不同航班季节下民航飞机LTO循环颗粒物排放特性—以北京首都国际机场为例

曲春刚, 匡家骏, 晏嘉伟. 不同航班季节下民航飞机LTO循环颗粒物排放特性—以北京首都国际机场为例[J]. 环境工程学报, 2022, 16(8): 2640-2652. doi: 10.12030/j.cjee.202112212
引用本文: 曲春刚, 匡家骏, 晏嘉伟. 不同航班季节下民航飞机LTO循环颗粒物排放特性—以北京首都国际机场为例[J]. 环境工程学报, 2022, 16(8): 2640-2652. doi: 10.12030/j.cjee.202112212
QU Chungang, KUANG Jiajun, YAN Jiawei. Studies on LTO cyclic particulate emission characteristics of civil aircraft in different flight seasons-A case study of Beijing Capital International Airport[J]. Chinese Journal of Environmental Engineering, 2022, 16(8): 2640-2652. doi: 10.12030/j.cjee.202112212
Citation: QU Chungang, KUANG Jiajun, YAN Jiawei. Studies on LTO cyclic particulate emission characteristics of civil aircraft in different flight seasons-A case study of Beijing Capital International Airport[J]. Chinese Journal of Environmental Engineering, 2022, 16(8): 2640-2652. doi: 10.12030/j.cjee.202112212

不同航班季节下民航飞机LTO循环颗粒物排放特性—以北京首都国际机场为例

    作者简介: 曲春刚(1979—),男,硕士,副教授,pqbird@sina.com
    通讯作者: 曲春刚(1979—),男,硕士,副教授,pqbird@sina.com
  • 基金项目:
    中央高校基本科研业务费项目(2020YJS003);中国民航大学开放基金资助项目(000031020102)
  • 中图分类号: X513;V235

Studies on LTO cyclic particulate emission characteristics of civil aircraft in different flight seasons-A case study of Beijing Capital International Airport

    Corresponding author: QU Chungang, pqbird@sina.com
  • 摘要: 飞机的颗粒物排放会造成环境影响。为评估不同航班季节下颗粒污染物排放水平,采用基于黑碳形成氧化法(FOX)的改进计算方法对非挥发性颗粒物(PMnvol)排放指数进行了估算。使用B777、A320、A321、A330、B738机型历史QAR数据中空气流量、燃油流量等发动机参数,计算不同航班季节下多个LTO循环颗粒污染物排放指数及排放量。结果表明:在北方夏季气温较冬季大幅上升时,尽管PMnvol排放指数呈下降趋势,但受燃油消耗率增加的影响,A320、A321、B738等主要机型颗粒物排放量显著升高,夏秋航季单次LTO循环较冬春航季分别升高了15.3、13.8、13.4 g,其涨幅为18.6%、21.3%、17.7%;B777等推力较大机型在夏秋季及冬春季燃油消耗率变化不大,夏秋航季单次LTO循环颗粒物排放量较冬春航季略低,降幅仅3%,约4.1 g;以北京首都国际机场实际起降数据为例,以上主要机型夏秋航季较冬春航季颗粒物总排放量分别增加了0.5、1.6、1.7、1.6、3.7 t。本研究表明,各机型不同航季下颗粒污染物排放差异显著,其影响不可忽视。以上飞机颗粒物排放特性分析结果可为民航业建立完整排放清单,实现航空发动机污染的精确管控提供参考。
  • 化学镀铜工艺是指在无外加电流的条件下,利用合适的还原剂(常用次磷酸盐),使溶液中的铜离子在具有催化活性的基体表面还原沉积出金属铜,形成铜镀层的一种工艺[1-3]。近年来,化学镀铜工艺在表面处理行业中所占的地位在不断上升,在机械工业、航空航天、电子工业等各行各业都有着越来越广泛的应用[4]。在化学镀铜工艺中,会产生大量的化学镀铜废水,将这些废水进行处理和回收,对保护生态环境,变废为宝,提高经济效益,尤为重要[5]

    化学镀铜废水主要来源于清洗零部件时所产生的清洗废水,因此,也可以称为化学镀铜清洗废水,其中主要含有铜离子和次磷酸盐等污染物[6]。过量的铜会刺激人类的消化系统,引起腹痛、呕吐等,严重时可造成中毒。而含铜废水进入水体后,成为持久性污染物,危机植物生长,影响水产养殖。当进入土壤时,会在土壤和作物中富集,经过一系列的环境迁移转化最终进入食物链,对人类健康产生威胁[7]。与正磷酸盐比,次磷酸盐由于其溶解度大且难与沉淀剂反应形成沉淀,导致水体富营养化严重的同时亦造成磷资源的流失[8]。故次磷的去除通常需氧化成正磷,再加入沉淀剂将正磷彻底去除或回收[9]。因此,对化学镀铜清洗废水的处理并回收磷和铜成为当前研究热点之一。

    目前,含铜废水处理方法有很多,例如物化沉淀法、膜分离法、吸附法、混凝法和电解法等[10-11]。其中电解法可以使铜离子以金属铜的形式沉积在阴极上,实现了金属铜的回收[12]。除电解法外,其他方法只改变了铜离子存在形态,使铜离子发生迁移,但污染并没有彻底消除。而采用电解法时,当溶液为偏碱性条件下,铜离子很容易水解生成铜的氧化物,累积在阳极或生成沉淀物,使其难以在阴极进行电化学沉积回收[13]。因此,在电解法沉积铜离子实现阴极回收金属铜时,控制溶液的pH较为重要。

    光电催化法是一种将光化学和电化学法相结合的方法,通过对半导体光催化剂施加外加偏压作用实现光生电子和光生空穴的有效分离,有效促进自由基的生成,提升污染物的降解效果[14]。光电催化作为高级氧化技术研究热点之一,是一种不仅能产生强氧化性活性物种实现污染物氧化降解,同时也能利用光生电子的还原能力实现阴极还原回收重金属的有效方法[15]。具有运行成本较低、温度和压力适应范围广、可实现有机物矿化且无二次污染等优点,在环境保护水处理领域越来受到关注[16]。二氧化钛(TiO2)纳米管光电极具有高度有序、比表面积大、电池容量高及量子化学效应强等优点,被广泛应用于纳米微电子、光伏器件、水分解产氢、环境污染物降解等领域[17-19]。有研究[20]表明,利用TiO2纳米管电极作为光阳极可有效实现铜氰络合物的氧化破络合同时电还原回收金属铜。

    本研究采用电化学阳极氧化法制得的TiO2纳米管电极为光阳极和钛片(Ti)为阴极,在模拟太阳光(AM 1.5)照射进行光电催化处理次磷酸根离子(H2PO2)和重金属铜离子(Cu2+)同时回收金属铜(Cu)。对TiO2纳米管电极进行了表征分析;对比分析了光电催化(PEC)、电催化(EC)和光催化(PC)体系对次磷氧化和Cu回收效果;考察了电压、初始PH、电解质种类对PEC体系下次磷氧化和Cu回收效率的影响,并进一步探讨该体系的反应机理。本研究结果可为含次磷和重金属铜的工业废水资源化处理提供参考。

    电极材料钛片购自北京恒力钛工贸公司。实验用次磷酸钠(NaH2PO2·H2O)、亚磷酸钠(Na2HPO3·5H2O)、硫酸铵((NH4)2SO4)、氟化铵(NH4F)、丙三醇(C3H8O3)、硫酸铜(CuSO4)、硝酸(HNO3)、氢氟酸 (HF)、氢氧化钠(NaOH)、硫酸(H2SO4)、过硫酸钾(K2S2O8)、抗坏血酸(C6H8O6)、钼酸铵((NH4)6Mo7O24·4H2O)、酒石酸锑钾(KSbC4H4O7·1/2H2O)、硫酸钠(Na2SO4)、高氯酸钠(NaClO4)、氯化钠(NaCl)、叔丁醇(C4H10O)等均购自国药集团化学试剂公司,均为分析纯。

    光电催化氧化装置如图1所示,其中包括石英反应器(长5.0 cm,宽5.0 cm,高6.0 cm),150 W的氙灯(Zolix instruments Co,China),直流电源(DH1718E-4,北京大华仪器公司,中国),磁力搅拌器(MS-H380-Pro,北京大龙兴创实验仪器有限公司,中国)。在氙灯光源处安装了一个AM 1.5滤光片,使其照射到反应器内阳极的光为模拟的太阳光。阳极为TiO2纳米管电极,阴极为钛片(长5.0 cm,宽3.0 cm,厚0.2 mm)。

    图 1  光电催化氧化实验装置示意图
    Figure 1.  Schematic diagram of the photoelectrocatalytic oxidation system

    1) TiO2纳米管电极的制备。采用阳极氧化法制备电极,制备方法参考文献[20]。钛片预处理:将钛片分别在无水乙醇和丙酮中超声清洗,后用不同目数金相砂纸(200、400、600、1000 目)依次打磨,去离子水清洗,将清洗后的钛片置于HF/HNO3/H2O体积比为1∶4∶5 的混合溶液中浸泡1 min,使钛片化学抛光。电解质制备方法:配制100 g质量比为0.5% NH4F + 1% (NH4)2SO4+ 90% C3H8O3的混合水溶液,即为所需电解质电解质溶液。TiO2纳米管电极制备方法:阳极为预处理钛片,阴极为铂丝,两级间距为20 mm,垂直插入电解质中,电压为20 V,室温下阳极氧化10 h,将氧化后的电极放入马弗炉中450 ºC热处理2 h,升温程序为5 ºC·min−1

    2)降解实验。含次磷酸根离子和重金属铜离子的化学镀铜模拟废水制备方法如下:配制1.0 mmol·L−1的NaH2PO2溶液;将CuSO4溶于其中使Cu2+浓度为0.5 mmol·L−1,即为所需化学镀铜模拟废水。取上述溶液120 mL置于反应器中,开启直流电源在两极间施以一定的电压,同时开启氙灯,反应时间为180 min,取样时间为0、30、60、90、120、150、180 min。反应液以10 mmol·L−1的Na2SO4为电解质。光催化反应时只开启氙灯,两极之间不施加电压。电化学反应时只开启直流电源。

    3)表征及分析方法。电极表面形态通过场发射扫描电镜(SEM,SU-8010,日本日立公司)进行观察;晶体结构通过X射线衍射(XRD,XPert Pro MPD,荷兰帕纳科分析仪器有限公司)进行表征,所用的仪器是配有石墨晶体单色器的Rigaku D/max-B衍射仪,2θ扫描范围为10°~90°,扫描速率为0.5°·min−1,加速电压和工作电流分别为30 kV和30 mA;阴极回收Cu价态通过X射线光电子能谱仪(XPS,PHI Quantera SXM,日本ULVAC-PHI 公司)进行测定;电子自旋共振波谱仪(ESR,A300−10/12,德国布鲁克有限公司)用来检测自由基的生成。总磷的测定方法为采用国标过硫酸钾氧化-钼酸铵分光光度法;正磷的测定方法为采用国标钼酸铵分光光度法;次磷和亚磷采用离子色谱(IC,ICS-1500,美国戴安公司)测定,所用色谱柱为AS23分析柱和AG23保护住,淋洗液为4.5 mmol·L−1的Na2CO3和0.8 mmol·L−1的NaHCO3溶液,流速为1.0 mL·min−1;重金属Cu含量采用电感耦合等离子体发射光谱仪(ICP-OES,P700,美国安捷伦科技公司)来测定。

    图2(a)和图2(b)分别是Ti基底和TiO2纳米管电极的SEM正面图像。可见,Ti基底表面平整,经阳极氧化法制备的TiO2纳米管电极上,纳米管阵列高度有序、管径均匀、排列整齐的在Ti基底上呈现。图2(c)是TiO2纳米管电极的SEM截面图像,可以发现电极截面呈现明显的管状结构。由图2(d)可见,TiO2纳米管电极在2θ在25.3°和48°处出现明显的衍射峰。这表明TiO2呈现锐钛矿结构。

    图 2  Ti基底和TiO2纳米管电极的SEM图像和XRD谱图
    Figure 2.  SEM images and XRD patterns of Ti substrate and TiO2 nanotube arrays electrode

    图3(a)分别对比了光电催化(PEC)、电催化(EC)和光催化(PC)体系对次磷氧化和Cu回收效果的影响。结果表明:PEC体系效果最好,当电压为2.0 V,反应时间180 min,PEC、EC、PC 3个体系对次磷的氧化率分别为100%、11%和0,Cu的回收率分别是97%、7%和0。图3(b)反映了反应180 min时Cu在溶液、阳极、阴极的分布情况。结果证明,回收的Cu均沉积在阴极上。通过对不同体系进行比较,单独EC或者单独PC均不能实现高效率的次磷氧化和Cu回收;当电化学作用和光催化作用联合即PEC体系时,可以产生很好的协同作用。这是因为通过光激发TiO2半导体产生光生空穴与电子,外加偏压促进了空穴和电子的高效分离,大大提高了反应的氧化还原作用。

    图 3  TiO2纳米管光阳极在光电催化(PEC)、电催化(EC)和光催化(PC)下对次磷氧化与Cu回收效果对比
    Figure 3.  Hypophosphite oxidation and Cu2+ ions recovery via photoelectrocatalytic (PEC), electrocatalytic (EC), and photocatalytic (PC) processes using TiO2 nanotube arrays photoanode

    图4反映了TiO2纳米管电极作为光阳极在2.0 V下PEC体系次磷氧化过程中间产物的生成和P元素的平衡过程。可以看出,随着反应的进行,总磷的浓度基本保持不变,而亚磷酸盐的浓度随反应时间延长先升高后降低,正磷酸盐的浓度则一直呈现升高的趋势。由此可见,在次磷氧化过程中,次磷(P为+1价)先被氧化成为亚磷(P为+3价),进而最终被氧化成为正磷(P为+5价),且随着反应的进行,总磷浓度基本不变。

    图 4  在电压为2.0 V条件下PEC体系次磷氧化过程中间产物的生成和P元素平衡
    Figure 4.  Generated intermediates and P mass balance in the PEC process for hypophosphite oxidation at 2.0 V bias potential

    不同电压条件下TiO2纳米管电极作为光阳极的PEC体系对次磷氧化和Cu回收效率的影响如图5所示。随着电压的增大及反应时间的延长,次磷氧化和Cu回收的效率逐渐升高。当电压为2.0 V、反应时间为180 min时,1 mmol·L−1的次磷全部被氧化,其中,84%以正磷形式存在,剩下的16%以亚磷形式存在并且呈现继续下降趋势,同时0.5 mmol·L−1的Cu 全部以金属形式在阴极沉积回收。而当电压增加至2.5 V时,效果反而变差。其原因可能是,随着电压的增加,阳极析氧和阴极析氢等副反应越来越剧烈,从而抑制了污染物在电极表面的迁移,导致电极表面电流效率的降低以及能量的大量损耗[21]

    图 5  外加偏压对TiO2纳米管电极作为光阳极下PEC对次磷氧化与Cu回收效果的影响
    Figure 5.  Effect of applied voltages on hypophosphite oxidation and Cu2+ ions recovery via PEC process using TiO2 nanotube arrays photoanode

    反应溶液的初始pH为4.9,由于Cu2+存在,Cu(OH)2的溶度积为2.2×10−20,由此计算得出,在本研究中pH大于5.8后会产生Cu(OH)2沉淀。因此,本研究利用H2SO4的稀释溶液调节溶液的初始pH为4.0、3.0、2.0、1.0进行对比实验。如图6所示,当溶液初始pH为4.9,即不用H2SO4调节时,对次磷氧化和Cu回收效果最好;当溶液初始pH降低后,次磷氧化和Cu回收效果均受到明显的抑制,同时,次磷氧化过程中生成的亚磷以及正磷也受到了抑制。由图7可以看出,随着反应的进行,pH均会下降。这说明反应过程中有大量氢离子释放,推测是因为在次磷最终氧化成为正磷的过程中,均会有氢离子释放[8]。pH能影响水中溶解氧(DO)含量[22],随着pH降低,DO含量减少,从而影响了·OH的生成,且在酸性条件下,·OH更易反应生成活性较弱的·OOH[23],因此,会影响体系次磷氧化的效率。此外,在单独电沉积Cu2+时由于阴极析发生氢反应造成溶液偏碱性,Cu2+水解生成铜的氧化物在阳极沉积生成沉淀物[13],而次磷氧化的同时在溶液中释放氢离子可以降低溶液pH,克服了Cu2+难以在阴极进行电化学沉积回收金属Cu的问题,使Cu2+有效沉积在阴极回收为金属Cu。

    图 6  溶液初始pH对TiO2纳米管电极作为光阳极下PEC对次磷氧化与Cu回收效果的影响
    Figure 6.  Effect of initial pH on hypophosphite oxidation and Cu2+ ions recovery via PEC process using TiO2 nanotube arrays photoanode
    图 7  不同初始值时溶液pH的变化
    Figure 7.  Changes in the solution pH at different initial pH

    图8所示,溶液采用的电解质不同时对次磷氧化和Cu回收效果也有影响。当电解质为Na2SO4和NaClO4时,反应效率基本无明显差异,但当电解质为NaCl时,反应效率明显提高,1 mmol·L−1次磷全部被氧化为正磷。进一步详细探讨了NaCl电解质在反应中的作用。如图9所示,在不同浓度NaCl对次磷氧化和Cu回收效果影响实验中,NaCl浓度越高,效果越高。其原因为,在PEC体系中,反应中的氯离子可以通过一系列反应生成活性氯(式(1)~式(3))[24]。在阳极表面生成的活性氯以氯气(Cl2)、次氯酸(HClO)和次氯酸根(ClO)等形式在溶液中存在。图10是在不同NaCl浓度反应体系中,活性氯浓度的测定结果,NaCl浓度越高时,活性氯生成量越多。此外,有文献报道,在紫外光照射下,活性氯有利于进一步产生羟基自由基(·OH)和氯自由基(Cl·)(式(4))[25-26]。因此,当采用NaCl作为电解质时,氯离子的加入最终会促进以上自由基的产生,强化了反应效率。

    图 8  电解质种类对TiO2纳米管电极作为光阳极下PEC对次磷氧化与Cu回收效果的影响
    Figure 8.  Effect of electrolyte type on hypophosphite oxidation and Cu2+ ions recovery via PEC process using TiO2 nanotube arrays photoanode
    图 9  不同浓度NaCl对TiO2纳米管电极作为光阳极下PEC对次磷氧化与Cu回收效果的影响
    Figure 9.  Effect of different NaCl concentrations on hypophosphite oxidation and Cu2+ ions recovery via PEC process using TiO2 nanotube arrays photoanode
    图 10  不同浓度NaCl在反应过程中活性氯的产量
    Figure 10.  The amount of reactive chlorine produced in the PEC process with different concentrations of NaCl
    2ClCl2+2e (1)
    Cl2+H2OHClO+H++Cl (2)
    HClOH++ClO (3)
    HClO+hνOH+Cl (4)

    为了探究反应过程中PEC体系下存在的主要活性物种,通过加入不同浓度的·OH自由基淬灭剂叔丁醇(TBA)来探究·OH对次磷氧化的作用。如图11(a)所示,考察了TBA对TiO2纳米管电极作为光阳极下PEC对次磷氧化与Cu回收效率的影响。结果表明:TBA对PEC体系中次磷氧化有明显的抑制作用,当TBA浓度为10 mmol·L−1时,次磷的去除率降低到60%,而TBA的加入对Cu回收无明显影响。这一结果表明,·OH 自由基对次磷氧化起重要作用。ESR检测结果也进一步验证了这一结果。如图11(b)所示,使用DMPO为捕获剂,在反应过程中观测到了特征的 DMPO-·OH络合物的信号,并随反应时间的延长而显著增强。以上结果表明,·OH自由基是次磷氧化的主要活性物种。

    图 11  (a) 不同浓度TBA对TiO2纳米管电极作为光阳极下PEC对次磷氧化与Cu回收效果的影响以及反应过程中的DMPO−•OH的ESR图谱
    Figure 11.  Effect of different TBA concentrations on hypophosphite oxidation and Cu2+ ions recovery via PEC process using TiO2 nanotube arrays photoanode, and ESR signals of DMPO−•OH

    图12是反应过程中阴极钛片上Cu沉积物的XPS谱图。当反应时间分别为1、2、3 h时,Cu2p3/2的峰值在932.68 eV处出现,主要对应金属Cu的特征峰,且随反应的进行峰值强度有所增强,且并未检测到其他价态的Cu。由此证明在本研究中阴极钛片上回收的是金属Cu。

    图 12  不同反应时间阴极沉积物的XPS图谱
    Figure 12.  XPS spectra of deposits on cathode films at different reaction time

    1)通过PEC、EC、PC 3个体系对次磷氧化和Cu回收效率比较,发现单独EC或者PC均不能实现高效率的次磷氧化和Cu回收,当电化学和光催化联合(PEC体系)时,可以产生很好的协同效果。

    2)对于PEC体系中次磷氧化和Cu的回收效果,在电压为2.0 V、反应时间为180 min时1 mmol·L−1的次磷全部被氧化且84%以正磷形式存在,另外16%以亚磷形式存在并且呈现继续下降趋势,同时0.5 mmol·L−1的Cu 100%以金属形式在阴极沉积回收。当溶液初始pH为4.9时,采用NaCl作为电解质,可促进·OH的产生,1 mmol·L−1次磷全部被氧化为正磷,提高了反应效率。

    3)在单独电沉积Cu2+时,由于阴极发生析氢反应造成溶液偏碱性,Cu2+水解生成铜的氧化物在阳极沉积生成沉淀物,而次磷氧化的同时在溶液中释放氢离子可以降低溶液pH,克服了Cu2+难以在阴极进行电化学沉积回收金属Cu的问题,使Cu2+有效沉积在阴极回收为金属Cu。

    4) TBA对PEC体系中次磷的氧化有明显的抑制作用,且对Cu回收无明显影响,表明·OH为实现次磷氧化的主要活性物种。

    5)采用光电催化技术处理含次磷和重金属铜废水,废水中的Cu2+在阴极电沉积生成金属Cu回收,而废水中次磷氧化后形成正磷,然后加入钙盐或铁盐等与正磷反应生成沉淀将磷在废水中去除同时回收磷。

  • 图 1  不同航季下颗粒物排放特征趋势估算流程

    Figure 1.  Estimation process of particulate emission characteristics trend in different sailing seasons

    图 2  标准LTO循环过程图

    Figure 2.  Standard LTO cycle diagram

    图 3  GE90型发动机不同航季下LTO循环PMnvol排放指数

    Figure 3.  PMnvol emission indexs of LTO cycle of GE90 engine in different seasons

    图 4  不同航季下典型机型主发动机LTO循环PMnvol排放指数

    Figure 4.  Typical aircraft PMnvol emission index of LTO cycle in different seasons

    图 5  不同航季下各机型LTO循环PMnvol平均排放指数

    Figure 5.  Typical aircraft average emission index of PMnvol in LTO cycle in different sailing seasons

    图 6  不同航季下LTO循环单次航班颗粒污染物排放量

    Figure 6.  LTO cycle single flight particle pollutant emission under different seasons

    图 7  首都机场机型占比

    Figure 7.  Proportion of types in Beijing Capital Airport

    图 8  首都国际机场不同航季PM总排放量及日均排放量

    Figure 8.  Total PM emissions and daily emissions in different seasons of Beijing Capital International Airport

    表 1  PMvol-FSC与PMvol-FuelOrganics排放指数

    Table 1.  PMvol-FSC and PMvol-FuelOrganics emission index

    发动机型号工作状态推力设置HC排放指数PMvol-FuelOrganics排放指数PMvol-FSC
    GE90慢车7%4.2426.1648.96
    GE90进近30%0.063.37548.96
    GE90爬升85%0.032.2848.96
    GE90起飞100%0.044.648.96
    V2500慢车7%0.110.6848.96
    V2500进近30%0.063.37548.96
    V2500爬升85%0.043.0448.96
    V2500起飞100%0.044.648.96
    CFM-56慢车7%3.7623.248.96
    CFM-56进近30%0.084.548.96
    CFM-56爬升85%0.032.2848.96
    CFM-56起飞100%0.033.4548.96
    V2522慢车7%0.140.8648.96
    V2522进近30%0.073.9448.96
    V2522爬升85%0.043.0448.96
    V2522起飞100%0.033.4548.96
    PW4000慢车7%4.6628.7548.96
    PW4000进近30%0.073.9448.96
    PW4000爬升85%0.043.0448.96
    PW4000起飞100%0.033.4548.96
    发动机型号工作状态推力设置HC排放指数PMvol-FuelOrganics排放指数PMvol-FSC
    GE90慢车7%4.2426.1648.96
    GE90进近30%0.063.37548.96
    GE90爬升85%0.032.2848.96
    GE90起飞100%0.044.648.96
    V2500慢车7%0.110.6848.96
    V2500进近30%0.063.37548.96
    V2500爬升85%0.043.0448.96
    V2500起飞100%0.044.648.96
    CFM-56慢车7%3.7623.248.96
    CFM-56进近30%0.084.548.96
    CFM-56爬升85%0.032.2848.96
    CFM-56起飞100%0.033.4548.96
    V2522慢车7%0.140.8648.96
    V2522进近30%0.073.9448.96
    V2522爬升85%0.043.0448.96
    V2522起飞100%0.033.4548.96
    PW4000慢车7%4.6628.7548.96
    PW4000进近30%0.073.9448.96
    PW4000爬升85%0.043.0448.96
    PW4000起飞100%0.033.4548.96
    下载: 导出CSV
  • [1] Airbus. Global market forecast 2017−2036, 2017[EB/OL]. https://afngrupo.com/en/global-market-forecast-2017-2036/
    [2] 曹惠玲, 汤鑫豪, 苗佳禾. 基于QAR数据的发动机LTO阶段氮氧化物排放量计算与分析[J]. 环境科学学报, 2018, 38(10): 3900-3904. doi: 10.13671/j.hjkxxb.2018.0198
    [3] US EPA. The Benefits and Costs of the Clean Air Act: 1990 to 2020, Final report of US Environmental Protection Agency Office of Air and Radiation[EB/OL]. 2011. https://www.epa.gov/clean-air-act-overview/benefits-and-costs-clean-air-act-1990-2020-second-prospective-study.
    [4] WHO. Health Risks of Particulate Matter from Long-range Transboundary Air Pollution[EB/OL]. (2006-01-01). 2006. https://www.who.int/publications/i/item/E88189
    [5] 中国民用航空局. 关于对《航空涡轮发动机及航空器排放规定》修订草案征求意见的通知[EB/OL]. (2020-11-16). http://www.caac.gov.cn/HDJL/YJZJ/202011/t20201116_205252.html
    [6] ICAO. Airport Air Quality Manual [R] Montreal: International Civil Aviation Organization, 2020.
    [7] 闫国华, 周利敏, 张青. 基于LTO循环的航空发动机颗粒物排放计算方法及应用[J]. 安全与环境学报, 2016, 16(2): 246-249. doi: 10.13637/j.issn.1009-6094.2016.02.048
    [8] 魏志强, 王超. 航班飞行各阶段污染物排放量估算方法[J]. 交通运输工程学报, 2010, 10(6): 48-52. doi: 10.3969/j.issn.1671-1637.2010.06.008
    [9] 孙见忠, 左洪福, 刘鹏鹏, 等. 航空发动机污染物排放量估算方法[J]. 交通运输工程学报, 2012, 12(2): 53-61. doi: 10.3969/j.issn.1671-1637.2012.02.009
    [10] 韩博, 何真, 张铎, 等. 粤港澳大湾区飞机LTO污染排放因子及排放清单[J]. 中国环境科学, 2020, 40(12): 5182-5190. doi: 10.19674/j.cnki.issn1000-6923.2020.0570
    [11] YANG X W, CHENG S Y, LANG J L, et al. Characterization of aircraft emissions and air quality impacts of an international airport[J]. Journal of Environmental Sciences, 2018, 72(10): 198-207.
    [12] WINTHER M, KOUSGAARD U, ELLERMANN T, et al. Emissions of NOx, particle mass and particle numbers from aircraft main engines, APU's and handling equipment at Copenhagen Airport[J]. Atmospheric Environment, 2015, 100: 218-229. doi: 10.1016/j.atmosenv.2014.10.045
    [13] STETTLER M, EASTHAM S, BARRETT S. Air quality and public health impacts of UK airports. Part I: Emissions[J]. Atmospheric Environment, 2011, 45(31): 5415-5424. doi: 10.1016/j.atmosenv.2011.07.012
    [14] STETTLER M, BOIES A M, PETZOLD A, et al. Global civil aviation black carbon emissions[J]. Environmental Science & Technology, 2013, 47(18): 10397-10404.
    [15] 曹惠玲, 李玉铭, 汤鑫豪. 基于QAR数据的飞机全航段黑碳排放量计算与分析[J]. 环境科学学报, 2020, 40(6): 1951-1957. doi: 10.13671/j.hjkxxb.2020.0047
    [16] 曹惠玲, 晏嘉伟, 李玉铭. 结合QAR数据的全航段排放估算及其对飞行成本的影响研究[J]. 环境科学学报, 2021, 41(11): 4439-4448. doi: 10.13671/j.hjkxxb.2021.0261
    [17] 孙志杰. 航空发动机燃烧室设计与优化方法研究[D]. 南京: 南京航空航天大学, 2020. DOI:10.27239/d.cnki.gnhhu.2020.001604.
    [18] 中国民用航空总局. 民用航空预先飞行计划管理办法[EB/OL]. (2006-04-03). http://www.gov.cn/gongbao/content/2007/content_621251.htm.
    [19] 杜方舟, 孙有朝, 郭媛媛, 等. 基于数据的航空发动机排气温度裕度及剩余寿命计算方法[J]. 航空动力学报, 2020, 35(11): 2456-2464. doi: 10.13224/j.cnki.jasp.2020.11.023
    [20] ICAO. Engine Exhaust Emission Data Bank[EB/OL]. https://www.easa.europa.eu/domains/environment/icao-aircraft-engine-emissions-databank.
    [21] 韩博, 王立婕, 赵芸婷, 等. 郑州新郑国际机场本地化排放因子与排放清单[J/OL]. 环境科学学报: 1-11[2022-08-15]. DOI: 10.13671/j.hjkxxb.2022.0054.
    [22] 王瑞鹏, 周颖, 程水源, 等. 华北地区典型机场清单建立及空气质量影响[J]. 中国环境科学, 2020, 40(4): 1468-1476. doi: 10.19674/j.cnki.issn1000-6923.2020.0164
    [23] 曹惠玲, 苗佳禾, 苗凌云, 等. 基于实际飞行数据的首都机场飞机发动机日排放清单估算方法研究[J]. 环境科学学报, 2019, 39(8): 2699-2707. doi: 10.13671/j.hjkxxb.2019.0048
    [24] 韩博, 孔魏凯, 姚婷玮, 等. 京津冀机场群飞机LTO大气污染物排放清单[J]. 环境科学, 2020, 41(3): 1143-1150. doi: 10.13227/j.hjkx.201908199
  • 加载中
    Created with Highcharts 5.0.7访问量Chart context menu近一年内文章摘要浏览量、全文浏览量、PDF下载量统计信息摘要浏览量全文浏览量PDF下载量2024-052024-062024-072024-082024-092024-102024-112024-122025-012025-022025-032025-040Highcharts.com
    Created with Highcharts 5.0.7Chart context menu访问类别分布DOWNLOAD: 5.0 %DOWNLOAD: 5.0 %HTML全文: 89.8 %HTML全文: 89.8 %摘要: 5.1 %摘要: 5.1 %DOWNLOADHTML全文摘要Highcharts.com
    Created with Highcharts 5.0.7Chart context menu访问地区分布其他: 96.9 %其他: 96.9 %XX: 1.7 %XX: 1.7 %上海: 0.1 %上海: 0.1 %东莞: 0.1 %东莞: 0.1 %内网IP: 0.1 %内网IP: 0.1 %北京: 0.7 %北京: 0.7 %天津: 0.1 %天津: 0.1 %昆明: 0.1 %昆明: 0.1 %温州: 0.1 %温州: 0.1 %西安: 0.1 %西安: 0.1 %重庆: 0.2 %重庆: 0.2 %镇江: 0.1 %镇江: 0.1 %其他XX上海东莞内网IP北京天津昆明温州西安重庆镇江Highcharts.com
图( 8) 表( 1)
计量
  • 文章访问数:  5497
  • HTML全文浏览数:  5497
  • PDF下载数:  97
  • 施引文献:  0
出版历程
  • 收稿日期:  2021-12-30
  • 录用日期:  2022-06-10
  • 刊出日期:  2022-08-31
曲春刚, 匡家骏, 晏嘉伟. 不同航班季节下民航飞机LTO循环颗粒物排放特性—以北京首都国际机场为例[J]. 环境工程学报, 2022, 16(8): 2640-2652. doi: 10.12030/j.cjee.202112212
引用本文: 曲春刚, 匡家骏, 晏嘉伟. 不同航班季节下民航飞机LTO循环颗粒物排放特性—以北京首都国际机场为例[J]. 环境工程学报, 2022, 16(8): 2640-2652. doi: 10.12030/j.cjee.202112212
QU Chungang, KUANG Jiajun, YAN Jiawei. Studies on LTO cyclic particulate emission characteristics of civil aircraft in different flight seasons-A case study of Beijing Capital International Airport[J]. Chinese Journal of Environmental Engineering, 2022, 16(8): 2640-2652. doi: 10.12030/j.cjee.202112212
Citation: QU Chungang, KUANG Jiajun, YAN Jiawei. Studies on LTO cyclic particulate emission characteristics of civil aircraft in different flight seasons-A case study of Beijing Capital International Airport[J]. Chinese Journal of Environmental Engineering, 2022, 16(8): 2640-2652. doi: 10.12030/j.cjee.202112212

不同航班季节下民航飞机LTO循环颗粒物排放特性—以北京首都国际机场为例

    通讯作者: 曲春刚(1979—),男,硕士,副教授,pqbird@sina.com
    作者简介: 曲春刚(1979—),男,硕士,副教授,pqbird@sina.com
  • 中国民航大学航空工程学院,天津 300300
基金项目:
中央高校基本科研业务费项目(2020YJS003);中国民航大学开放基金资助项目(000031020102)

摘要: 飞机的颗粒物排放会造成环境影响。为评估不同航班季节下颗粒污染物排放水平,采用基于黑碳形成氧化法(FOX)的改进计算方法对非挥发性颗粒物(PMnvol)排放指数进行了估算。使用B777、A320、A321、A330、B738机型历史QAR数据中空气流量、燃油流量等发动机参数,计算不同航班季节下多个LTO循环颗粒污染物排放指数及排放量。结果表明:在北方夏季气温较冬季大幅上升时,尽管PMnvol排放指数呈下降趋势,但受燃油消耗率增加的影响,A320、A321、B738等主要机型颗粒物排放量显著升高,夏秋航季单次LTO循环较冬春航季分别升高了15.3、13.8、13.4 g,其涨幅为18.6%、21.3%、17.7%;B777等推力较大机型在夏秋季及冬春季燃油消耗率变化不大,夏秋航季单次LTO循环颗粒物排放量较冬春航季略低,降幅仅3%,约4.1 g;以北京首都国际机场实际起降数据为例,以上主要机型夏秋航季较冬春航季颗粒物总排放量分别增加了0.5、1.6、1.7、1.6、3.7 t。本研究表明,各机型不同航季下颗粒污染物排放差异显著,其影响不可忽视。以上飞机颗粒物排放特性分析结果可为民航业建立完整排放清单,实现航空发动机污染的精确管控提供参考。

English Abstract

  • 预计至2036年,全球商业航空活动会比2020年增加两倍[1]。随着机场数量、航班数量的增加,航空发动机排放造成的大气污染愈发严重。航空发动机排放污染物主要包括氮氧化物(NOx)、一氧化碳(CO)、未燃碳氢化合物(UHC)、二氧化硫(SO2)与颗粒污染物(PM)等[2]。颗粒物被认为是引起全球气候变化的重要成分,其中细颗粒物(PM2.5)易被人体吸入,在肺内沉积并诱发很多呼吸疾病[3-4]。为对颗粒物排放进行限制及监测,我国民航局于2020年11月决定对《涡轮发动机飞机燃油排泄和排气排出物规定》(CCAR-34)进行修订[5]。国际民航组织(International Civil Aviation Organization,ICAO)也在2020年发布了最新《机场空气质量手册》,建议各地空气质量监管部门应建立完整的排放清单,包括不同时间下的污染物排放情况,以评估当前或未来的污染物浓度,并为减排规划提供基础[6]

    由于在一个航季年中,夏秋、冬春航季的环境气温存在明显差异,这直接影响了航空发动机的燃烧效率,进而会对颗粒物中的非挥发性颗粒物(主要为黑碳)的产生造成影响。因此,评估不同航班季节、不同环境气温下的颗粒物排放对制定完整的排放清单,以及研究发动机排放特性具有重要意义。针对航空发动机颗粒物排放,国际民航组织提出了一阶近似方法(first order approximation,FOA)对其质量进行估算。根据该方法,闫国华等[7]计算了民航飞机在一个完整的起飞和降落阶段(landing and take-off cycle,LTO循环)的颗粒物排放,定量地分析了航空发动机颗粒物排放对机场周边空气质量的影响。魏志强等[8]根据ICAO排放数据库数据,在考虑实际大气环境与飞行参数的基础上,结合一阶近似方法给出了颗粒物的排放指数修正模型,并基于实际飞行参数对污染物排放量进行了估算。孙见忠等[9]根据发动机性能模型,结合实际飞行参数及ICAO排放数据研究了发动机性能退化对于污染物排放的影响,并提出了排放量估算方法;同时指出,飞机巡航速度、飞行高度与发动机的老化等都会对飞机尾气污染物排放量产生影响。通过对实际滑行时间和大气混合层高度修正,韩博等[10]估算了粤港澳大湾区机场群2018—2019年的颗粒物排放量,建立了机场排放清单。YANG等[11]考虑真实航班运行数据、混合层高度等因素,基于该方法建立了2015年北京首都国际机场航空发动机、地面设备等的颗粒物排放清单,估算出颗粒物年排放量约为149 t。WINTHER等[12]建立了丹麦哥本哈根国际机场单日颗粒物排放清单,结果表明慢车和起飞阶段的排放占比分别为40%、20%左右。STETTLER等[13]建立了基于该方法的英国机场颗粒物排放清单,所得计算值与实验测量值偏差大于40%。该方法首先规定了飞机在不同飞行阶段下推力的大小(进近、滑行、起飞、爬升阶段的推力分别为30%、7%、100%、85%),然后在试车台上测量这4个推力下的烟度值(smoke number,SN),最后根据烟度值拟合得出黑碳浓度(CBC)及排放指数。

    然而,飞机在实际运行过程中的推力大小并不是根据飞行阶段就能简单区分开的稳定值,即使是在飞机滑行阶段,发动机推力仍会发生变化,而且目前大多数飞机起飞时,均采用减退力起飞,此时若也采用FOA方法中100%推力烟度值,则可能产生较大误差。另外,航空发动机烟度值与黑碳质量之间也存在较大的不确定性[14]。对此,曹惠玲等[15]基于快速存取记录器的数据(Quick Access Recorder,简称QAR数据),从黑碳形成和氧化过程出发,采用基于黑碳形成和氧化过程的形成氧化法(formation oxidation process,FOX),对全航段中黑碳排放指数进行了计算和分析。然而,该方法在计算发动机主燃区温度时,是通过结合燃烧反应物和产物的绝对焓值进行线性拟合而来,而燃料的燃烧并不完全,故该方法可能过高估算了主燃区温度,进而低估了颗粒物的排放量。另外,制定更加精细化的飞机发动机污染物排放清单也需要对不同机型在不同环境气温下的排放特性进行研究。

    本研究采用B777、A320、A321、A330、B738飞机实际飞行过程中的QAR数据,从燃烧能量平衡过程出发,计算航空发动机主燃区温度,对形成氧化方法进行改进,根据改进方法对飞机颗粒物排放指数及排放量进行计算,从而定量分析不同机型在不同航季下LTO循环颗粒物排放变化,并对北京首都国际机场主要机型在不同航季下的LTO循环颗粒物排放量进行计算,以期为更精细化的飞机发动机污染物排放清单的制定提供参考。

    • 颗粒污染物主要由非挥发性颗粒物(PMnvol),挥发性硫酸盐颗粒物(PMvol-FSC),挥发性有机颗粒物(PMvol-FuelOrganics)和挥发性滑油生成有机颗粒物(PMvol-oil)组成,而非挥发性颗粒物的主要组分是黑碳气溶胶[16]。由于尚未开展挥发性滑油生成有机颗粒物排放量的计算研究,故主要针对其他3种颗粒物进行估算。当航空发动机随环境气温变化时,其性能参数也会发生改变,尤其是对发动机燃烧室主燃区温度的影响,进而影响燃烧。本研究在形成氧化法的基础上,从能量平衡的角度对发动机主燃区温度Tfl进行计算,对形成氧化方法进行改进。利用改进方法,评估航空发动机在各个航班季节下的LTO循环颗粒物排放特征趋势,其计算流程如图1所示。

    • 非挥发性颗粒物的主要成分是黑碳气溶胶。根据ICAO推荐的一阶近似方法,基于排放指数数据库中4个飞行阶段的烟度值来计算黑碳浓度。然而,在实际运行中,由于航班延误、空中管制等诸多因素影响,各飞行阶段的时间往往与排放数据库推荐值不符,不同时刻的推力值是实时变化的,与排放数据库推荐的按不同飞行阶段固定推力的估算方法有较大区别,因而会对整个LTO循环中颗粒物排放估算造成较大影响。本研究采用基于黑碳形成和氧化过程的形成氧化方法。在此方法的基础上从能量平衡过程对主燃区温度进行计算,并提出改进的形成氧化方法。该方法在满足适航规章要求的前提下,充分考虑了环境温度、压力等参数,以及燃油燃烧程度对黑碳排放的影响。

      黑碳排放指数EIBC(单位mg·kg−1)是由黑碳质量浓度CBC(单位mg·m−3)与涡扇发动机每千克航空煤油的废气容积流量QMixed(单位m3·kg−1)相乘所得到的,具体计算方法及公式参考文献[15]。该计算方法中,实时黑碳浓度会受到燃油流量mf(单位kg·s−1)、空气燃油比(air fuel ratio,AFR,后简称“空燃比”)及主燃区温度Tfl(单位K)的影响。其中,燃油流量mf及空燃比可通过QAR数据直接获取,但主燃区温度Tfl目前受材料限制,无法直接得到。原方法为将燃烧反应物和产物的绝对焓值进行线性拟合得到式(1),即可计算主燃区温度。

      然而,在航空发动机实际运行过程中,燃油的燃烧效率约为96%[17],无法完全燃烧,故该方法可能过高估算了主燃区温度,进而低估了颗粒物的排放量。主燃区温度Tfl与燃料种类、燃烧方法、燃烧室入口总温、传热条件等诸多因素有关,主要取决于燃烧过程的热平衡。从航空煤油燃烧过程出发,该过程是位于燃烧室内进行的定压加热过程,不发生高温热分解现象,由能量平衡关系可得到主燃区温度Tfl的关系式(式(2))。

      式中:Q1为燃料的化学能,J;Q2为空气带入的物理热,J;Q3为燃料带入的物理热,J。具体计算见式(3)~式(5)。

      式中:mair为空气流量,kg;T3为燃烧室入口气温,K;Tf为航空煤油温度,K;Cp1Cp2,J·(kg·K)−1,分别为空气和航空煤油的定压比热容。改进的形成氧化方法可根据能量平衡方程对发动机主燃区温度进行计算,并考虑飞机实际运行中参与燃烧的因素,包括空气温度、燃油温度、航空煤油的热值等。环境气温直接影响了燃烧过程中空气、燃油的物理热,进而影响了主燃区温度,对黑碳的形成造成了直接影响。改进方法考虑了参与燃烧的物质的物理热,物理热中涵盖了环境气温参数,能更准确地计算非挥发性颗粒物排放指数EIBC,且适用于目前所有使用传统燃料的航空发动机。

    • 挥发性硫酸盐颗粒物主要由燃料硫转化而成。SO2通过氧化作用变成SO3,随后在火焰羽流中发生水合作用变为硫酸盐颗粒物,其排放指数不随功率设定值变化而变化,而是由燃料含硫量(fuel sulfur content,FSC)及SO2到SO3的转换率(ε)计算得到。具体计算过程参见文献[6],计算公式见式(6)。

      式中:MWout=96,MWSulphur=32,FSC=0.068%,ε=2.4%。燃料含硫量FSC、SO2向SO3的转换率ε可能存在差异。据最新测量值,ICAO建议将FSC、ε分别设为0.068%、2.4%。

    • 挥发性有机颗粒物排放指数是将ICAO发动机排放数据库所列的发动机碳氢化合物排放指数与其比率值(δ)相乘得到(式(7)。

      式中:δ为按不同飞行阶段的恒定比率数值。对应状态下的数值为慢车6.17 mg·g−1、起飞115 mg·g−1、爬升76 mg·g−1、进近56.25 mg·g−1

      根据ICAO推荐方法计算挥发性硫酸盐颗粒物和挥发性有机颗粒物排放指数,再结合QAR数据中燃油流量及运行时间计算排放总量。

    • 颗粒污染物排放量主要由燃油流量、不同阶段飞行时间以及排放指数的乘积决定。航空器LTO循环包括:滑行/地面慢车(Taxi)、起飞(Take-off)、爬升(Climb)和进近(Approach) 4个阶段。定义为从地面到大气层边界面3 000英尺高度内的空间。在该高度下,发动机颗粒污染物的排放与扩散会直接影响机场周边空气质量。一个标准的起降循环如图2所示。

      LTO循环Emi由各个飞行阶段的不同时刻下燃油流量Qfmi及排放指数EIBC相乘之后累加得到,如式(8)所示。

      式中:Emi为各阶段不同种类颗粒物的排放总量;n为各阶段的时间帧数;QfiTi分别为各时间帧的燃油流量和工作时间。在计算时,各个飞行阶段的排放指数计算方法不同,故要对飞行阶段进行划分,为确定各个飞行阶段的不同运行时间,需对QAR数据按不同的时间帧进行飞行阶段划分。本研究结合QAR数据中的低压转子转速(N1)、高压转子转速(N2)、飞行高度(H)、油门杆解算器角度(TRA)等参数对LTO阶段中慢车、起飞、爬升、进近4个阶段进行准确划分,各时间帧数下的飞行参数值都可在QAR数据中得到。

    • 为验证本研究所建立的改进主燃区温度计算的形成氧化计算模型可实时准确地计算航空发动机LTO循环颗粒物排放,选取B777、A320、 A321、A330、B738(装配GE90、V2500、V2522、PW4000、CFM56发动机)飞机左发、右发(左发、右发是搭载于飞机两侧的航空发动机)的大量QAR数据,计算不同机型冬春航季及夏秋航季LTO循环各阶段的颗粒物排放指数,从而定量分析不同航季下不同型号航空器颗粒污染物排放量变化。

    • 目前,我国民航系统每年都要进行2次航班计划调整。每年3月最后1个完整周的星期日至10月最后1个完整周的星期六,执行夏秋季航班计划;10月最后1个完整周的星期日至第二年3月最后1个完整周的星期六,执行冬春季航班计划[18]。本研究基准年为2017—2018航季年,共计369 d。其中,包括夏秋航季共计216 d,冬春航季共计153 d。一方面,这是考虑到旅游业的淡旺季、人群出行的周期性。根据航季的不同,各航空公司将参照执行的航班收益情况,在新航季里对现有航班进行调整。另一方面,根据我国实际情况,春夏和秋冬之间全国天气、气压均有较大差异,飞行标准亦有不同。在此基础上,根据QAR数据中的飞行日期,把该年中QAR数据分为夏秋季航班QAR数据以及春冬季航班QAR数据,以对不同航季下民航飞机颗粒物排放变化进行定量分析。

    • 选取交付后稳定飞行的发动机历史QAR数据。根据该数据,发现少数时刻由于监测探头损伤,数据记录错误等因素影响,会造成监测数据出现异常值。为保证计算精度,需要对原始数据进行异常值筛选。选取拉依达准则法(3δ准则)判别法对异常值进行处理。拉依达准则法是一种剔除异常值的方法。该方法利用标准偏差按一定概率确定一个区间,并认为凡超过这个区间的误差,就不属于随机误差而是粗大误差,含有该误差的数据应予以剔除。根据全航段的QAR数据,按QAR中的低压转子转速N1、飞行高度H等飞行参数,划分为滑行、起飞、爬升、进近4个阶段。分别对4个阶段进行等精度测量,独立得到X1X2......,XnX为算术平均值,若某个测量值Xb的剩余误差Vb(1<=b<=n),满足式(9),则认为Xb是含有粗大误差值的坏值,应予剔除。

      式中:σ为标准偏差。由于滑行阶段飞行状态较平稳,故对滑行阶段选取数据值在(μ-σ)~(μ+σ)的数据;而起飞、爬升、进近阶段飞行参数变化较大,选取数据值于(μ-3σ)~(μ+3σ)内的数据。

      另外,影响单次航班LTO循环颗粒物排放指数的因素较多,直接相关的有起飞重量、发动机性能衰退、减退力起飞等。为定量分析不同航季下颗粒污染物的排放变化,还需对QAR数据进行筛选。本研究选取了起飞重量相近,以全推力起飞的QAR数据,同时选取飞行航段内发动机EGTM较高且发动机出厂日期较新的发动机数据。这是由于此时发动机的性能状态较好[19],可忽略性能衰退对颗粒污染物排放造成的影响。

    • 首先,以目前推力最大、燃油消耗率较高的GE90型发动机为例,该发动机搭载于B777飞机上,选取其2017—2018年多个不同架次航班的QAR数据来计算颗粒物排放指数。所选取QAR数据中,平均环境气温最低为−10℃,最高为38.4℃,基本满足我国北方地区一年内气候的温度变化区间,计算结果见图3

      在滑行阶段,飞机的飞行状态平稳,发动机各性能参数稳定。故单架次中,PMnvol排放指数相对稳定,同一温度下不同滑行时间的PMnvol排放指数波动幅度不大,偶有起伏。但随着该年内环境气温不断变化,PMnvol排放指数从约40 mg·kg−1降至33 mg·kg−1,可明显发现不同环境气温下,PMnvol排放指数差异显著。冬春季航班PMnvol排放指数较高、夏秋季航班PMnvol排放指数较低,相差约17.5%。

      在起飞与爬升阶段,夏秋季较冬春季的PMnvol也分别下降了41.18%、22.2%。在起飞阶段PMnvol排放指数从221 mg·kg−1左右下降到130 mg·kg−1。爬升阶段则是从约81 mg·kg−1降至63 g·kg−1。就单次航班而言,在起飞时PMnvol排放指数相较滑行阶段升高了5倍,但持续时间较短;在爬升过程中受发动机推力增加、燃油流量增大的影响,故PMnvol排放指数增大。

      同样,在进近阶段,夏秋季较冬春季PMnvol排放指数下降了23.08%,从约78 mg·kg−1降至60 mg·kg−1。值得注意的是,单次航班中进近过程的PMnvol排放指数先是缓慢下降,在到达一定高度后,排放指数会突然增大。这可能是受飞机控制系统的影响,由于此时飞机仍未落地,但受到了较大空气阻力,从而增加燃油流量以提供更大的推力,从而使PMnvol排放指数升高。

      为充分反映民航飞机在不同航季下颗粒物排放特性,以A320、A330、A321、B738这 4种主流机型的QAR数据,计算其夏秋、冬春航季内颗粒物排放指数。由于部分机型在进近阶段的排放指数差异略小,为更直观分析其排放水平,根据排放指数做进近阶段趋势线(见图4)。其中,35~17 ℃的数据为夏秋航季内PMnvol排放指数变化,13~(-6 ℃)的数据为冬春航季内PMnvol排放指数变化。

      目前,主流机型PMnvol排放指数均呈现出冬春季高、夏秋季低的趋势,但各机型间排放指数及变化幅度存在差异。其中,对于功率相近的A320飞机与B738飞机而言,以冬季时滑行阶段为例,虽然其额定推力、燃油消耗率相近,但两种飞机的PMnvol排放指数却分别为95.4、40.2 mg·kg−1,相差了约2倍,起飞阶段甚至相差3~4倍; A330飞机PMnvol排放指数较搭载GE90的B777飞机排放指数略小,但变化趋势相近;进近阶段发动机燃油流量、空气流量波动大,使A330、B738飞机PMnvol排放指数变化幅度也增大。为得出其在不同航季下排放指数水平,做进近阶段各机型PMnvol排放指数趋势线,根据此趋势线及各机型LTO循环的PMnvol排放指数线,可发现主流机型在冬春季PMnvol排放指数较高,而夏秋季PMnvol排放指数较低。为得到各机型在不同航季下整个LTO循环的PMnvol排放指数变化情况,本研究按不同航班季节划分后取PMnvol平均排放指数¯EI,结果见图5。PMnvol平均排放指数从高到低依次为冬季、春季、秋季、夏季航班。各机型间排放指数不同,呈下降趋势。

      对于5种机型LTO循环各阶段平均排放指数,除A321飞机在进近阶段有所差异外,其余均呈现夏季高、冬季低的航季变化趋势。其中,起飞和爬升阶段变化最为显著,滑行及进近阶段略缓。A320机型起飞阶段PMnvol排放指数下降最大,从381 mg·kg−1降至268 mg·kg−1,降幅为29.7%。B738机型在在滑行阶段降幅最小,仅下降了5 mg·kg−1。结合PMnvol形成和氧化过程分析其原因,其生成是由燃烧不完全所致,当外界气温升高,参与燃烧的空气、燃油的物理热也提高,使燃烧更完全,进而使PMnvol排放指数降低。然而,PMnvol排放指数的降低并不意味着颗粒物排放量的减少,还需考虑航空发动机的燃油消耗率。

    • 根据ICAO给定模型计算挥发性硫酸盐颗粒物PMvol-FSC排放指数。挥发性有机颗粒物PMvol-FuelOrganics同样是燃料未完全燃烧的产物,故采用ICAO针对各型号发动机的推荐测量参数[20](见表1)。

    • 前文对现行航班季节进行了划分,根据1.2节中PMnvol排放指数改进计算方法,及1.3、1.4节中ICAO推荐的PMvol-FSC与PMvol-FuelOrganics排放指数计算方法,在此基础上结合QAR数据中燃油流量,对各机型LTO循环总颗粒污染物排放量进行计算,得出颗粒物排放总量,结果如图6所示。

      对于A320、A321、B738等常见机型,单次航班LTO循环颗粒物排放量随着气温的升高而增大,分别增加了15.3、13.8、13.4 g,涨幅为18.6%、21.3%、17.7%。这种变化与2.3节中PMnvol排放指数的变化相反。这是由于颗粒物排放量由排放指数、燃油流量、运行时间3个因素决定(式(8))。对非挥发性颗粒物PMnvol而言,排放指数在气温升高时下降,但航空发动机燃油流量却会增大。这是受到航空发动机共同工作原理影响,当气温升高时需增加燃油流量以保证发动机推力;另外,燃油流量的增加也会使得硫酸盐颗粒物PMvol-FSC及有机颗粒物PMvol-FuelOrganics排放量升高。综上所述,A320、A321、B738几种机型的飞机夏季单次LTO循环颗粒物排放量较高。

      而对于推力较大的B777及A330飞机,在不同航季下单次LTO循环颗粒物排放差异相对略小,总体趋势与A320等常见机型相反,呈现出冬季高,夏季略低的趋势,分别降低了4.1、6.2 g。这类航空发动机的冬季及夏季燃油消耗率差异较小,对非挥发性颗粒物PMnvol而言,虽然其夏季排放指数较冬季降幅较大,约为22%,但由于燃油消耗率差异不大,使得总排放量仅下降了约3.8%。上述变化趋势与文献[21-22]中,新郑国际机场及华北地区典型机场制定的排放清单关于A320、A321、B738等主要机型的颗粒物排放时间分布趋势相近。

    • 不同季节下,我国南北方气温差异较大,东西部地区气温差异性也较大,因而民航飞机LTO循环颗粒污染物排放的动态特征也可能会呈现很大差别。本研究以北京首都国际机场一典型日起降航班为研究对象,该日共起降航班1 690架次[23],接近机场日起降平均值,各机型占比如见图7

      根据机型占比情况,结合本研究针对PMnvol改进形成氧化方法及ICAO对PMvol-FSC与PMvol-FuelOrganics推荐计算方法,计算主要机型(占比80%以上)夏秋季航班及冬春季航班颗粒污染物排放总量,并对日均排放量进行对比,结果见图8

      在不同航季,民航飞机的LTO循环颗粒污染物排放差异显著。主要机型(如A320、A321、B738)在夏秋航季单次LTO循环颗粒物排量高。另外,由于夏秋航季持续时间也较长,导致其夏秋航季比冬春航季总排放量分别增加了1.6、1.7、3.7 t;对于B777、A330等大推力机型而言,虽然其在不同航季下单次LTO循环颗粒物排量差异不大,但夏秋航季运行时间较长,也使得该类机型在夏秋季总排放量高于冬春航季,约为0.5、1.6 t。这些主要机型夏秋航季、冬春航季总排放量分别为26.7、17.4 t。这与韩博等[24]对京津冀机场群排放清单的研究结果相近,这也从计算结果方面验证了本研究对PMnvol改进计算方法的准确性。

      为进一步研究不同航季民航飞机颗粒物排放的差异,计算了夏秋航季、冬春航季颗粒物日均排放量,主要机型A320、A321、B738的日均排放量差异显著,分别增加了3.1、3.8、9.7 kg。根据日均排放量及PMnvol排放指数变化趋势,尽管PMnvol排放指数存在冬春季高、夏秋季低的趋势,但夏秋航季环境气温较高,航空发动机为保持推力则需增加燃油流量,燃油流量的增加不仅影响了PMnvol排放量,更直接导致PMvol-FSC与PMvol-FuelOrganics总排放量显著上升;对B777、A330等大推力机型则略有差异。这类机型在不同航季下的燃油流量差异较小,而由于冬春季的PMnvol排放指数略高,使得这类机型在冬春航季的日均排放量较夏秋航季及单次LTO循环排放量略高。

    • 本研究中的不确定因素主要来自3个方面:一是在计算核心机黑碳浓度CBC时,假定燃烧室内燃烧过程无传热损失且为定压过程,而实际传热效率为96%~98%,从而使得计算得到的主燃区温度比实际温度偏高,黑碳浓度CBC略低;二是在对废气容积流量计算时,涵道比BRP选取的是ICAO排放数据库推荐值,与飞机运行中的实时值有差距,因而存在一定误差;三是挥发性硫酸盐颗粒物及挥发性有机颗粒物的排放指数来自ICAO推荐的标准值,该标准值为固定实验条件的数据,而实际运行中会随发动机实际推力、老化等其他条件影响而改变。

    • 1)结合飞机实际飞行数据,提出并利用改进的形成氧化方法,可更准确地估算核心机黑碳浓度CBC,从而改进民航飞机LTO循环颗粒污染物排放计算模型。针对飞机LTO循环阶段,定量分析了B777、A320、A321、A330、B738飞机不同航季颗粒污染物排放指数及排放量变化趋势,建立的模型较好地呈现了不同航季下颗粒污染物排放变化趋势。

      2)航空发动机在不同航季下LTO循环颗粒污染物排放量不同。对于A320、A321、B738等主流机型,在飞机发动机性能不发生退化、且起飞时采用全推力起飞的前提下,PMvol-FSC与PMvol-FuelOrganics排放指数不发生变化,冬春航季PMnvol排放指数较夏秋航季升高。这是因为夏秋航季气温高,在燃烧时空气、燃油的物理热较高,燃烧更完全,从而降低了PMnvol排放指数,从生成机理上减少了PMnvol的产生。但由于夏秋航季飞机燃油消耗率较高,最终导致夏秋航季单次LTO循环颗粒物排放量较冬春航季分别升高了18.6%、21.3%、17.7%。对于B777、A330等推力较大机型而言,不同航季燃油消耗率变化较小,冬春航季PMnvol排放指数略高,夏秋航季、冬春航季单次LTO循环颗粒物排放量差异不大,降幅仅为约3%。

      3)以北京首都国际机场为例,B777、A320、A321、A330、B738飞机夏秋航季较冬春航季排放量增加了0.5、1.6、1.7、1.6、3.7 t。其中,B738在不同航季下的日均排放差异最显著,约为9.7 kg。对实际运行条件下航空发动机颗粒污染物排放量的计算可真实有效地评估不同航季颗粒污染物排放的变化,为后续航空发动机实际运行过程中颗粒污染物排放监测提供参考。

    参考文献 (24)

返回顶部

目录

/

返回文章
返回