consortium for the treatment of paper industry wastewater[J]. Biocatalysis and Agricultural Biotechnology, 2020, 30: 101843. doi: 10.1016/j.bcab.2020.101843 [5] JOHANSSON M T, BROBERG S, OTTOSSON M. Energy strategies in the pulp and paper industry in Sweden: Interactions between efficient resource utilisation and increased product diversification[J]. Journal of Cleaner Production, 2021, 311: 127681. doi: 10.1016/j.jclepro.2021.127681 [6] VASHI H, IORHEMEN O T, TAY J H. Aerobic granulation: A recent development on the biological treatment of pulp and paper wastewater[J]. Environmental Technology & Innovation, 2018, 9: 265-274. [7] MEYER T, EDWARDS E A. Anaerobic digestion of pulp and paper mill wastewater and sludge[J]. Water Research, 2014, 65: 321-349. doi: 10.1016/j.watres.2014.07.022 [8] CHATTERJEE P, LAHTINEN L, KOKKO M, et al. Remediation of sedimented fiber originating from pulp and paper industry: Laboratory scale anaerobic reactor studies and ideas of scaling up[J]. Water Research, 2018, 143: 209-217. doi: 10.1016/j.watres.2018.06.054 [9] GARCIA-SEGURA S, OCON J D, CHONG M N. Electrochemical oxidation remediation of real wastewater effluents: A review[J]. Process Safety and Environmental Protection, 2018, 113: 48-67. doi: 10.1016/j.psep.2017.09.014 [10] KLIDI N, PROIETTO F, VICARI F, et al. Electrochemical treatment of paper mill wastewater by electro-Fenton process[J]. Journal of Electroanalytical Chemistry, 2019, 841: 166-171. doi: 10.1016/j.jelechem.2019.04.022 [11] ANGLADA Á, URTIAGA A, ORTIZ I. Contributions of electrochemical oxidation to waste-water treatment: Fundamentals and review of applications[J]. Journal of Chemical Technology and Biotechnology, 2009, 84: 1747-1755. doi: 10.1002/jctb.2214 [12] KHANDAKER S, DAS S, HOSSAIN M T, et al. Sustainable approach for wastewater treatment using microbial fuel cells and green energy generation: A comprehensive review[J]. Journal of Molecular Liquids, 2021, 344: 117795. doi: 10.1016/j.molliq.2021.117795 [13] 谢嘉玮, 朱国营, 谢军祥, 等. 难降解废水生物电化学系统强化处理的研究进展[J]. 工业水处理, 2020, 40(10): 1-7. [14] CHAURASIA A K, SHANKAR R, MONDAL P. Effects of nickle, nickle-cobalt and nickle-cobalt-phosphorus nanocatalysts for enhancing biohydrogen production in microbial electrolysis cells using paper industry wastewater[J]. Journal of Environmental Management, 2021, 298: 113542. doi: 10.1016/j.jenvman.2021.113542 [15] LIU W, CAI W, GUO Z, et al. Microbial electrolysis contribution to anaerobic digestion of waste activated sludge, leading to accelerated methane production[J]. Renewable Energy, 2016, 91: 334-339. doi: 10.1016/j.renene.2016.01.082 [16] CHEN F, ZENG S, LUO Z, et al. A novel MBBR–MFC integrated system for high-strength pulp/paper wastewater treatment and bioelectricity generation[J]. Separation Science & Technology, 2019: 1-10. [17] HUANG L, LOGAN B E. Electricity generation and treatment of paper recycling wastewater using a microbial fuel cell[J]. Applied Microbiology and Biotechnology, 2008, 80: 349-355. doi: 10.1007/s00253-008-1546-7 [18] ZHUANG H, ZHU H, ZHANG J, et al. Enhanced 2, 4, 6-trichlorophenol anaerobic degradation by Fe3O4 supported on water hyacinth biochar for triggering direct interspecies electron transfer and its use in coal gasification wastewater treatment[J]. Bioresource Technology, 2020, 296: 122306. doi: 10.1016/j.biortech.2019.122306 [19] CHENG J, LI H, DING L, et al. Improving hydrogen and methane co-generation in cascading dark fermentation and anaerobic digestion: the effect of magnetite nanoparticles on microbial electron transfer and syntrophism[J]. Chemical Engineering Journal, 2020, 397: 125394. doi: 10.1016/j.cej.2020.125394 [20] BAEK G, JUNG H, KIM J, et al. A long-term study on the effect of magnetite supplementation in continuous anaerobic digestion of dairy effluent–magnetic separation and recycling of magnetite[J]. Bioresource Technology, 2017, 241: 830-840. doi: 10.1016/j.biortech.2017.06.018 [21] 蒋昌旺, 李靖, 何迪, 等. 热碱预处理对高含固剩余污泥厌氧消化的影响及其动力学研究[J]. 环境污染与防治, 2019, 41(8): 906-909+915. doi: 10.15985/j.cnki.1001-3865.2019.08.008 [22] SOGIN M L, MORRISON H G, HUBER J A, et al. Microbial diversity in the deep sea and the underexplored “rare biosphere”[J]. Proceedings of the National Academy of Sciences, 2006, 103(32): 12115-12120. doi: 10.1073/pnas.0605127103 [23] 尤惠, 郑纯智, 张国华, 等. 餐厨垃圾两相厌氧发酵技术的研究进展[J]. 广州化工, 2021, 49(5): 41-43. doi: 10.3969/j.issn.1001-9677.2021.05.015 [24] 张淼,朱晨杰,范亚骏,吕小凡,季俊杰,葛丽英,吴军.进水C/N比对部分反硝化过程亚硝态氮积累和微生物特性的影响[J/OL].中国环境科学:1-9[2022-07-31].DOI:10.19674/j.cnki.issn1000-6923.20210928.015. [25] 李建, 王鸿辉, 马美萍, 等. 磁铁矿促进微生物种间电子传递的机制[J/OL][J]. 应用与环境生物学报, 2021: 1-15. [26] MAO C, WANG X, XI J, et al. Linkage of kinetic parameters with process parameters and operational conditions during anaerobic digestion[J]. Energy, 2017, 135: 352-360. doi: 10.1016/j.energy.2017.06.050 [27] PASALARI H, ESRAFILI A, REZAEE A, et al. Electrochemical oxidation pretreatment for enhanced methane potential from landfill leachate in anaerobic co-digestion process: Performance, Gompertz model, and energy assessment[J]. Chemical Engineering Journal, 2021, 422: 130046. doi: 10.1016/j.cej.2021.130046 [28] 孙峰, 余昕洁, 武威, 等. 基于SNADPR作用的复合式人工快速渗滤系统的运行性能及微生物学特征[J]. 环境工程学报, 2021, 15(10): 3387-3399. doi: 10.12030/j.cjee.202101132 [29] 蔡文君, 孙瑞芃, 王浩, 等. 济南市北大沙河水体溶解性有机物的三维荧光光谱分析[J]. 环境与发展, 2020, 32(8): 132-134. doi: 10.16647/j.cnki.cn15-1369/X.2020.08.075 [30] WANG Q, LV R, RENE E R, et al. Characterization of microbial community and resistance gene (CzcA) shifts in up-flow constructed wetlands-microbial fuel cell treating Zn (II) contaminated wastewater[J]. Bioresource Technology, 2020, 302: 122867. doi: 10.1016/j.biortech.2020.122867 [31] JIANG Y, WEI L, YANG K, et al. Rapid formation of aniline-degrading aerobic granular sludge and investigation of its microbial community succession[J]. Journal of Cleaner Production, 2017, 166: 1235-1243. doi: 10.1016/j.jclepro.2017.08.134 [32] 郭南飞, 韩智勇, 史瑞, 等. 农村垃圾厌氧-准好氧时空联合生物反应器中微生物群落分析[J]. 农业工程学报, 2020, 36(19): 200-208. doi: 10.11975/j.issn.1002-6819.2020.19.023 [33] CHEN D, WANG H, YANG K, et al. Performance and microbial communities in a combined bioelectrochemical and sulfur autotrophic denitrification system at low temperature[J]. Chemosphere, 2018, 193: 337-342. doi: 10.1016/j.chemosphere.2017.11.017 [34] PODOSOKORSKAYA O A, KOCHETKOVA T V, NOVIKOV A A, et al. Tenuifilum thalassicum gen. nov., sp. nov., a novel moderate thermophilic anaerobic bacterium from a Kunashir Island shallow hot spring representing a new family Tenuifilaceae fam. nov. in the class Bacteroidia[J]. Systematic and Applied Microbiology, 2020, 43(5): 126126. doi: 10.1016/j.syapm.2020.126126 [35] GRABOWSKI A, NERCESSIAN O, FAYOLLE F, et al. Microbial diversity in production waters of a low-temperature biodegraded oil reservoir[J]. FEMS Microbiology Ecology, 2005, 54(3): 427-443. doi: 10.1016/j.femsec.2005.05.007 [36] QIN R, LIN X, CHEN Z, et al. Evaluation of characteristics and microbial community of anaerobic granular sludge under microplastics and aromatic carboxylic acids exposure[J]. Science of The Total Environment, 2021: 148361. [37] 占迪, 何环, 廖远松, 等. 褐煤强化产甲烷菌群的群落分析及条件优化[J]. 微生物学报, 2018, 58(4): 684-698. doi: 10.13343/j.cnki.wsxb.20170453 -