-
我国造纸行业废水年排放量达40×109 t,占全国工业废水排放量的1/6[1]。造纸废水中含有大量的半纤维素、木质素及化学药品,耗氧量大,对生态环境造成严重破坏,因此,造纸废水的处理是社会关注的热点之一[2-4]。在碳达峰和碳中和的目标下,既要保证造纸行业的增产,提高造纸行业的经济效益,也要减少造纸废水的排放,实现节能减排的目标,提高环境效益[5]。造纸废水的处理可分为化学处理法、物化处理法、生化处理法[6]。化学处理法和物化处理法虽可实现造纸废水的达标排放,但处理成本较高,易消耗更多的能源和物料,不符合节能降耗的理念。而生化处理法具有环保性和经济可行性,处理效果好,适用于有机物浓度高的造纸废水[7-8]。
由于造纸废水中含有难降解物质,造纸废水的可生化性较低,导致生物处理的有效性降低[9],因此,对传统生物处理技术的优化和改进成为研究热点[10]。生物电化学系统(bio-electrochemical systems,BES)是近年来环境领域一种新型的厌氧处理反应器,因其在电活性微生物介导的生物电化学作用下通过细菌代谢能够消除废水中存在的各种污染物,如难降解有机物和氮物质,而受到越来越多的关注[11-12],目前应用最广泛的为微生物电解池(microbial electrolysis cell,MEC)和微生物燃料电池(microbial fuel cell,MFC)[13]。有研究表明,在pH=7、外加电压为0.6 V、(30±2) °C的条件下,用MEC系统处理造纸废水,在7 d的批量循环中,500 mL废水的化学需氧量(以COD计)去除率为34%,显著提高了造纸废水的处理效率[14]。LIU等研究表明MEC-AD系统可加速碳的生物转化,生物甲烷生成速率提高了3倍[15]。有研究将厌氧生物膜反应器和MFC相结合,用于处理制浆造纸废水,22 d后添加陶粒的MFC表现出更好的生物电性能,COD去除率达到65.6%[16]。当向造纸废水中加入磷酸盐缓冲溶液时,在500 h的间歇循环中,可溶化学需氧量(SCOD)去除了(73±1)%,总化学需氧量(TCOD)去除了(76±4)%,纤维素几乎完全被去除[17]。除BES外,外加金属导电材料也是一种强化厌氧发酵的新方法[18]。有研究提出向级联暗发酵和厌氧消化体系中引入200 mg·L−1导电材料纳米磁铁矿(Fe3O4NPs),生物甲烷产量提高了22.9%,酪氨酸类蛋白质的荧光响应从59.11%下降到52.38%[19],证实了Fe3O4NPs可用于有机废物稳定、高速的生物甲烷化[20]。MEC、MFC和外加金属导电材料都可以创新开发高效稳定的生物处理新工艺,但针对不同厌氧发酵系统处理造纸废水的对比研究相对较少。
基于上述研究结果,本文以造纸废水为研究对象,构建了不同的厌氧发酵系统,测定了不同厌氧发酵系统中生物甲烷组分、液体组分、液体DOM以及微生物群落结构,通过对比生物甲烷量、总磷(TP)去除率、COD去除率、NH4+-N去除率、溶解性有机质(DOM)变化特征和菌群群落结构,优选出微生物降解造纸废水高效的处理系统。
不同厌氧发酵系统在造纸废水处理中的应用
Application of different anaerobic digestion systems in paper mill wastewater treatment
-
摘要: 在“碳达峰和碳中和”目标下寻求高效处理造纸废水的方法尤为迫切。以某造纸厂的废水为研究对象,利用不同的厌氧发酵系统对其进行微生物降解,分别对厌氧发酵过程中的生物甲烷组分、液体组分、液体DOM、微生物群落结构进行了测定和分析,优化了处理系统。结果表明:不同厌氧发酵系统对废水中各组分降解去除能力依次为MEC-AD>MFC-AD>AD+磁铁矿>AD;MEC-AD处理造纸废水具有高效性,可促使生物甲烷高峰期相对AD提前8 d,SCOD、TP和NH4+-N去除率分别达到了77.79%、86.73%和75.98%,废水DOM中酪氨酸类蛋白质、色氨酸类蛋白质和溶解性微生物的含量显著降低,生物甲烷高峰期菌群的优势菌属为Proteobacteria、Bacteroidetes。Abstract: It is particularly urgent to seek high-efficiency treatment of papermaking wastewater under the goal of 'Carbon peaking and carbon neutrality'. In this study, the wastewater from a paper mill was selected as the research object, and different anaerobic digestion systems were used to microbially degrade it. The biomethane composition, liquid composition, liquid DOM and microbial community structure in the anaerobic digestion process were determined to optimize the treatment system. The results showed that the order of degradation and removal ability of the components in wastewater by different systems was MEC-AD > MFC-AD > AD + magnetite > AD. Compared to AD, MEC-AD presented high-efficiency in papermaking wastewater treatment, which could promote 8 days in advance for the occurrence of biomethane peak period. The removal rates of SCOD, TP and NH4+-N reached 77.79 %, 86.73 % and 75.98 %, respectively. The tyrosine protein, tryptophan protein and soluble microorganisms in the wastewater DOM were significantly reduced. The dominant bacteria in biomethane production peak in MEC-AD were Proteobacteria and Bacteroidetes.
-
表 1 修正的Gompertz模型对不同厌氧系统中甲烷进行模拟的动力学参数
Table 1. Kinetic parameters of Modified Gompertz model for the simulation of methane in different anaerobic digestion systems
系统
修正的Gompertz模型Go/mL λ/d Rmax/(mL·d−1) R2 MEC-AD 892.70 4.42 130.06 0.999 MFC-AD 1 251.60 7.07 114.66 0.998 AD+磁 1 746.51 7.66 88.67 0.999 AD 1 400.14 7.89 76.76 0.999 -
[1] SING A K, KUMAR A, BILAL M, et al. Organometallic pollutants of paper mill wastewater and their toxicity assessment on Stinging catfish and sludge worm[J]. Environmental Technology & Innovation, 2021, 24: 101831. [2] LIANG J, MAI W, WANG J, et al. Performance and microbial communities of a novel integrated industrial-scale pulp and paper wastewater treatment plant[J]. Journal of Cleaner Production, 2021, 278: 123896. doi: 10.1016/j.jclepro.2020.123896 [3] KRISHNA K V, SARKAR O, MOHAN S V. Bioelectrochemical treatment of paper and pulp wastewater in comparison with anaerobic process: Integrating chemical coagulation with simultaneous power production[J]. Bioresource Technology, 2014, 174: 142-151. doi: 10.1016/j.biortech.2014.09.141 [4] SONKAR M, KUMAR V, DUTT D. Use of paper mill sludge and sewage sludge powder as nitrogen and phosphorus sources with bacterial consortium for the treatment of paper industry wastewater[J]. Biocatalysis and Agricultural Biotechnology, 2020, 30: 101843. doi: 10.1016/j.bcab.2020.101843 [5] JOHANSSON M T, BROBERG S, OTTOSSON M. Energy strategies in the pulp and paper industry in Sweden: Interactions between efficient resource utilisation and increased product diversification[J]. Journal of Cleaner Production, 2021, 311: 127681. doi: 10.1016/j.jclepro.2021.127681 [6] VASHI H, IORHEMEN O T, TAY J H. Aerobic granulation: A recent development on the biological treatment of pulp and paper wastewater[J]. Environmental Technology & Innovation, 2018, 9: 265-274. [7] MEYER T, EDWARDS E A. Anaerobic digestion of pulp and paper mill wastewater and sludge[J]. Water Research, 2014, 65: 321-349. doi: 10.1016/j.watres.2014.07.022 [8] CHATTERJEE P, LAHTINEN L, KOKKO M, et al. Remediation of sedimented fiber originating from pulp and paper industry: Laboratory scale anaerobic reactor studies and ideas of scaling up[J]. Water Research, 2018, 143: 209-217. doi: 10.1016/j.watres.2018.06.054 [9] GARCIA-SEGURA S, OCON J D, CHONG M N. Electrochemical oxidation remediation of real wastewater effluents: A review[J]. Process Safety and Environmental Protection, 2018, 113: 48-67. doi: 10.1016/j.psep.2017.09.014 [10] KLIDI N, PROIETTO F, VICARI F, et al. Electrochemical treatment of paper mill wastewater by electro-Fenton process[J]. Journal of Electroanalytical Chemistry, 2019, 841: 166-171. doi: 10.1016/j.jelechem.2019.04.022 [11] ANGLADA Á, URTIAGA A, ORTIZ I. Contributions of electrochemical oxidation to waste-water treatment: Fundamentals and review of applications[J]. Journal of Chemical Technology and Biotechnology, 2009, 84: 1747-1755. doi: 10.1002/jctb.2214 [12] KHANDAKER S, DAS S, HOSSAIN M T, et al. Sustainable approach for wastewater treatment using microbial fuel cells and green energy generation: A comprehensive review[J]. Journal of Molecular Liquids, 2021, 344: 117795. doi: 10.1016/j.molliq.2021.117795 [13] 谢嘉玮, 朱国营, 谢军祥, 等. 难降解废水生物电化学系统强化处理的研究进展[J]. 工业水处理, 2020, 40(10): 1-7. [14] CHAURASIA A K, SHANKAR R, MONDAL P. Effects of nickle, nickle-cobalt and nickle-cobalt-phosphorus nanocatalysts for enhancing biohydrogen production in microbial electrolysis cells using paper industry wastewater[J]. Journal of Environmental Management, 2021, 298: 113542. doi: 10.1016/j.jenvman.2021.113542 [15] LIU W, CAI W, GUO Z, et al. Microbial electrolysis contribution to anaerobic digestion of waste activated sludge, leading to accelerated methane production[J]. Renewable Energy, 2016, 91: 334-339. doi: 10.1016/j.renene.2016.01.082 [16] CHEN F, ZENG S, LUO Z, et al. A novel MBBR–MFC integrated system for high-strength pulp/paper wastewater treatment and bioelectricity generation[J]. Separation Science & Technology, 2019: 1-10. [17] HUANG L, LOGAN B E. Electricity generation and treatment of paper recycling wastewater using a microbial fuel cell[J]. Applied Microbiology and Biotechnology, 2008, 80: 349-355. doi: 10.1007/s00253-008-1546-7 [18] ZHUANG H, ZHU H, ZHANG J, et al. Enhanced 2, 4, 6-trichlorophenol anaerobic degradation by Fe3O4 supported on water hyacinth biochar for triggering direct interspecies electron transfer and its use in coal gasification wastewater treatment[J]. Bioresource Technology, 2020, 296: 122306. doi: 10.1016/j.biortech.2019.122306 [19] CHENG J, LI H, DING L, et al. Improving hydrogen and methane co-generation in cascading dark fermentation and anaerobic digestion: the effect of magnetite nanoparticles on microbial electron transfer and syntrophism[J]. Chemical Engineering Journal, 2020, 397: 125394. doi: 10.1016/j.cej.2020.125394 [20] BAEK G, JUNG H, KIM J, et al. A long-term study on the effect of magnetite supplementation in continuous anaerobic digestion of dairy effluent–magnetic separation and recycling of magnetite[J]. Bioresource Technology, 2017, 241: 830-840. doi: 10.1016/j.biortech.2017.06.018 [21] 蒋昌旺, 李靖, 何迪, 等. 热碱预处理对高含固剩余污泥厌氧消化的影响及其动力学研究[J]. 环境污染与防治, 2019, 41(8): 906-909+915. doi: 10.15985/j.cnki.1001-3865.2019.08.008 [22] SOGIN M L, MORRISON H G, HUBER J A, et al. Microbial diversity in the deep sea and the underexplored “rare biosphere”[J]. Proceedings of the National Academy of Sciences, 2006, 103(32): 12115-12120. doi: 10.1073/pnas.0605127103 [23] 尤惠, 郑纯智, 张国华, 等. 餐厨垃圾两相厌氧发酵技术的研究进展[J]. 广州化工, 2021, 49(5): 41-43. doi: 10.3969/j.issn.1001-9677.2021.05.015 [24] 张淼,朱晨杰,范亚骏,吕小凡,季俊杰,葛丽英,吴军.进水C/N比对部分反硝化过程亚硝态氮积累和微生物特性的影响[J/OL].中国环境科学:1-9[2022-07-31].DOI:10.19674/j.cnki.issn1000-6923.20210928.015. [25] 李建, 王鸿辉, 马美萍, 等. 磁铁矿促进微生物种间电子传递的机制[J/OL][J]. 应用与环境生物学报, 2021: 1-15. [26] MAO C, WANG X, XI J, et al. Linkage of kinetic parameters with process parameters and operational conditions during anaerobic digestion[J]. Energy, 2017, 135: 352-360. doi: 10.1016/j.energy.2017.06.050 [27] PASALARI H, ESRAFILI A, REZAEE A, et al. Electrochemical oxidation pretreatment for enhanced methane potential from landfill leachate in anaerobic co-digestion process: Performance, Gompertz model, and energy assessment[J]. Chemical Engineering Journal, 2021, 422: 130046. doi: 10.1016/j.cej.2021.130046 [28] 孙峰, 余昕洁, 武威, 等. 基于SNADPR作用的复合式人工快速渗滤系统的运行性能及微生物学特征[J]. 环境工程学报, 2021, 15(10): 3387-3399. doi: 10.12030/j.cjee.202101132 [29] 蔡文君, 孙瑞芃, 王浩, 等. 济南市北大沙河水体溶解性有机物的三维荧光光谱分析[J]. 环境与发展, 2020, 32(8): 132-134. doi: 10.16647/j.cnki.cn15-1369/X.2020.08.075 [30] WANG Q, LV R, RENE E R, et al. Characterization of microbial community and resistance gene (CzcA) shifts in up-flow constructed wetlands-microbial fuel cell treating Zn (II) contaminated wastewater[J]. Bioresource Technology, 2020, 302: 122867. doi: 10.1016/j.biortech.2020.122867 [31] JIANG Y, WEI L, YANG K, et al. Rapid formation of aniline-degrading aerobic granular sludge and investigation of its microbial community succession[J]. Journal of Cleaner Production, 2017, 166: 1235-1243. doi: 10.1016/j.jclepro.2017.08.134 [32] 郭南飞, 韩智勇, 史瑞, 等. 农村垃圾厌氧-准好氧时空联合生物反应器中微生物群落分析[J]. 农业工程学报, 2020, 36(19): 200-208. doi: 10.11975/j.issn.1002-6819.2020.19.023 [33] CHEN D, WANG H, YANG K, et al. Performance and microbial communities in a combined bioelectrochemical and sulfur autotrophic denitrification system at low temperature[J]. Chemosphere, 2018, 193: 337-342. doi: 10.1016/j.chemosphere.2017.11.017 [34] PODOSOKORSKAYA O A, KOCHETKOVA T V, NOVIKOV A A, et al. Tenuifilum thalassicum gen. nov., sp. nov., a novel moderate thermophilic anaerobic bacterium from a Kunashir Island shallow hot spring representing a new family Tenuifilaceae fam. nov. in the class Bacteroidia[J]. Systematic and Applied Microbiology, 2020, 43(5): 126126. doi: 10.1016/j.syapm.2020.126126 [35] GRABOWSKI A, NERCESSIAN O, FAYOLLE F, et al. Microbial diversity in production waters of a low-temperature biodegraded oil reservoir[J]. FEMS Microbiology Ecology, 2005, 54(3): 427-443. doi: 10.1016/j.femsec.2005.05.007 [36] QIN R, LIN X, CHEN Z, et al. Evaluation of characteristics and microbial community of anaerobic granular sludge under microplastics and aromatic carboxylic acids exposure[J]. Science of The Total Environment, 2021: 148361. [37] 占迪, 何环, 廖远松, 等. 褐煤强化产甲烷菌群的群落分析及条件优化[J]. 微生物学报, 2018, 58(4): 684-698. doi: 10.13343/j.cnki.wsxb.20170453