-
养殖场排放大量的猪场废水含有大量有机物、氮、磷等营养物质,若不加以有效处理,会对周围生态环境造成危害[1-2]。目前对于猪场废水较为常见的处理方式是厌氧发酵处理,但厌氧发酵仅能去除有机物,不能有效去除其中的氮、磷等营养物,因此,猪场沼液普遍呈现出高氨氮(NH4+-N≥400 mg·L−1)、低碳氮比(C/N<3)的特点[3-4]。传统的硝化反硝化工艺在针对猪场沼液脱氮时,反硝化作用对碳源的需求无法得到满足而致使其脱氮效率低[5-6]。不少学者探索采用新型自养脱氮工艺提升对猪场沼液脱氮的处理效果,其总氮去除率可达40%~70%,但其存在启动时间过长,运行管理不便,能耗高和除磷效果差等缺点[3,7]。因此,针对猪场沼液处理中高效脱氮除磷除碳的需求,开发低能耗、高效率的新型工艺迫在眉睫。
曝气生物滤池(biological aerated filter, BAF)是一种集吸附、氧化和过滤于一体的新型膜生物处理工艺,广泛应用于污水处理中[8]。目前传统曝气生物滤池常用的滤料包括沸石、陶粒、焦炭、石英砂、活性炭等[9],但传统滤料存在耐冲击负荷差、脱氮除磷功能微生物富集效果较差等问题[10]。因此,滤料的选择关系着反应器启动、运行的稳定性及除污性能。活性炭纤维(activated carbon fiber, ACF)由有机纤维经高温炭化、活化制备而成,呈现纤维状,其具有比表面积大、微孔含量及容量高、吸附再生后仍有较好的吸附效果等特点[11-12],被认为是BAF较为理想的滤料,能较好地富集脱氮除磷功能菌[13-14]。因此,为进一步提高传统BAF脱氮除磷性能,本研究利用生物强化技术,接种课题组前期富集驯化的脱氮除磷功能混合菌泥[7,15],在微曝气条件下启动ACF-BAF。并通过数学模型进行污染物去除动力学模拟,结合启动前后微生物种群组成的变化规律及微生物活性进行脱氮除磷机理探讨,本研究结果可为新型ACF-BAF工艺处理实际猪场沼液提供参考。
-
BAF实验装置图如图1所示。反应器由有机玻璃制成,有效容积为1.5 L,内填约40% (体积百分比)的活性炭纤维布。进、出水口分别位于反应器两侧上方,出水口一侧设有挡泥板,以防止较大的污泥颗粒堵塞出水口及污泥流失,进水口一侧不同高度处设有3个取样口。
-
BAF接种的特效脱氮除磷污泥来自课题组前期富集驯化的混合污泥[7,15]。接种量约为反应器有效容积的40%,混合液悬浮固体质量浓度(MLSS)约为3 000 mg·L−1。
实验用水取自成都市双流区某大型养猪场实际废水厌氧发酵后所产生的沼液,分2个阶段逐步提升NH4+-N质量浓度的方式进水,在第I阶段将沼液稀释1.3倍,同时添加少量微量元素与碱度。其中微量元素母液组成[7]为:0.1 g·L−1 CuCl2·2H2O、0.1 g·L−1 ZnSO4·7H2O、0.3 g·L−1 FeCl3、0.1 g·L−1 H3BO4、0.1 g·L−1 CoCl2、0.1 g·L−1 EDTA,母液添加量为1 mL·L−1。以NaHCO3提供碱度,进水COD为343~409 mg·L−1,NH4+-N为302~479 mg·L−1,NO2−-N、NO3−-N和TN分别为0.5~1.0、1.0~3.0和303~482 mg·L−1,TP为20~37 mg·L−1,TSS为3~10 mg·L−1,pH为6.5~7.5。
-
反应器放置于恒温水浴锅内,控制温度为(30±1) ℃。装置底部安装曝气盘,连接空气泵与转子流量计,以调节曝气量。控制DO为(0.6±0.1) mg·L−1,进水C/N为0.8~1.0。采用序批式进出水的方式来运行反应器,每天运行2个周期,每批次置换率为50%,1个运行周期分为进水0.5 h,曝气10 h,沉淀1 h,排水0.5 h。在反应器启动过程中,分2个阶段逐步提升进水NH4+-N质量浓度,第I、II阶段NH4+-N质量浓度分别为302~357 mg·L−1和431~479 mg·L−1。反应器运行期间,每隔14 d采用气-水联合的方式进行1次反冲洗[16],底部污泥的SRT设置为14 d。
-
本实验中化学需氧量(COD)、氨氮(NH4+-N)、亚硝态氮(NO2−-N)、硝态氮(NO3−-N)、总氮(TN)、总磷(TP)等均采用国家标准方法测定[17];pH采用PHSJ-6L型便携式pH计测定;DO采用JPB-607A型溶解氧仪测定。
-
高通量测序样品分别取自启动前接种污泥(0#),第I、II阶段运行末期(50 d和100 d)反应器内不同部位处的填料上的生物膜和污泥的混合样品(分别编号为1#(50 d)、2#(100 d))。采用DNA快速提取试剂盒(离心柱型)提取污泥样品的DNA[18],利用1%琼脂凝胶电泳检测其浓度及质量。测定合格的DNA送至上海美吉生物医药科技有限公司进行高通量测序。测序引物为338F(ACTCCTACGGGAGGCAG)和806R (GGACTACHVGGGTWTCTAAT)[19],对目标样品的16S rRNA进行PCR扩增。每个样品的扩增均重复做3次,扩增结束后将同一样品的PCR扩增产物混合并用2%琼脂糖凝胶电泳检测[20]。PCR扩增产物由QuantiFluorTM-ST蓝色荧光定量系统进行检测定量并在Illumina Miseq上测序。使用I-sanger生物信息云数据分析系统(http://www.i-sanger.com/)对微生物基因序列信息进行分析。利用UPARSE软件,依据97%的相似度对序列信息进行OTU聚类分析,利用UCHIME软件去嵌合体。采用RDP classifier对OTU代表序列进行物种分类注释[21]。
-
反应器内各污染物去除过程较复杂,可通过经验公式对复杂过程中的基质去除进行数学模型的模拟[22-23],对不考虑微生物生长污染物的去除速率根据指数模型(式(1))进行计算。
式中:v为污染物去除速率; ρ为污染物质量浓度, mg·L−1; t为反应时间, h; kn为反应速率常数; n为反应级数。
-
为测定AnAOB、AOB、NOB、反硝化菌和除磷菌的活性,取启动成功后的污泥50 mL,测定其MLSS,再将其置于250 mL的锥形瓶中,加入100 mL基质溶液,进行批次活性实验测定方法参照郑照明等[24]和张杰等[25]的研究,通过曝气或通入氮气控制溶解氧DO,设置不同进水污染物质量浓度监测其在12 h的变化情况,以此表征各功能菌的活性。测定条件如表1所示。
AnAOB、AOB、NOB、反硝化菌和除磷菌的活性表征,反应速率k1、k2、k3、k4和k5根据式(2)~式(5)进行计算。
式中:C1、C2、C3、C4和C5分别为反应时间内TN、NH4+-N、NO3−-N、COD和TP的变化量,mg·L−1;Δt表示时间, h; ρ表示污泥质量浓度, g·L−1。
-
1) NH4+-N及TN去除变化分析。反应器启动过程中,氮素转化去除的变化如图2所示。在第I阶段(1~50 d),此阶段中NH4+-N、TN平均负荷分别为0.202 7 kg·(m3·d)−1和0.203 7 kg·(m3·d)−1,反应器运行前7 d,NH4+-N去除率较低,仅有42%左右,此时NH4+-N的去除过程包括活性炭纤维布的吸附截留及部分接种微生物生物转化去除。随着微生物挂膜生长增殖,其对NH4+-N的分解转化率逐步提升。在18 d时,明显观察到填料表面附着一层生物膜,此时NH4+-N去除率稳定在60%以上。反应器运行27 d后,BAF对NH4+-N和TN的去除效果趋于稳定,平均去除率分别为71.91%和61.19%,平均出水质量浓度分别为94.82 mg·L−1和131.58 mg·L−1,NH4+-N、TN平均去除负荷分别为0.131 9 kg·(m3·d)−1和0.116 9 kg·(m3·d)−1。由此可见,活性炭纤维布滤料有利于微生物的附着,具有较好的挂膜性能。
在第II阶段(51~100 d),进水NH4+-N质量浓度提升至431~479 mg·L−1,TN质量浓度为432~482 mg·L−1,NH4+-N、TN的平均负荷分别为0.272 1 kg·(m3·d)−1和0.273 0 kg·(m3·d)−1。由于NH4+-N负荷提高,NH4+-N和TN的去除率出现不同程度的下降,此时去除率分别为51.48%和40.80%。随着反应器内的微生物逐渐适应该环境,NH4+-N和TN的去除效率逐步提升至稳定,后期其平均去除率分别为61.03%和51.87%,平均出水质量浓度为175.21 mg·L−1和217.16 mg·L−1,此时的NH4+-N、TN平均去除负荷分别为0.173 0 kg·(m3·d)−1和0.143 0 kg·(m3·d)−1。分析原因,较高质量浓度的NH4+-N对微生物具有毒害作用,抑制了反应器内相关脱氮菌的活性[26]。有研究[27]表明,NH4+-N质量浓度的提升会导致系统中NO2−-N去除速率下降,NO2−-N积累使其质量浓度上升从而抑制氨氧化菌(ammonia-oxidizing bacteria, AOB)的活性。当AOB活性下降时,曝气量保持不变,反应器内的溶解氧将会上升,从而抑制厌氧氨氧化菌(anaerobic ammonium oxidizing bacteria, AnAOB)的活性,对脱氮系统的稳定性造成影响[10]。但随着反应器内微生物对环境的适应,系统再次达到新的平衡。由此可见,本研究中以活性炭纤维布为滤料,接种特效脱氮除磷菌泥有利于曝气生物滤池的快速启动。
2) TP及COD去除变化分析。图3为反应器启动过程中对TP和COD的去除性能。在第I阶段,TP和COD进水平均负荷为0.017 7 kg·(m3·d)−1和0.210 6 kg·(m3·d)−1。反应器启动时,TP的平均去除率仅有43.74%,此时TP的去除基于活性炭纤维布对磷具有一定的吸附效果[28],以及接种污泥中含有的相关除磷菌呈现出一定的活性。随着反应器中的微生物挂膜生长,生物除磷过程加强,后期总磷平均去除率为60.04%,平均出水质量浓度为11.45 mg·L−1,平均去除负荷为0.011 9 kg·(m3·d)−1。反应器启动后对COD的去除性能随时间逐渐提高,后期去除率稳定在69.38%左右,出水COD平均值为107.68 mg·L−1,平均去除负荷为0.147 8 kg·(m3·d)−1。由于本研究中反应器采用的是低能耗微曝气,溶解氧处于较低水平(0.6 mg·L−1),且沼液中复杂的有机物成分也增加了其降解难度,随微生物增殖,系统中持续的曝气,好氧菌活性及数量均有所提升,且反应器中存在的除磷菌除磷过程及反硝化菌进行反硝化时消耗耗氧有机物(以COD计),提升其去除率。在第II阶段,TP和COD去除率均有所降低,分别为42.75%和64.33%,随着系统逐渐稳定,TP和COD去除率亦逐步回升。后期稳定后总磷和COD的平均去除率为52.58%和77.11%,平均出水质量浓度为12.89 mg·L−1和91.44 mg·L−1,平均去除负荷分别为0.009 3 kg·(m3·d)−1和0.188 2 kg·(m3·d)−1。NH4+-N质量浓度的提升,对反应器内的除磷微生物及AOB造成不同程度的胁迫,降低了其活性, AOB活性的抑制减少了溶解氧的消耗,以致反应器内的其余好氧异养菌活性提升,可将COD去除率维持在较高水平,而TP去除效果出现一定程度的降低。同时沼液中的其他复杂成分浓度增加对微生物产生的抑制作用也是性能下降的原因之一。微生物在适应新环境后,系统对TP和COD的去除性能逐渐提升。污染物负荷的提升,使得反应器内对溶解氧及碳源消耗更大,反应器局部出现厌氧环境也促进了厌氧消化过程对COD的去除。多种异养微生物的同时作用使得COD去除率最终高于第I阶段后期的水平。由此可见,该反应器启动成功后能够较好地同步脱氮、除磷和除碳。
-
图4为反应器成功启动后,各污染物去除动力学模型拟合曲线,表2为拟合曲线对应的参数。可以看出,NH4+-N (R2=0.998 9)、TP (R2=0.968 9)和COD (R2=0.990 5)的去除过程遵循一级反应动力学关系,TN (R2=0.995 5)的去除过程遵循二级反应动力学关系,得到NH4+-N、TN、TP和COD对应的去除动力学方程分别为ρt=452.84e−0.081 4t、ρt=1/(2.114 0×10−4t+2.204 4×10−3)、ρt=28.36e−0.073 0t和ρt=406.68e−0.114 5t。在NH4+-N、TP和COD的去除过程中反应速率在一定程度上受到底物质量浓度的影响,呈现一级动力学规律;而TN在本研究中的去除途径主要包括厌氧氨氧化和反硝化过程,在电子供体匮乏的条件下,其呈现二级动力学规律。NH4+-N和TN在本研究中进水质量浓度相近,但其动力学过程却呈现出差异性。分析原因为,在反应器中NH4+-N的去除途径主要为短程硝化、硝化及厌氧氨氧化过程将其转化为NOx−-N及N2,且AOB和AnAOB均为自养型细菌,其限制因素较少。而TN的去除主要依靠厌氧氨氧化和反硝化过程,反硝化细菌作为异养菌,受碳源的影响较大,初期碳源充足时厌氧氨氧化和反硝化同时作用下TN去除速率较高,而后碳源被快速消耗殆尽,NOx−-N开始积累,去除过程主要为厌氧氨氧化,其去除速率迅速降低。由此可见,在本研究中底物质量浓度对去除速率的影响较大。动力学模型能够较好地拟合反应器内污染物去除过程,其拟合度均较高,可通过该动力学模型对反应器稳态运行状况进行预测,指导运行过程中的操作与调控,对工况优化及工程应用具有重要意义。
-
1)多样性指数分析。各阶段系统中各类多样性指数如表3所示。3个样本的覆盖率均大于0.99,表明测序结果可代表样品中微生物的真实情况。Ace、Chao、Shannon和Simpson指数分别用于反应样本中微生物的多样性及丰富度,Ace、Chao、Shannon指数越高,则代表物种多样性和丰富度越高,Simpson指数则反之。1#的Ace、Chao、Shannon指数均高于0#,而Simpson指数则低于0#,说明接种后,反应器内物种的多样性和丰富度均高于接种污泥。2#的多样性和丰富度低于1#但仍高于0#,说明随着氨氮的提高,对部分微生物生长有抑制作用,降低了其多样性和丰富度。但2#仍高于接种污泥,说明活性炭纤维表面特征适宜微生物生长,可为微生物提供较好的生长环境。
2) ACF-BAF反应体系中微生物种群组成分析。应器启动运行阶段,反应器内接种污泥0#、第I阶段末的污泥1#和第II阶段末的污泥2#的微生物种群组成如图5所示。Patescibacteria菌门由接种污泥的0.15%提升至1#和2#中的35.95%和32.61%(图5(a))。拟杆菌门(Bacteroidetes)作为反应器内的另一优势菌门,其相对丰度由启动前的1.92%增加至1#和2#样本中的15.63%和12.10%,该菌门下属黄杆菌纲中的norank_f__NS9_marine_group具有反硝化功能,其相对丰度由启动前的0.01%增长至第I、II阶段的1.43%和4.02%(图5(b)),使得系统具有稳定的反硝化功能。浮霉菌门(Planctomycetes)在3个样品中的相对丰度分别为3.86%、2.59%和2.43%,系统较大程度上截留富集该菌门,保证其在反应器内发挥相应的功能;相比于接种污泥,其相对丰度略有下降,说明NH4+-N质量浓度提升对该菌门下某些菌属有一定的抑制作用[29];反应器内检出唯一的AnAOB菌属 Candidatus_Brocadia归属于浮霉菌门,其丰度由启动前的0.95%分别变化至0.81%和2.22%,因此推测该菌属更适宜在高基质质量浓度废水中生长,且在第II阶段中Candidatus_Brocadia在浮霉菌门中的占比提升,该门下的其余非AnAOB菌属被淘洗出反应器,Candidatus_Brocadia的成功富集保证了系统中厌氧氨氧化过程。绿弯菌门(Chloroflexi)多为兼性厌氧菌,在厌氧氨氧化系统中较常见,多为丝状菌且位于污泥菌胶团絮状体的内部,可充当絮体骨架促进厌氧氨氧化菌形成颗粒[30]。本研究中,Chloroflexi菌门相对丰度从0#样品的3.97%提升至1#的7.10%,最后再到2#样品的26.80%,形成的菌胶团可为AnAOB的提供适宜的生长环境,减缓恶劣环境对AnAOB生长的抑制作用,检出优势菌属中的norank_f__norank_o__SBR1031、OLB13及norank_f__A4b均属于绿弯菌门,其为厌氧消化核心微生物种群[31]。变形菌门(Proteobacteria)的相对丰度下降较为明显,由接种时的87.74%降至29.12%(1#)和16.82%(2#)。 XIN等[32]的研究表明,当NH4+-N的平均进水质量浓度高于253.55 mg·L−1时,会产生大量的游离氨(free ammonia, FA),可能会抑制某些功能菌的生长。SUI等[33]的研究也表明,在高质量浓度FA和低溶解氧的条件下,变形菌门相对丰度有较为明显的下降。因此,在今后实际工程应用中,应通过改进反应器构型等手段提高污泥截留率,以此保证系统内较高的脱氮除磷效率。酸杆菌门(Acidobacteria)相对丰度由接种污泥的0.21%增加至1#的3.93%和2#的1.43%。放线菌门(Actinobacteria)的相对丰度由接种污泥中的1.11%增长至3.69%和6.36%,该菌门的细菌可分泌出降解复杂多糖的胞外酶,可对大分子有机物进行有效降解[34],此外,此菌门下存在部分聚磷菌,在好氧和厌氧条件下均可利用和贮存各种糖类物质,积累细胞聚磷酸盐[35],如优势菌属中的Micropruina,该菌属的相对丰度变化趋势与放线菌门相同,由启动前的未检出(<0.01%) 分别增加至第I、II阶段的3.26%和6.09%。绿菌门下的norank_f__PHOS-HE36为聚磷菌,具有聚磷作用[36],其相对丰度由0.26%增加至第II阶段的2.36%,在反应器内实现富集。
-
1)脱氮除磷功能菌活性分析。反应器内脱氮除磷功能菌活性如图6所示。其中AnAOB和反硝化菌的活性分别达到4.05 mg·(g·h)−1和3.08 mg·(g·h)−1,表明反应器内厌氧氨氧化和反硝化占主导地位。同时,AOB和NOB的活性分别为1.57 mg·(g·h)−1和2.82 mg·(g·h)−1,AOB的存在将NH4+-N转化为NO2−-N,保证厌氧氨氧化的顺利进行,而由于低溶解氧的状态导致NOB的活性受到抑制。除磷菌的活性为1.49 mg·(g·h)−1,系统内的好氧反硝化聚磷菌和传统聚磷菌可实现较好的摄磷作用,从而达到除磷目的。通过对脱氮除磷功能菌的活性测定,证实了系统内厌氧氨氧化、短程硝化、硝化、反硝化和除磷过程处于良好的动态平衡,可实现同步脱氮除磷除碳。
2) ACF-BAF处理猪场沼液脱氮除磷机理分析。迄今为止,关于通过接种脱氮除磷菌泥及以活性炭纤维作为滤料强化曝气生物滤池处理猪场沼液脱氮除磷的研究鲜有报道。由于本研究中接种的菌泥中包括Acinetobacter、Candidatus_Brocadia、Hydrogenophage、Alicycliphilus、Micropruina、norank_f__PHOS-HE36等脱氮除磷功能菌群,因此,ACF-BAF第I、II阶段分别在第27、72 天时污染物处理效果逐渐趋于稳定,启动时间远远短于传统以ANAMMOX为核心衍生的各类工艺。由此可见,通过接种特效脱氮除磷菌泥可克服以AnAOB为代表的世代周期较长的功能菌群的启动培养周期长的问题。而以活性炭纤维作为滤料,其巨大的表面积及发达的孔隙结构是微生物优良的载体,除接种菌泥外,纤维布填料也是ACF-BAF工艺得以快速启动的重要原因之一,与脱氮除磷功能密切相关的菌属Candidatus_Brocadia、Micropruina、norank_f__NS9_marine_group、norank_f__PHOS-HE36均得以大量富集截留,保证了ACF-BAF高效的脱氮除磷效能。系统微曝气低溶解氧状态及生物膜特性可使反应器内同时存在厌/缺/好氧微环境,进而同时实现传统反硝化菌及聚磷菌的脱氮除磷功能。脱氮除磷功能菌活性也表明系统中的脱氮途径以厌氧氨氧化和反硝化过程为主,除磷过程则以微生物聚磷为主,其余通过吸附和沉淀作用去除。同时,ACF-BAF反应器启动成功阶段的污染物去除动力学表明,COD、NH4+-N和TP遵循一级动力学模型,而TN遵循二级动力学模型,ACF-BAF启动成功后,对NH4+-N、TN、TP和COD的平均去除率相比以聚丙烯树脂填料为滤料、接种普通活性污泥启动的BAF分别提高了9.33%、16.80%、15.24%和4.87%[37],大大降低了后续处理的成本和压力。反应启动成功时的NH4+-N、TN的平均去除负荷分别为0.173 0 kg·(m3·d)−1和0.143 0 kg·(m3·d)−1,相比于传统工艺的0.015 6 kg·(m3·d)−1和0.0150 kg·(m3·d)−1而言[38],亦或是新型的短程硝化-厌氧氨氧化工艺(CANON工艺)的0.125 6 kg·(m3·d)−1和0.116 1 kg·(m3·d)−1而言[7],本研究对NH4+-N、TN的去除负荷均有显著提升。本研究对TP和COD的平均去除负荷为0.009 3 kg·(m3·d)−1和0.188 2 kg·(m3·d)−1,传统A2O工艺为0.008 0 kg·(m3·d)−1和0.491 6 kg·(m3·d)−1[39],在本工艺中在COD进水及去除负荷均低于传统工艺时仍能保持氮磷去除负荷更高。本工艺基于CANON工艺的同时耦合反硝化除磷过程,显著改善了工艺脱氮除磷性能。可见,接种脱氮除磷菌泥可强化ACF-BAF处理实际猪场沼液的除污效能,具有快速启动、高效同步脱氮除磷及节约后续处理成本等优点。
-
1)在微曝气(DO=(0.6±0.1) mg·L−1),温度为(30±1) ℃的条件下,通过改变沼液进水NH4+-N质量浓度,接种特效脱氮除磷污泥,在100 d内实现了ACF-BAF工艺处理猪场沼液的启动;启动成功后,反应器对COD、NH4+-N、TN和TP的平均去除率为77.11%、61.03%、51.87%和52.58%,其对氮和磷的去除负荷分别为0.143 0 kg·(m3·d)−1和0.009 3 kg·(m3·d)−1,均显著高于传统工艺和部分新型工艺。
2) COD、NH4+-N、TP的去除过程遵循一级动力学模型,TN的去除过程遵循二级动力学模型。其拟合度均较高,可通过该动力学模型对反应器稳态运行状况进行预测,指导应用中的操作与调控,对工况优化及工程应用具有重要意义。
3)反应器启动成功后,优势脱氮除磷功能菌属为Acinetobacter(8.34%)、Candidatus_Brocadia (2.22%)、norank_f__NS9_marine_group(4.02%)、Micropruina(6.09%)、norank_f__PHOS-HE36(2.36%)。本工艺相对比传统工艺而言,可显著降低曝气能耗成本及除磷成本,符合可持续高效低碳脱氮除磷工艺节能技术的特点,可降低后续处理成本。
脱氮除磷功能菌泥强化低溶解氧ACF-BAF工艺处理猪场沼液效能及微生物种群分析
The performance and microbial community structure of a bioaugmentated ACF-BAF process treating anaerobic digested swine wastewater under low dissolved oxygen condition
-
摘要: 猪场沼液是一种高氨氮低C/N比废水,传统工艺处理时启动时间长、运行管理不便、能耗高、总氮难去除且除磷效果差。本研究以活性炭纤维 (activated carbon fiber, ACF)作为曝气生物滤池(biological aerated filter, BAF)的滤料,接种特定的脱氮除磷菌泥,在低溶解氧(DO=(0.6 ± 0.1) mg·L−1)条件下,通过改变进水NH4+-N质量浓度的方式在100 d内成功启动了处理猪场沼液的生物强化ACF-BAF,对其微生物种群组成和功能菌群活性进行了分析,并探讨了其脱氮除磷的机理。结果表明,ACF-BAF启动成功后的NH4+-N、TN、TP和COD的平均去除率分别为61.03%、51.87%、52.58%和77.11%,其对氮、磷的去除负荷分别为0.143 0 kg·(m3·d)−1和0.009 3 kg·(m3·d)−1,均显著高于传统工艺及部分新型工艺。其中NH4+-N、TP和COD的去除过程符合一级动力学方程,TN的去除过程符合二级动力学方程。高通量测序结果表明,处理猪场沼液的ACF-BAF反应系统中存在的与脱氮除磷功能相关菌属有Candidatus_Brocadia(2.22%)、反硝化菌norank_f__NS9_marine_group(4.02%)、Acinetobacter(8.34%)和除磷菌Micropruina (6.09%),norank_f__PHOS-HE36(2.36%)。ACF-BAF系统中脱氮过程以厌氧氨氧化和反硝化途径为主,除磷过程主要为微生物聚磷。将ACF-BAF工艺应用于实际猪场沼液处理,可快速启动并实现高效同步脱氮除磷,节约后续处理成本。
-
关键词:
- 猪场沼液 /
- 活性炭纤维(ACF) /
- 曝气生物滤池(BAF) /
- 生物强化 /
- 同步脱氮除磷 /
- 微生物种群
Abstract: Anaerobic digested swine wastewater is a kind of wastewater with high ammonia nitrogen and low C/N ratio, the traditional treatment process has the disadvantages of long start-up time, inconvenient operation and management, high energy consumption, difficult removal of total nitrogen and poor phosphorus removal. In this study, activated carbon fiber (ACF) was used as the filter media of biological aerated filter (BAF), inoculated with specific nitrogen and phosphorus removal bacterial sludge. Under low dissolved oxygen (DO = (0.6 ± 0.1) mg·L-1) conditions, the bioaugmented ACF-BAF was successfully started within 100 d by changing the influent NH4+-N concentration, and the microbial population composition and functional bacterial activity were analyzed, and the mechanism of nitrogen and phosphorus removal was investigated. The results indicated that the average removal rates of NH4+-N, TN, TP and COD were 61.03%, 51.87%, 52.58%, and 77.11%, respectively. The removal loads of nitrogen and phosphorus were 0.143 0 kg·(m3·d)-1和0.009 3 kg·(m3·d)-1, respectively, which were significantly higher than those of the conventional process and some new processes. The removal process of NH4+-N, TP and COD could be fitted by the first-order kinetic model, and the TN removal process could be fitted by the second-order kinetic model equation. The results of high-throughput sequencing showed that the bacteria related to nitrogen and phosphorus removal in the ACF-BAF system were Candidatus_Brocadia(2.22%), norank_f__NS9_marine_group(4.02%), Acinetobacter(8.34%), Micropruina(6.09%), norank_f__PHOS-HE36 (2.36%). The results of activity and contribution rate of bacteria showed that nitrogen removal process in ACF-BAF was realized mainly by anaerobic ammonia oxidation and denitrification, and phosphorus removal process in ACF-BAF was realized mainly microbial phosphorus accumulation. The application of ACF-BAF process treating anaerobic digester liquor of real swine wastewater can realize quick start-up and realize an efficient simultaneous nitrogen and phosphorus removal, and reduce the follow-up processing cost. -
近年来,随着全球工业化的不断发展,化石能源的使用排放出大量温室气体(CO2、CH4、N2O、O3和氯氟烃等)。自1800年至2020年,大气中CO2的体积浓度由280 mL·m−3升至410 mL·m−3,已导致全球气温上升约1.2 ℃[1-2]。全球变暖将对生态环境以及人类生存造成显著威胁[3-4]。2020年9月22日,中国在第七十五届联合国大会提出“二氧化碳排放力争于2030年前达到峰值,努力争取2060年前实现碳中和”的目标[5]。为实现此目标,有效缓解全球变暖,应在大力开展新能源研究和应用的同时,研发经济高效的CO2捕集、利用与封存技术(carbon dioxide capture utilization and storage, CCUS)[6]。
矿物碳酸化封存CO2技术凭借矿石资源丰富、碳酸盐产物稳定无污染、操作简单等优点,被认为是除胺法等溶剂吸收法和地质封存的可行性CO2捕集方案[7]。但天然矿石封存CO2会消耗大规模矿产资源,而工业固体废物(粉煤灰、钢渣、电石渣等)通常含有大量的钙、镁元素,可作为碳酸化所需钙离子、镁离子来源以替代天然矿石对CO2进行捕集和封存[8-9]。任国宏等[10]运用直接湿法研究了粉煤灰、电石渣及其配合物的矿化封存CO2效果,在60 ℃、1个标准大气压(1.01×105 Pa)条件下,粉煤灰、电石渣固碳率分别是2%和61.3%,其配合物固碳率比等量单一电石渣和粉煤灰固碳率之和计算值提高19.6%。伊元荣等[11]研究了钢渣湿法捕获CO2的反应特性,发现钢渣中的Ca(OH)2、CaO、Ca2SiO4和Ca3AlO6等矿物都可以发生碳酸化反应生成CaCO3,并论证了矿化封存CO2后的钢渣可被进一步利用为建材。碳酸化反应后的灰渣可用于各种行业,包括建筑材料[12-14]、纸张和涂料填料、耐火材料、农业和制药[15],其主要利用行业是建筑业。据估计,通过利用碳酸化产品生产建筑材料来替代传统的碳密集型产品,可间接减少约3.7×1010 t的二氧化碳排放[16]。除了用于生产经济价值较低的常规建筑材料,通过矿化过程回收附加值较高的产品是未来提高市场竞争力的一大方向[17-19]。
国内外学者对不同固废封存CO2进行了大量基础性研究,并探索了直接湿法和干法等工艺的封存应用效果[20-23]。固废的化学成分及物相组成差异对CO2封存能力影响巨大[24],而文献中对同种固废分别采用2种工艺进行CO2封存能力及规律性的对比研究仍十分有限。本课题组选择产量大、源自不同行业(气化、冶炼、化工)的3种典型工业固体废物(电石渣、钢渣和粉煤灰),分别通过湿法高压釜间歇装置和固定床干法连续装置,对比研究直接湿法和直接干法工艺下其CO2封存能力及规律,并结合分析表征,揭示不同工艺下固废碳酸化反应机理,以期为进一步开发低成本绿色高效封存CO2技术提供参考。
1. 材料与方法
1.1 实验材料
实验所用工业固体废物有钢渣(steel slag,SS)、电石渣(carbide sludge,CS)和粉煤灰(fly ash,FA)。SS包括山东某碳钢厂钢渣(记为SS-1)和山东某不锈钢厂钢渣(记为SS-2);CS取自宁夏某煤化工厂电石渣;FA取自天津某炼化厂煤气化粗渣。表1为各固废样品的成分组成。样品首先经105 ℃干燥至恒重,然后采用120目和200目的筛子在振筛机筛分5 min,得到粒径为75~120 μm的样品,密封保存。实验所用纯CO2、N2购于北京环宇京辉气体科技有限公司,体积分数为99.9%。去离子水采用威立雅PURELAB Flex超纯水仪自制,电阻率为18.2 MΩ·cm。实验中新鲜样品分别可用F-SS-1、F-SS-2、F-CS、F-FA表示,反应后样品用C-SS-1、C-SS-2、C-CS、C-FA表示。
表 1 固体废物样品中的各成分的质量分数Table 1. Chemical compositions of solid waste samples% 样品 SiO2 Al2O3 Fe2O3 CaO MgO TiO2 Na2O K2O P2O5 SO3 SS-1 9.47 1.98 24.44 51.79 5.95 0.71 0.08 0.05 1.45 0.41 SS-2 22.21 1.35 0.39 64.73 6.25 1.07 0.02 0.00 0.00 0.23 CS 2.70 0.95 0.17 90.90 0.17 0.00 0.02 0.00 0.00 0.47 FA 35.56 18.37 16.83 24.55 0.42 0.78 0.61 0.57 0.25 1.23 1.2 实验装置
1)干法固定床连续装置(见图1)由气体混合部分(纯N2、CO2气源、气体混合罐、流量控制器)、气固反应部分(固定床反应器)及烟气分析部分(红外烟气分析仪、计算机)组成。不锈钢管式反应器内径为50 mm,长700 mm,设计温度900 ℃,设计压力4.5 MPa。采用传感器测定气体流量、反应器温度、压力等,通过数据采集系统转换成数字信号,存入电脑并处理。
2)湿法高压釜间歇装置如图2所示。该装置主要由高压反应釜(KTFD06-20型,烟台科立化工设备有限公司产品)、纯CO2气源、在线记录控制箱3部分组成。反应釜内部体积为0.6 L,工作温度300 ℃,工作压力20 MPa,工作转速200 r·min−1。采用传感器测定反应器温度、压力、转速等,通过数据采集系统转换成数字信号,存入电脑并处理。
1.3 实验步骤
1)直接干法:将10 g经预先干燥的固废样品装填于反应器中,充入高纯度N2排空装置内空气,升温至反应温度;通过调节N2、CO2流量控制器,控制CO2体积浓度为15%,在总气体流速200 mL·min−1、常压(0.1 MPa)条件下,打开阀门将气体通入反应器,与固废进行反应;通过烟气分析仪实时记录反应器出口气体流量和CO2体积分数的变化,直到出口CO2体积分数和流量不变,反应结束。据此计算固废的CO2封存量,最后采用分析表征方法对固体产物进行分析。
2)直接湿法:将150 mL去离子水和10 g经预先干燥的固废样品加入高压釜中;充入高纯度N2排空装置内空气,关闭出口阀门;在密闭条件下升温至设定温度65 ℃;随后将高纯度CO2气体从气瓶注入反应器中,使高压釜内的压力稳定在2 MPa;开启机械搅拌,转速200 r·min−1,同时开始计时;待反应达到2 h时停止加热,使反应釜内的温度降至25 ℃;然后对反应釜内的悬浮液用0.7 μm滤纸进行真空抽滤,抽滤后的固体产物放入恒温干燥箱,105 ℃干燥12 h,并研磨均匀;采用分析表征方法对固体产物进行分析。
1.4 数据处理
1)直接干法:CO2封存量计算公式见式(1)。
$stringUtils.convertMath($!{formula.content}) $ (1) $ 式中:
为CO2的封存量,g·kg−1;$ Q_{{\rm{CO}}_2} $ 为CO2的摩尔质量,g·mol−1;m为灰渣的质量,g;Qin为进口气体流量,L·min−1;Qout为出口气体流量,L·min−1;Cin为进气中CO2体积分数,%;Cout为出气中CO2体积分数,%。$ M_{{\rm{CO}}_2} $ 2)直接湿法:采用德国NETZSCH公司的STA 449F3型热重分析仪进行热重实验,称取一定质量的样品,在30 mL·min−1的N2气氛下进行热失重实验。测定不同碳酸化样品中的CO2质量分数w(CO2),进而得出灰渣的CO2封存量,如式(2)~(3)所示。碳化率
即碳酸化效率,表示灰渣中用于碳酸化的钙质量占总钙质量的比例,根据式(4)计算。$ \left( {{{{\zeta }}_{{\rm{Ca}}}}} \right)$ $stringUtils.convertMath($!{formula.content}) $ (2) $ $stringUtils.convertMath($!{formula.content}) $ (3) $ $stringUtils.convertMath($!{formula.content}) $ (4) $ 式中:
为550~950 ℃的质量损失对应碳酸盐分解带来的质量损失,g;w(CO2)为碳酸化样品中的CO2质量分数;$ \Delta {{{m}}_{{\rm{550 \sim 95}}{{\rm{0}}^ {\;\;\circ }{\rm{C}}}}} $ 为CO2的封存量,g·kg−1;MCa和$ Q_{{\rm{CO}}_2} $ 分别代表Ca和CO2的摩尔质量,g·mol−1;Catotal代表新鲜灰渣样品中Ca的质量分数。${M_{{\rm{CO}}}}_{_2} $ 1.5 分析与表征
采用X射线荧光光谱(X ray fluorescence, XRF)技术分析固废样品化学组成。采用Empyrean Panalytical型X射线衍射仪(X-ray diffraction, XRD)对碳酸化前后灰渣样品中矿物相进行定性分析。衍射条件为:Cu靶(λ=0.154 nm),扫描角度范围10°~70°,扫描步长为0.01°,管电压40 kV,管电流40 mA。采用Bruker公司的Tensor27型傅里叶变换红外光谱仪(FTIR)对碳酸化反应前后灰渣样品进行主要化学键分析,操作条件为:溴化钾压片,波数400~4 000 cm−1,分辨率1 cm−1。采用FEI公司的Quanta-200型场发射扫描电子显微镜(SEM)观察碳酸化反应前后灰渣样品的微观形貌。工作前,将固废样品固定在环氧树脂中,抛光,并安装在样品柱上,进行喷碳处理。操作条件为:电压10 kV,电流密度45 μA·cm−2,电子束角度90°。采用配套的能量色散谱(EDS)分析确定样品的微区化学组成。比表面积、总孔体积、吸附/脱附等温线及孔分布在Quantachrome AS-3静态氮吸附仪上测定。测定前,将样品置于样品处理系统,在300 ℃下抽真空至1.33×10−2 Pa,恒温恒压4 h,净化样品。比表面积通过Brunauer-Emmett-Teller(BET)方法计算得到。总孔体积根据相对压力约为0.99时吸附液氮总量计算得到。
2. 结果与讨论
2.1 不同工业固废干法矿化封存CO2性能
2.1.1 工业固废干法矿化封存CO2效果
在不同温度下4个样品的CO2封存量如图3所示。由图3可知,SS-1样品随着温度升高,CO2封存量逐渐降低,但在580 ℃和630 ℃时封存量基本持平,530 ℃时取得最大封存量70.78 g·kg−1;SS-2样品随着温度升高,CO2封存量逐步升高,在630 ℃取得最大封存量25.99 g·kg−1;CS样品随着温度升高,CO2封存量先增大后减小,在580 ℃取得最大封存量382.21 g·kg−1;FA样品随着温度升高,CO2封存量降低,在530 ℃取得最大封存量34.81 g·kg−1。总体来看,CO2封存能力呈现出CS>SS-1>FA>SS-2的规律,其中,FA和SS-2的差距很小。结合各灰渣组分信息分析可发现,固废样品CO2封存能力与碱性组分CaO含量具有一定的相关性,CS、SS-1、FA 3个样品中CaO组分含量依次减小且差距较大,与其CO2封存能力呈正相关。另外,虽然SS-2的CaO含量较高,但由于FA和SS-2中的SiO2含量都比较高,两者的CO2封存能力也呈现出相应较低的水平,故SiO2的含量较大程度影响了SS-2和FA的CO2封存效果,这可能与活性钙的物相有关。因此,固废中CaO含量是影响干法矿化封存CO2方法封存效果的重要因素。
2.1.2 工业固废干法矿化封存CO2速率变化
图4为各固废样品封存CO2过程中的碳酸化反应速率曲线。由图4可见,在不同温度下,各样品干法矿化封存CO2反应前期吸收速率最大,恒定一段时间,随后在某一点吸收速率瞬间开始下降。SS-1样品在40 min内基本完成反应,且在反应开始10 min后封存速率急速下降;CS样品反应时间长,需2 h左右反应完全,CO2封存速率在反应开始40 min后逐步下降;SS-2和FA在12 min内基本完成反应,封存能力低,且在2~4 min时封存速率急速下降。结合分析表征可推测,反应生成的碳酸钙覆盖在颗粒表面或发生团聚,减少了与气体反应的接触面积,且活性钙在前期反应中已消耗很多,进而影响了反应速率。因此,在CO2速率曲线上呈现出反应初期为快速化学反应控制阶段,反应后期为慢速扩散控制阶段。
2.1.3 工业固废干法碳酸化反应前后结构表征
图5为碳酸化反应前后固废样品的XRD图谱。由图5可知,钢渣SS-1和SS-2原样中钙的物相存在较大差异。其中,SS-1中钙主要存在于Ca(OH)2中,而SS-2中钙主要以2CaO·SiO2和CaO·SiO2形式存在,Ca(OH)2含量较低。碳酸化反应后,SS-1中Ca(OH)2的衍射峰强度明显降低,出现较强的CaCO3的衍射峰,说明碳酸化反应中,Ca(OH)2与CO2反应生成CaCO3,且转化率较高。相比之下,SS-2反应后的样品中,出现Ca(OH)2和CaCO3的衍射峰,并存在2CaO·SiO2和CaO·SiO2的衍射峰,说明2CaO·SiO2和CaO·SiO2与CO2反应较慢。又由于SS-2钙含量比SS-1钙含量高,但SS-2的CO2封存量却比SS-1低一倍多,故可推测碳酸化封存CO2与钙基活性物相类型密切相关,2CaO·SiO2与CaO·SiO2不易发生碳酸化反应。分析其原因,可能是2CaO·SiO2和CaO·SiO2与CO2的吉布斯自由能变大于CaO和Ca(OH)2,与CO2发生反应趋势小于CaO和Ca(OH)2[25-27]。由XRD结果可知,电石渣CS样品反应前为石灰(CaO)和熟石灰(Ca(OH)2)物相,碳酸化反应后以方解石(CaCO3)为主,还有少量的石灰(CaO),而熟石灰(Ca(OH)2)的衍射峰消失,说明Ca(OH)2与CO2碳酸化反应形成CaCO3,实现CO2封存[24]。粉煤灰FA原样中未见任何含有钙组分的衍射峰,说明其中的钙为非晶相,干法反应后出现了CaCO3特征峰。这说明在干法碳酸化反应中由于非晶态钙成分不稳定,在高温环境中也能与CO2发生反应生成CaCO3,以实现CO2的封存。而由于FA中钙含量较低,FA的CO2封存量相对较低。
图6为碳酸化反应前后固废样品的IR谱图。反应前4个样品在3 670 cm−1、1 418 cm−1、875 cm−1和715 cm−1处均产生吸收峰,3 670 cm−1吸收峰对应于氢氧根的伸缩振动,1 418 cm−1、875 cm−1和715 cm−1吸收峰对应于碳酸盐基团的不对称伸缩振动、面外弯曲振动和面内弯曲振动[24]。上述结果表明,4个样品中均存在CaCO3。O—H可能对应于水中的氢氧键,也可能对应于Ca(OH)2中的氢氧键。由于所有样品在分析前都是烘干至恒重,不存在游离水,因此,O—H是由样品中其他状态的水分子(吸附水和结晶水)或Ca(OH)2中的—OH键伸缩振动引起的。从反应后的固废IR结果可知,SS-1、SS-2、CS样品碳酸化反应后碳酸盐基团的振动明显增强,并在2 923 cm−1和2 864 cm−1处出现了新的碳酸钙结构弱吸收峰。与XRD谱图一致,表明反应生成碳酸钙,充分证明固废样品封存了CO2。碳酸化后红外谱图中仍出现O—H的吸收谱带,表明固废中Ca(OH)2并没有完全反应,可能是被反应生成的碳酸钙所覆盖。
选取CO2封存量最大的SS-1、CS样品为例,如图7所示,反应前后样品等温吸附脱附曲线属于H3型迟滞回线,表明存在片状颗粒材料或缝形孔材料[28]。图8显示了碳酸化反应前后SS-1、CS样品比表面积及孔体积。由于灰渣在矿化过程中生成了致密的碳酸盐保护层,孔隙堵塞,造成反应后的SS-1和CS的比表面积和孔体积均小于反应前,这揭示了固废样品矿化封存CO2反应初期为快速化学反应控制阶段,反应后期为慢速扩散控制阶段的原因。
选择固废中CO2封存量最大的CS样品讨论样品碳酸化反应前后的微观形貌及微区化学组成的特征,SEM-EDS图谱见图9。CS原样形貌为无规则颗粒,碳酸化反应后外观形貌发生变化,形成了明显的块状小颗粒,堆积成块,呈现孔隙结构或缝隙结构,与等温吸附脱附曲线结果一致。结合EDS分析,证实该颗粒组成为CaCO3,与XRD、IR表征结构一致,证明样品发生碳酸化反应生成CaCO3,这也与文献[29]中得到结果一致。同时,结合EDS分析可发现,生成的微米级长柱物质组成复杂,为含有Si、Al、Ca的复合物,无规律贯穿在样品中,起到联结作用,增强样品的黏结性,从而有利于碳酸化灰渣在建材方向的资源化利用[30]。
2.2 不同工业固废湿法矿化封存CO2性能
2.2.1 工业固废湿法矿化封存CO2效果
图10为样品湿法碳酸化反应前后的热重曲线。由图10可知,新鲜样品CS、SS-1、SS-2在100~540 ℃有明显质量损失。该质量损失对应Ca(OH)2分解,表明其中可能含有Ca(OH)2,这与图6中红外谱图结果一致。新鲜FA中在100~540 ℃没有出现明显质量,可认为不含Ca(OH)2。碳酸化反应后,CS,SS-1、SS-2在550~950 ℃之间出现质量损失。该质量损失对应CaCO3的分解,印证了CaCO3的生成[10]。FA反应前后变化不明显,表示其具备较低的CO2封存能力。根据计算得出,CS、SS-1、SS-2、FA湿法碳酸化封存CO2性能依次降低。
2.2.2 工业固废湿法碳酸化反应前后结构表征
固废样品湿法碳酸化反应前后XRD图谱如图11所示。反应后SS-1、SS-2、CS中多为CaCO3的衍射峰,并存在少量Ca(OH)2衍射峰;而FA反应前后样品均未出现衍射峰。这表明SS-1、SS-2、CS发生碳酸化反应,形成CaCO3,但存在少量Ca(OH)2未反应。FA中的非晶相钙成分不能与CO2发生湿法碳酸化反应。此结果与样品湿法碳酸化反应前后的热重分析结果一致。
选取湿法矿化封存CO2性能最高的CS样品进行了SEM-EDS分析。如图12所示,CS原样的形貌是无规则的颗粒,湿法碳酸化反应后生成了规则的片状和菱形的立方体颗粒并聚集,或附着在原样的表面。经SEM-EDS分析,可确定该颗粒为CaCO3,表明电石渣中的CaO和Ca(OH)2会与CO2反应生成CaCO3。随着反应的进行,生成的CaCO3颗粒聚集、附着或覆盖在原样的表面,使内部的活性钙未能完全发生反应,所以反应后CS样品的XRD图谱中还存在Ca(OH)2的衍射峰。
2.3 工业固废干法与湿法矿化封存CO2效果差异及机理对比分析
2.3.1 工业固废干法与湿法矿化封存CO2效果差异性
对比各种工业固废干法与湿法碳酸化CO2封存量结果(见图3和图10)可发现:干法中SS-1、SS-2、CS的CO2封存量分别为70.78、25.99和382.21 g·kg−1;湿法较干法有大幅度提升,SS-1、SS-2、CS的CO2封存量分别提升为191.9、106.8和613.4 g·kg−1。干法中FA的CO2封存量为34.81 g·kg−1,大于湿法CO2封存量的8.4 g·kg−1。而李海红[31]用电厂脱硫石膏协同粉煤灰固碳,其CO2封存量为53.108 g·kg−1,表明粉煤灰的CO2封存能力较低。这相比YANG等[32]制备CaAc2-CaO吸附剂的CO2封存量299 g·kg−1,CS、SS-1和SS-2等固废用来封存CO2更具经济优势。结合各工业固废封存能力与新鲜样品中钙组分含量,计算了干湿法固废碳化率,结果如图13所示。在干湿法矿化封存CO2工艺中,各种固废的含钙成分均未完全反应,表明其含钙组分较难发生碳酸化反应。CS样品在干湿法工艺中碳化率均为最高,湿法中最高达到62.35%,表明其中主要含钙组分易于发生碳酸化反应。由上述XRD结果可知,CS样品中Ca主要以Ca(OH)2形式存在,因此,Ca(OH)2为主要活性物种。SS-2和FA中Ca(OH)2含量最低,即活性物种最少,故其封存量及碳化率均较低。干法工艺中SS-2碳化率最低为3.65%,湿法中FA样品碳化率最低为3%。
2.3.2 工业固废干法与湿法碳酸化反应机理对比分析
通过工业固废干法与湿法碳酸化反应前后结构变化可知,碳酸化反应主要是钙基活性物种与CO2的反应。干法碳酸化过程中,CO2直接与固废中的钙基活性物种反应,接触面积小,且随着产物覆盖在固废表面阻止反应的进一步发生,会导致CO2封存量较低;而湿法碳酸化过程中水充当反应介质,促进了固废中含钙组分和CO2在水中的分散和溶解,反应更加充分。然而,并非湿法碳酸化都优于干法。由图5和图10可以看出,反应前FA中没有出现衍射峰,FA中的钙物相是以非晶相存在。干法反应后,FA出现了少量的CaCO3衍射峰,而湿法后FA依然没有出现衍射峰。这表明,干法工艺中的高温环境可使FA中不稳定的非晶相钙成分活化,与CO2接触发生反应生成CaCO3;而湿法工艺温度较低,FA中非晶相钙成分不发生反应,故呈现很低的CO2封存能力。因此,对于活性物种反应性较差的固废,如粉煤灰,其在温度较高的干法碳酸化过程中具有相对较高的碳酸化性能。
干法中碳酸化反应过程比较简单,在高温条件下,CaO等钙物相与CO2直接接触发生反应[32],反应方程式如(5)~(7)所示。
$stringUtils.convertMath($!{formula.content}) $ (1) $ $stringUtils.convertMath($!{formula.content}) $ (2) $ $stringUtils.convertMath($!{formula.content}) $ (3) $ 湿法中碳酸化反应过程主要包括:1)CO2溶于水生成碳酸,碳酸电离生成
、$ {\rm{HCO}}_{\rm{3}}^{\rm{ - }}$ 和H+;2)固废中的钙基活性物质溶解,在孔隙中与$ {\rm{CO}}_{\rm{3}}^{{\rm{2 - }}}$ 发生反应并生成CaCO3沉淀[33]。反应方程式如式(8)~(15)所示。$ {\rm{CO}}_{\rm{3}}^{{\rm{2 - }}}$ $stringUtils.convertMath($!{formula.content}) $ (4) $ $stringUtils.convertMath($!{formula.content}) $ (5) $ $stringUtils.convertMath($!{formula.content}) $ (6) $ $stringUtils.convertMath($!{formula.content}) $ (7) $ $stringUtils.convertMath($!{formula.content}) $ (8) $ $stringUtils.convertMath($!{formula.content}) $ (9) $ $stringUtils.convertMath($!{formula.content}) $ (10) $ $stringUtils.convertMath($!{formula.content}) $ (11) $ 从反应机理可知,湿法碳酸化过程中,CO2溶于水形成碳酸根离子后,易与固废中溶出的钙镁离子发生反应。相比之下,干法碳酸化反应中,CO2直接与含钙组分发生反应,活化能较高,尤其与CaSiO3、Ca2SiO4的反应较难进行。因此,在固废干法封存CO2过程中,即使温度远高于湿法,其封存量仍然较湿法低。另外,由反应产物(SiO2、CaCO3等)可知,反应后的固废可用于生产经济价值较低的常规建筑材料。
3. 结论
1) 3类4种大宗工业固废干法矿化封存CO2的固碳规律为CS>SS-1>FA>SS-2。湿法矿化封存CO2固碳规律为CS>SS-1>SS-2>FA。FA干法固碳能力优于湿法,CS、SS-1、SS-2湿法固碳能力优于干法。因此,可进一步开展电石渣、钢渣湿法固碳工艺和粉煤灰干法固碳工艺研发及工业化应用研究。
2) TG、XRD、IR等分析表征结果及碳酸化反应机理研究表明,钙含量是影响不同工业固废CO2封存量的关键因素,含钙硅酸盐物相是重要因素。含钙组分中,CaO和Ca(OH)2是碳酸化反应的主要活性物种,2CaO·SiO2与CaO·SiO2活性相对较差。湿法碳酸化过程中水充当反应介质,可促进固废中钙镁组分和CO2在水中的溶解,使反应更加充分。FA非晶相钙成分不稳定,在干法碳酸化反应下的高温环境能与CO2发生反应生成CaCO3,在湿法较低温度下不能发生碳酸化反应,导致FA的干法CO2封存能力高于湿法。
3)矿化封存CO2后的灰渣可用于生产经济价值较低的常规建筑材料,亦可实现工业废弃物的资源化利用。
-
表 1 脱氮除磷功能菌活性测定条件
Table 1. Test conditions for activity of functional bacteria for nitrogen and phosphorus removal
功能菌 进水指标质量浓度/(mg·L-1) NH4+-N NO2--N NO3--N COD TP DO AnAOB 120 160 0 0 0 0 AOB 140 0 0 0 0 1.0±0.1 NOB 0 120 0 0 0 1.0±0.1 反硝化菌 0 40 60 120 0 0.5±0.1 除磷菌 0 40 60 120 20 1.0±0.1 表 2 污染物去除动力学参数
Table 2. Kinetic model parameters of pollutants removal
污染物指标 零级动力学 一级动力学 二级动力学 k0 R2 k1 R2 k2 R2 NH4+-N 25.896 1 0.961 2 0.081 4 0.998 9 2.492 2×10−4 0.982 1 TN 23.369 5 0.906 4 0.071 0 0.981 4 2.114 0×10−4 0.995 5 TP 1.472 3 0.899 9 0.073 0 0.968 9 3.120 0×10−3 0.930 4 COD 29.196 3 0.945 7 0.114 5 0.990 5 4.244 0×10−4 0.934 0 表 3 多样性指数表
Table 3. Diversity index table
Sample Ace指数 Chao指数 覆盖率/% Shannon指数 Simpson指数 Sobs指数 0# 292.81 302.03 99.8 6 2.04 0.25 243 1# 434.36 435.46 99.7 9 3.23 0.11 356 2# 357.19 355.87 99.8 7 2.98 0.15 312 -
[1] XU S W, LI Z M, CUI L G, et al. Price transmission in China's swine industry with an application of MCM[J]. Journal of Integrative Agriculture, 2012, 11(12): 2097-2106. doi: 10.1016/S2095-3119(12)60468-7 [2] 宿程远, 刘凡凡, 钟余, 等. 生态高负荷土地快速渗滤系统处理猪场废水的效能及微生态[J]. 环境科学, 2017, 38(10): 4271-4278. doi: 10.13227/j.hjkx.201611027 [3] 黄方玉, 邓良伟, 杨红男, 等. 温度对自养型同步脱氮工艺处理猪场废水厌氧消化液性能及微生物群落的影响[J]. 环境科学, 2019, 40(5): 2357-2367. doi: 10.13227/j.hjkx.201810126 [4] HAN Z F, MIAO Y, DONG J, et al. Enhanced nitrogen removal and microbial analysis in partially saturated constructed wetland for treating anaerobically digested swine wastewater[J]. Frontiers of Environmental Science & Engineering, 2019, 13(4): 1-11. [5] ZHOU S N, XU S J, JIANG Y S, et al. Enhancing nitrogen removal from anaerobically-digested swine wastewater through integration of Myriophyllum aquaticum and free nitrous acid-based technology in a constructed wetland[J]. Science of the Total Environment, 2021, 779: 146441-146441. doi: 10.1016/j.scitotenv.2021.146441 [6] CHEN J L, XU Y B, LI Y X, et al. Effective removal of nitrate by denitrification re-enforced with a two-stage anoxic/oxic (A/O) process from a digested piggery wastewater with a low C/N ratio[J]. Journal of Environmental Management, 2019, 240: 19-26. [7] 王子凌, 信欣, 王锣, 等. CANON工艺处理猪场沼液的启动及微生物种群结构分析[J]. 环境科学学报, 2018, 38(10): 3945-3953. doi: 10.13671/j.hjkxxb.2018.0207 [8] DONG Y B, LIN H, ZHANG X R. Simultaneous ammonia nitrogen and phosphorus removal from micro-polluted water by biological aerated filters with different media[J]. Water, Air, & Soil Pollution:An International Journal of Environmental Pollution, 2020, 231(3): 50-61. [9] WANG D, QIU L P, GUO C H, et al. Performance of polluted source water treatment by biological aerated filter (BAF) with zeolite, activated carbon and anthracite media[J]. Advanced Materials Research, 2013, 2577: 117-121. [10] 王亚宜, 黎力, 马骁, 等. 厌氧氨氧化菌的生物特性及CANON厌氧氨氧化工艺[J]. 环境科学学报, 2014, 34(6): 1362-1374. doi: 10.13671/j.hjkxxb.2014.0565 [11] LIN D, DENG L, WANG Q, et al. Adsorption removal of cyclopentanol generated from Fenton oxidation treatment industrial wastewater process with activated carbon fiber cloths[J]. IOP Conference Series:Earth and Environmental Science, 2020, 601(1): 012002. doi: 10.1088/1755-1315/601/1/012002 [12] LI Y W, LIU F, LI M, et al. Study on adsorption coupling photodegradation on hierarchical nanostructured g-C3N4/TiO2/activated carbon fiber composites for toluene removal[J]. Journal of Sol-Gel Science and Technology, 2020, 93(2): 1-17. [13] 龚丽影, 赵如金, 李一晖, 等. ACF-FBBR处理城市生活污水的研究[J]. 工业水处理, 2017, 37(11): 38-42. doi: 10.11894/1005-829x.2017.37(11).038 [14] GONG W J, LIANG H, LI W Z, et al. Selection and evaluation of biofilm carrier in anaerobic digestion treatment of cattle manure[J]. Energy, 2011, 36(5): 3572-3578. doi: 10.1016/j.energy.2011.03.068 [15] XIN X, LU H, YAO L, et al. Rapid formation of aerobic granular sludge and its mechanism in a continuous-flow bioreactor[J]. Applied Biochemistry and Biotechnology, 2017, 181(1): 424-433. doi: 10.1007/s12010-016-2221-6 [16] Sharma D, Taylor-Edmonds L, Andrews R C. Comparative assessment of ceramic media for drinking water biofiltration[J]. Water research, 2018, 128: 1-9. doi: 10.1016/j.watres.2017.10.019 [17] 国家环境保护总局. 水和废水监测分析方法[M]. 4版. 北京: 中国环境科学出版社, 2002. [18] 王衫允. 低氨氮浓度厌氧氨氧化工艺强化及颗粒污泥菌群特性研究[D]. 哈尔滨: 哈尔滨工业大学, 2016. [19] 王颖, 孙层层, 周际海, 等. 生物炭添加对半干旱区土壤细菌群落的影响[J]. 中国环境科学, 2019, 39(5): 2170-2179. doi: 10.3969/j.issn.1000-6923.2019.05.046 [20] YANG Z H, XIAO Y, ZENG G M, et al. Comparison of methods for total community DNA extraction and purification from compost[J]. Applied Microbiology and Biotechnology, 2007, 74(4): 918-925. doi: 10.1007/s00253-006-0704-z [21] 秦嘉伟, 信欣, 鲁航, 等. 连续流SNAD工艺处理猪场沼液启动过程中微生物种群演变及脱氮性能[J]. 环境科学, 2020, 41(5): 2349-2357. doi: 10.13227/j.hjkx.201910018 [22] 钟乐, 夏磊, 丁杰. 电解强化人工湿地处理低碳氮比污水的效能及机制[J]. 环境科学学报, 2020, 40(10): 3590-3597. doi: 10.13671/j.hjkxxb.2020.0387 [23] 曹新垲, 杨琦, 郝春博. 厌氧污泥降解萘动力学与生物多样性研究[J]. 环境科学, 2012, 33(10): 3535-3541. doi: 10.13227/j.hjkx.2012.10.041 [24] 郑照明, 杨函青, 马静, 等. SNAD反应器中颗粒污泥和絮体污泥脱氮特性[J]. 中国环境科学, 2015, 35(10): 2996-3002. doi: 10.3969/j.issn.1000-6923.2015.10.016 [25] 张杰, 成朔, 李冬, 等. AUSB中置曝气启动连续流全程自养脱氮工艺[J]. 哈尔滨工业大学学报, 2018, 50(2): 1-7. doi: 10.11918/j.issn.0367-6234.201706066 [26] 王元月, 魏源送, 张树军. 厌氧氨氧化技术处理高浓度氨氮工业废水的可行性分析[J]. 环境科学学报, 2013, 33(9): 2359-2368. doi: 10.13671/j.hjkxxb.2013.09.018 [27] 郑照明, 李军, 马静, 等. SNAD生物膜厌氧氨氧化活性的氨氮抑制动力学研究[J]. 中国环境科学, 2016, 36(10): 2957-2963. doi: 10.3969/j.issn.1000-6923.2016.10.015 [28] 谌莉莎. 活性炭纤维吸附性能及其在水产养殖水体的处理研究[D]. 北京: 北京化工大学, 2012. [29] Fernández I, Dosta J, Fajardo C, et al. Short- and long-term effects of ammonium and nitrite on the Anammox process[J]. Journal of Environmental Management, 2012, 95: S170-S174. doi: 10.1016/j.jenvman.2010.10.044 [30] CHEN C J, HUANG X X, LEI C X, et al. Effect of organic matter strength on anammox for modified greenhouse turtle breeding wastewater treatment[J]. Bioresource Technology, 2013, 148: 172-179. doi: 10.1016/j.biortech.2013.08.132 [31] XIA Y, WANG Y B, WANG Y, et al. Cellular adhesiveness and cellulolytic capacity in Anaerolineae revealed by omics-based genome interpretation[J]. Biotechnology for biofuels, 2016, 9(1): 111. doi: 10.1186/s13068-016-0524-z [32] XIN X, LIU Q, WERNER D, et al. Start-up strategy and bacterial community analysis of SNAD process for treating anaerobic digester liquor of swine wastewater (ADLSW) in a continuous-flow biofilm reactor[J]. Water and Environment Journal, 2020, 34: 661-671. doi: 10.1111/wej.12568 [33] SUI Q W, LIU C, ZHANG J Y, et al. Response of nitrite accumulation and microbial community to free ammonia and dissolved oxygen treatment of high ammonium wastewater[J]. Applied Microbiology and Biotechnology, 2016, 100(9): 4177-4187. doi: 10.1007/s00253-015-7183-z [34] Tomáš V, Kari T S, Petr B. Potential of cometabolic transformation of polysaccharides and lignin in lignocellulose by soil Actinobacteria[J]. PLoS ONE, 2017, 9(2): e89108. [35] 李建婷, 纪树兰, 刘志培, 等. 16S rDNA克隆文库方法分析好氧颗粒污泥细菌组成[J]. 环境科学研究, 2009, 22(10): 1218-1223. [36] 鲁轩余, 胡哲太, 孙培德, 等. 纳米氧化锌对EBPR系统的长期作用机制研究: 从宏观到微观[J]. 环境科学学报, 2016, 36(11): 4053-4061. [37] XIN X, LIU S Q, QIN J W, et al. Performances of simultaneous enhanced removal of nitrogen and phosphorus via biological aerated filter with biochar as fillers under low dissolved oxygen for digested swine wastewater treatment[J]. Bioprocess and Biosystems Engineering, 2021, 44(8): 1-13. [38] 陈琳. 上流式厌氧生物膜与生物接触氧化耦合工艺处理猪场废水的研究[D]. 南昌: 南昌大学, 2011. [39] 赵伟华, 王梅香, 李健伟, 等. A2O工艺和A2O+BCO工艺的脱氮除磷性能比较[J]. 中国环境科学, 2019, 39(3): 994-999. doi: 10.3969/j.issn.1000-6923.2019.03.012 -