-
随着城市化进程的加快,城市居住人口不断增长,城市生活垃圾的处理压力日趋增加。在城市生活垃圾中,粪污污泥的处理具有一定特殊性。粪污主要来自于化粪池。化粪池作为一种避免排水管道发生堵塞而设置的截粪设施,在截留、沉淀污水中的大颗粒杂质、防止污水管道堵塞以及环境保护方面起着积极作用。尽管在城市住宅区中普遍使用了化粪池,但其处理过程简单,无法彻底清除粪污残渣中的各种病菌和恶臭味道,剩余残渣亦很难循环利用。截留在化粪池中的粪污残渣一般通过吸粪车运送到粪污处理厂进行集中处理。但是,近年来现代化农业大量生产使用化肥,粪污农用市场衰退,出现了粪污向城市附近区域违法倾倒的现象,给生态环境和人群健康造成了严重的影响。根据国家统计局统计数据,截至2016年年底,我国粪污无害化处理率仍低于50%[1],粪污不规范化处理仍是制约我国城市化发展和国民健康的主要问题之一。
按照收运和处理模式的不同,城市粪污污泥处理目前主要有2种策略:1)利用城市污水管网、将粪污送往城市污水处理厂与生活污水混合处理,通常称为欧美模式;2)利用车辆将城市粪污收运后送往粪污无害化处理厂处理,通常称为日本模式[2-5]。我国城市排水系统起步较晚,污水处理设施难以支撑城市高速发展所需的粪污的处理规模。因此,绝大多数城市在建设的过程中还在摸索着适合自己城市发展的粪污处理模式。北京市采取类似于日本的粪污收集处理模式,与具有运输资质的收运企业与合法的粪污消纳单位签订消纳协议,通过吸粪车将粪污收运到粪污处理厂集中处理。截至2016年底,北京市共建成20座粪污无害化处理厂,处理工艺以“固液分离+絮凝脱水”和“固液分离+絮凝脱水+水处理”2种工艺为主,总处理规模约6 600 t·d−1[6]。上海市处理粪污的方式包括污水处理厂协同处理、粪污无害化处理厂和部分农用等混合模式。近年来,上海市用以农业资源化利用的粪污越来越少,并随着《上海市城镇环境卫生设施设置规定》[7]的出台,化粪池逐渐被取消,城市粪污经污水管网直接进入污水处理厂处理[8]。成都市自20世纪80年代末起,对城区600余座公厕进行了大规模改造,附设化粪池的水冲式公厕普及率已达100%。长期以来,由于成都市没有规范的粪污无害化处理设施,从化粪池清掏出来的粪污无处消纳,只能运往成都市长安垃圾填埋场混入生活垃圾一起填埋。这种填埋方式不仅对垃圾场周边造成严重污染,同时也因为粪污的高含水率大大增加了填埋作业难度;粪污与垃圾的混埋会使垃圾堆体形成滑坡,给填埋场带来巨大的安全隐患[9]。
深圳市粪污处理主要采用与生活污水混合处理的方式,经由化粪池预处理后,通过污水管网输送到污水处理厂进行生化处理,化粪池清掏的主要目的在于疏通堵塞。这与北京市粪污与污水分别收集处理的做法有着明显不同。按照《深圳经济特区市容和环境卫生管理条例》[10]第60条规定,城市化粪池的粪污应当密闭运送到指定地点实行减量化、资源化和无害化处理处理。
本研究根据实地调研和相关历史资料,针对深圳市宝安区粪污污泥处理管理现状,对粪污清运量进行测算和分析,并结合测算结果和宝安区环境卫生设施建设的现实情况,拟提出一套粪污无害化、资源化处理工艺和与其对应的项目建设和运营管理模式,以期为深圳市乃至我国其他有类似粪污污泥处理管理问题的城市提供参考。
-
1)粪污收运体系概况。宝安区粪污产生及收运的模式为2种:一种是传统建筑采用的3格化粪池作为主要截污手段,上层粪皮和底层粪污由吸粪车抽取清运,中层粪液随配套管道流入污水管网;另一种是少部分商业建筑和居民小区采取的承包模式,由清洁公司定期对储粪池进行清理[9]。由于宝安区城中村和老旧建筑较多,且完整的粪污收运体系尚未建立,上述2种化粪池模式往往缺乏统一管理的物业或卫生单位,清掏工艺及粪污去向都难以追踪,是粪污收运体系监管的主要痛点(如表1所示)。
2)粪污处理设施概况。目前,宝安区辖区内没有专门用于填埋、堆肥或焚烧的粪污处理厂,深圳市唯一1座粪污无害化处理厂位于龙岗区的郁南环境园内,由深圳市城市废物处理中心管辖。该粪污厂于2013年9月投入运行,采用的粪污污泥超高堆体静态好氧发酵技术使其成为我国第一家将粪污处理成品进行综合利用的处理厂。然而,该粪污厂最初的设计仅考虑为罗湖、福田和布吉等部分区域服务,其处理能力仅为250~300 t·d−1,即便投入二期工程,仍无法满足宝安区全区粪污处理需求[9,11]。不仅如此,由于该粪污厂采用的好氧堆肥工艺存在着占地面积大、设备工艺老旧,自动化程度低、好氧操作难以控制,容易变为无氧发酵,以及堆肥后的粪污含水量较高导致出路受限等问题,使得该工艺无法与深圳市城市发展相匹配。
3)城镇污水处理厂污泥处理概况。截至2019年底,宝安区共建成城镇污水处理厂4座,均无接收粪污的先例,其污泥处理情况如表2所示。4座污水处理厂的污泥脱水设备主要以离心脱水机和板框压滤脱水机为主,经离心脱水后的污泥含水率约为80%,经板框压滤机脱水后的污泥含水率为50%~60%。4座污水处理厂仅WWTP3有能够接受少量流态粪污的盈余容量,其余3座污水处理厂由于污泥处理压力较大,没有接收粪污的能力。4座污水处理厂脱水污泥的出路包括焚烧发电、生产环保砖、生物燃料。
-
粪污清运量与城市人口高度相关,但宝安区城市发展历程导致大量城中村和流动人口的存在;同时,深圳市作为全国投资热点城市,近几年大量新楼盘和新建筑出现,这些都使粪污清运量不能仅依靠常住人口数量进行简单测算。城中村人口密集,流动人口聚居,建筑年代久远导致化粪池容易堵塞;而新楼盘和新建筑化粪池及排污管道状况较好,需要清掏的次数较少。因此,需要通过清运公司调研,结合城市各类人口数量、各类建筑类型、物业管理化粪池情况调研等推算全区粪污清运量、应有清运量(产量)和存(容)量。具体方法、实施步骤和数据来源见表3。
-
1)理论清运量初步推算。宝安区粪污清运量可根据深圳城市废物处理中心粪污卫生处理厂所辐射的福田、罗湖两区和龙岗区布吉、坂田街道清运量及该片区对应人数口进行大致推算。对定期向深圳城市废物处理中心运送粪污的清运车辆开展调研,了解车辆所在公司的服务范围、车队规模、日清运量、粪污去向等情况。该区域内常住人口对应的粪污清运量约为773 t·d−1。宝安区2018年常住人口为564.7×104人,由此推算宝安区2018年粪污日清运量约为1 372 t·d−1,全年(按365 d计)清运量约为50.08×104 t。
2)参照特大城市推算粪污理论清运量。根据《2016年城乡建设统计公报》[12]历年数据统计,北京、上海2个特大城市历年生活垃圾与粪污清运量计算得出特大城市生活垃圾与粪污清运量比例分别为3.29∶1和3.37∶1,平均为3.33∶1,粪污清运量占清运总量的23.09%。由此可以推算,2016年特大城市人均粪污清运量为0.288 kg·d−1。2011-2015年,北京、上海日人均粪污清运量分别为0.268和0.229 kg·d−1。依据上述文献资料和同类城市清运量与人口数等官方统计进行推算,同为特大城市的深圳市人均粪污清运量应为0.23~0.27 kg·d−1。因此,宝安区2018年理论粪污清运量应为47.41~55.65×104 t,日清运量为1 299~1 525 t·d−1。
3)参照生活垃圾推算粪污理论清运量。根据宝安区城市管理与综合执法局提供的有关统计数据,宝安区2014、2015、2016、2017、2018年生活垃圾清运量分别为125.90、138.74、157.84、172.71、182.18×104 t,按照生活垃圾与粪污清运量比例为3.33∶1可推算宝安区2014、2015、2016、2017、2018年粪污理论清运量分别为37.8、41.7、7.40、51.86、54.71×104 t,日均清运量应在1 035、1 141、1 299、1 421、1 499 t左右。
4)实际清运量调研与粪污处理规模的确定。对宝安区各抽粪车辆所在公司的服务范围、车队规模、每日清运量、粪污去向等粪污清运情况进行了调研。分别统计了住宅办公类,大型综合商业类,工业厂房类和市政配套设施等4个物业类型的实际清运量。如表4所示,宝安区2018年全年粪污清运量总计14.56×104 t,即398.9 t·d−1。此结果与前述推算的理论清运量1 372、1 299~1 525和1 499 t·d−1存在较大差距。可能原因为:1)粪污直接混入市政污水管道造成统计结果较低;2)部分清运公司为了节省开支通常只清理化粪池表面的粪皮,对底部的粪污不进行清理;3)绝大部分物业不清楚化粪池粪污清运情况,物业人员提供的数据是“每年大概清理几次”或者“每年大概清运几车”,具体每次每个化粪池清理多少量未知,而且吸粪车粪污装容积未知;4)宝安区可能存在粪污偷运现象,导致清运台账缺失。
考虑到宝安区老旧建筑化粪池正在改造,且新建小区建筑取消化粪池,粪污污水与生活污水经污水管网统一排入污水处理厂合并处理,宝安区粪污处理系统未来将按照欧美模式逐步发展[11]。因此,结合现阶段粪污理论清运量和实地调研清运量,建议粪污清运与处理设施规模按照800 t·d−1(含水率95%)设计,并预留2条处理线场地,根据远期发展情况考虑扩建。
-
1)粪污污泥的收运及预脱水。宝安区粪污收运模式大多是采用普通吸粪车将化粪池内的粪污污泥抽取后直接进行后续的处理,有少量的城中村化粪池通过人工清掏实现粪污的管理。由于宝安区未建立完善的吸粪车管理制度,大部分清运公司使用的传统吸粪车过于简陋,粪污未经过脱水和消毒处理,在运输过程中易出现泄露,污染城市环境。
采用吸粪脱水一体车,能够在预处理阶段就实现“无害化”和“减量化”。该预处理系统整合了先进的数字化和自动化控制技术,化粪池中的粪水混合污能够原位实现过滤、加药、脱水和除臭等一系列步骤。经脱水后的粪污含水率降低至80%左右,重量从800 t降低至200 t,不仅避免了传统固液分离设施的高成本和土地投入,还大大降低了运输成本及运输过程中出现的跑冒滴漏等二次污染现象。滤液经消毒处理后回流化粪池,可减少机污染物的排放,减轻了污水管网和污水处理厂的运行负荷,技术优势如表5所示。
2)粪污污泥的深度脱水。不论是填埋、焚烧、堆肥,都必须对脱水后的粪污污泥进行半干化或干化处理,才能进行最终处理。根据对宝安区粪污出路的调研结果,可作为有机肥原料出售的粪污含水率需达到50%以下,可进入垃圾焚烧厂进行焚烧的粪污含水率需达到60%以下,而常规机械脱水后的污泥含水率均超过60%。因此,常规机械脱水设备无法满足粪污后续处理的需求。
粪污污泥热干化技术就是通过加热加压的方法,使粪污中的粘性有机物水解,以此来破坏粪污中絮体结构,该处理方法能够同时改善粪污的厌氧硝化性能和脱水性能。粪污污泥颗粒之间的碰撞频率随着温度的升高逐渐加剧,导致颗粒间胶体结构遭到破坏,使邻位水和固体颗粒分离。同时,加热可以使粪污中的蛋白质分解,细胞发生破裂,胞间水被释放,从而大幅度降低粪污含水率。
直接热干化是利用热烟或热风等介质,与粪污污泥直接接触,在高温作用下污泥中的水分被蒸发,使粪污的含固率提高至85%以上;干化设备包括喷雾干化塔、带式干化机、滚筒式干化机、旋流闪蒸污泥干化机、低温干化机。间接热干化是由加热设备提供的蒸汽或导热油通过干化设备的传热元件表面将热量传递给另一侧的粪污污泥,使粪污中的水分蒸发。蒸发的水分进入冷凝器中加以冷凝,热介质全部或部分回到原系统中循环利用。主要设备有空心桨叶式干化机、间接接触回转式干化机、转盘式干化机、薄层干化机等。根据粪污的性质和数量,结合投资费用和能耗等问题,本研究重点对低温余热干化系统、滚筒式干化机、空心桨叶干化机3种粪污深度干化技术进行对比(表6)。
粪污污泥和市政污泥具有同源性,其污泥中所含的水分大致分为间隙水、毛细结合水、表面吸附水和内部水4类。这4类水除了间隙水可以以物理方式压滤以外,其他3类水表面具有强大的负电子包裹,无法以物理压滤的方式析出[13]。目前,郁南粪污处理厂(粪污污泥)和南山区某污水处理厂(市政污泥)选择以污泥调理结合超高压压榨脱水工艺作为污泥的深度脱水工艺,但粪污调理剂对脱水效果具有决定性影响,不同种类的污泥需要的调理剂配方差异较大。因此,若采用此工艺可能面临粪污调理剂配方的摸索,而且摸索过程需要较长的时间。通过对河南长垣市某污水处理厂转筒式干化技术和深圳市福田区某污水处理厂的污泥低温干化技术进行实地调研和技术分析,认为转筒式和桨叶式干化技术由于干化温度较高,处理过程中会产生较大的烟尘和废气,且存在粉尘爆炸的潜在风险,而低温干化工艺干化温度适中,全程密闭操作,且脱水率可调,占地面积小。因此,考虑将低温余热干化技术作为宝安区粪污污泥的深度脱水工艺。
城市粪污作为一种特殊的城市废弃物,考虑到邻避效应和占地规模,其深度脱水和无害化处理场所应首先选择离市区较远的粪污处理厂。位于郁南环境园的粪污处理厂,超负荷运行下的日处理粪污规模也仅为300 t·d−1,若将宝安区的粪污污泥全部拖入该处理厂进行处理,需要足够的场地进行扩建。而位于宝安区辖区内的某垃圾焚烧发电厂,由于邻避效应明显,曾在此处规划的污泥干化焚烧厂建设项目至今也未能实施。鉴于此,在上述2处建设粪污深度脱水项目的可行性较低,而根据《宝安区水务发展“十四五”规划》[14],除WWTP1已完成二期扩建外,宝安区辖区内其余3座污水处理厂规划区域内还有大量备用土地用于二期扩建项目(如图1所示)。因此,可以考虑在现有3座污水处理厂的基础上结合二期扩建项目增设粪污脱水设备进行深度脱水处理,从而避免新建粪污处理厂的选址、土地紧张、邻避效应和资金投入等问题。
3)脱水粪污的处理。脱水粪污的处理大致分为填埋、资源化利用和焚烧3种方式。填埋处理操作简便、基础建设投资小,在传统的粪污处理中占相当大的比例。但是,填埋的粪污大多未进行无害化处理,残留着大量的细菌、病毒,其渗漏液还会长久地污染地下水资源,存在严重的安全隐患及二次污染。粪污焚烧技术作为无害化“最彻底”的处理方法,能使有机物全部碳化,有效杀死病原体并最大限度地减少粪污体积,并可产生大量热能,将其与生活垃圾协同焚烧,在实现细菌病毒高效去除的同时还可提高资源利用效率。事实上,大量的文献和实践证实,对于市政污泥和生活垃圾,适合于采用填埋或焚烧的方法进行处理,然而对于粪污,更倾向于将其作为一种资源,进行无害化处理后回收利用[15-20]。因此,从资源化利用的角度考虑,城市粪污的处理应优先采用堆肥工艺,使其以土地利用的形式被消纳,实现养分还田。将脱水粪污高温堆肥,堆体最高堆温在50~55 ℃以上持续 5~7 d可使蛔虫卵死亡率达到95%~100%,且高温可同时杀灭病原菌。因此,在保证合格的堆肥条件下,粪污可实现细菌与病毒的去除,堆肥后的脱水粪污可作为有机肥原料出售,北京、深圳等地均有粪污预处理后进行堆肥的运行项目[16,21]。但由于宝安区化工企业较多、化粪池中往往会出现S、Cl等非金属元素的超标和As、Hg等重金属的沉淀而导致的粪污污染问题。因此,无论是通过焚烧或是土地利用,应首先保证粪污的部分非金属元素和重金属的质量分数能够满足相应的标准。
鉴于此,本研究选取了包含居民区、市政设施和工业区在内的10座化粪池,对采集的粪污样品进行Cd、Cr、Pb、As、Hg、N、S、Cl等元素的质量分数的检测。如图2所示,结果表明:所有样品中Cd的质量分数均小于垃圾焚烧厂和《有机无机复混肥料》(GB 18877-2020)技术要求(≤10 mg·kg−1)[22-23];所有样品中Cr的质量分数均大于垃圾焚烧厂的入厂要求(≤50 mg·kg−1)[22],但居民区化粪池粪污中Cr的质量分数低于《有机无机复混肥料》(GB 18877-2020)中限定的最大值(≤500 mg·kg−1)[23];所有样品中Pb的质量分数均小于垃圾焚烧厂的入厂要求(≤ 600 mg·kg−1)[22],其中居民区、公厕和学校的化粪池中未检测到Pb的存在;8个样品中As的质量分数超过垃圾焚烧厂的入厂要求(≤5 mg·kg−1)[22],但所有样品中As的质量分数均低于《有机无机复混肥料》(GB 18877-2020)中规定的最大值(≤50 mg·kg−1)[23];有2个样品中Hg的质量分数超过垃圾焚烧厂的入厂要求(≤2 mg·kg−1)[22],但所有样品中Hg的质量分数均低于《有机无机复混肥料》(GB 18877-2020)中限定的最大值(≤5 mg·kg−1)[23]。对于非金属元素,所有样品中N和S的质量分数均超过垃圾焚烧厂的入厂要求(≤0.5%和≤0.4%)[22],而Cl的质量分数均低于垃圾焚烧厂的入厂要求(≤1%)[22]。此外,从化粪池中采集的所有粪污样品的含水率均高于垃圾焚烧厂的入场要求(<60%)[22]。
如上所述,粪污中重金属和非金属元素的质量分数不能完全满足土地利用和焚烧发电厂的入厂要求。然而,由于宝安城区化粪池数量较多,分布较广,化粪池成分复杂多变,不同物业形态的化粪池在收集后混合进行处理,其混合体成分更难确定。因此,为进一步评估宝安区粪污资源化和无害化处理的可行性,本研究对郁南粪污处理厂的粪污成分进行了分析,该处理厂收集的粪污来源为福田、罗湖两区和龙岗区布吉、坂田街道,采用深度脱水工艺和高温灭菌工艺处理粪污后,得到的脱水粪污成分如表7所示。结果表明,脱水粪污中Cd、PB、Hg、Cr和As的质量分数均低于《有机无机复混肥料》(GB 18877-2020)[23]要求的最大限值;蛔虫卵死亡率、粪大肠菌值、沙门氏菌的数值均满足《粪便无害化卫生要求》(GB 7959-2012)[24]要求的最大限值。由于该粪污处理厂的检测结果反应了不同物业形态的混合粪污的平均水平,具有较高的代表性。此外,从重金属的质量分数分析,混合脱水后的粪污除As的质量分数略高外,其余指标均能够满足焚烧发电厂的入厂要求。
4)宝安区粪污处理工艺的确定。《深圳市环境卫生设施系统布局规划(2006-2020)》[25]指出,深圳市粪污无害化处理规模必须满足城市粪污处理量的最大值。到远期,当城市粪污中的部分通过排入污水管网与城市污水混合处理后,剩余的城市粪污无害化处理能力可用于处理城市污水污泥。因此,宝安区粪污处理及处理规模拟按照含水率95%的粪污800 t·d−1左右进行设计规划,并预留2条处理线的场地,视今后的具体情况再考虑是否建设。
基于上述技术调研和分析,现提出以下粪污处理方案:采用多功能吸粪车收集,在WWTP2、WWTP3和WWTP4现有污泥处理工艺的基础上,分别添加粪污污泥低温干化系统,将粪污脱水至40%后,作为有机肥原料出售或拖入老虎坑垃圾焚烧厂与生活垃圾进行协同焚烧(如图3所示)。这种处理工艺可以有效避免粪污的随意倾倒,即粪污就地进行脱水处理,而后直接运往指定地点,中途不经其他地点的装载。符合《深圳经济特区市容和环境卫生管理条例》[10]第60条规定的城市化粪池的粪污应当密闭运送到指定地点,不得随意处理的规范。主要工艺要点有以下3点。①抽脱一体化粪污收运系统。首先,利用真空泵将化粪池内粪污混合物抽至固液分离器中,将混合物中的塑料袋、石块、金属等杂物分离压缩至杂物仓内当作生活废弃物处理;同时,粪水悬浊物被送至车顶的储存池中搅拌并送入化学处理池,净化原料调配池中的净化原料将自动投放至化学处理池中,经2级化学处理净化后,输送至车尾的叠螺脱水设备进行分离,分离后的排放水回流至化粪池,进入污水管网系统,脱水后的粪污含水率约为75%。②低温干化深度脱水系统。多功能吸粪车原位将粪污脱水至75%后,进入污水处理厂,经刷卡称重系统与污泥暂存快速密闭对接;通过暂存料斗中的螺旋输送将粪污输送至低温干化机;进入干化机的粪污,经切条成型机切成条状平铺在干化机层网带上;利用电源,将75 ℃左右的干燥热空气通过网带与粪污接触后变成湿热空气,带走粪污中的水分;成型后的粪污经过网带干燥至10%~30%(含水率可调),通过出料螺旋输送至刮板式干料输送机,再通过刮板输送机将干粪污输送至干料仓暂存,干料仓中的污泥经提升输送至干渣输送车上;整个干化过程可连续24 h运行,污泥在低温、密闭除湿干燥过程中无废气排放。③资源化利用系统和无害化处理系统。根据深圳周边粪污市场的实地调研和历史资料收集,脱水后的粪污含水率若在60%以上,其出路较差;若含水率降至50%以下甚至更低,将其出售并作为有机肥原料的市场接受率较高。因此,在能保证脱水粪污品质的前提下,首先考虑将脱水粪污作为有机肥原料出售。在出路受限的情况下,深度干化造粒后的粪污送入老虎坑垃圾焚烧厂与生活垃圾进行协同焚烧,共用垃圾焚烧厂的焚烧系统和尾气处理系统。
-
1)项目建设模式的确定。不同于BOT和PPP模式在污水处理厂的成熟应用,放眼全国,粪污污泥无害化处理项目的数量较少,没有太多可以借鉴和参考的成熟技术和经验。因此,宝安粪污无害化处理项目的立项建设在全国具有引领和示范的效应。鉴于宝安粪污处理的紧迫性,为保证粪污处理项目能够达到预期效果,考虑以PPP的模式委托具有工程设计、施工资质、运营管理经验丰富的企业进行粪污处理工程设计、建设、收运和运营管理,从而能够有效克服设计、采购、施工、运营相互制约和相互脱节的矛盾,有利于各阶段工作的合理衔接,有效实现建设项目的进度、成本和质量控制符合建设工程承包合同约定,保障宝安区粪污无害化处理项目的顺利投运。
2)粪污收运模式的确定。有序规范的粪污收运模式是确保宝安区粪污处理项目正常实施和运营的关键。目前,宝安区尚未建立完善的粪污收运体系,对于化粪池的管理和粪污的清掏运输大多数都是小区物业或产权单位自主处理或通过广告报纸请私营企业和个人承包管理。这种完全由市场主导的粪污收运方式在利益的驱动下往往会出现乱倒乱丢的现象,严重影响市容市貌并带来环境卫生隐患。因此,宝安区可考虑引入“以政府主导,市场参与为辅”的粪污收运体系,打破现有无序混乱的粪污收运格局。而打破现有格局最有效的方法就是让政府职能部门下属企事业单位介入粪污收运市场,引导粪污收运市场逐步规范化[26]。同时,对市场原有的粪污收运企业和个人实施政策补贴扶持和提高行业准入门槛等措施,通过市场的兼并淘汰,逐步规范,形成以政府为主导,市场参与的运作模式,将粪污经就地脱水处理后运往指定粪污处理地点进行堆肥或焚烧,严禁私自运送粪污。
3)政府监管体系的建立。健全高效的政府监管体系,是城市粪污处理与处理市场化运营健康发展的有力保障。为加强宝安区粪污处理运营的统一监管,建议成立宝安区粪污处理管理中心(以下简称“粪管中心”),使其成为宝安区粪污处理监管体系协调和运作的枢纽[27]。同时,出台相关粪污处理费用的征收办法及实施细则,明确粪污处理费用征收和使用原则,设立宝安区专有粪污处理设施地点,划区分配,由各收运企业按区收运至指定地点。
宝安区粪污处理监管体系由5个子系统相互关联构成。①粪污处理费征收系统,征收办法采用“单位开票、银行代收、财政统管”,粪污处理费用由区财政局直接纳入财政专户进行管理;②粪污收运和处理运营监控系统,粪管中心负责粪污收运和处理的日常运营监管,区环境监测站对进厂粪污进行各项指标监测,区城市管理和综合执法局负责执法监督;③粪污处理运营费用支付系统,负责收运和处理粪污的运营单位按月向粪管中心提交支付申请和相关报表,粪管中心根据相关政策法规、合同进行审查并反馈支付意见。经区主管部门审定并由财政局核实后,将应支付的运营费用划至各运营单位;④技术和服务支撑系统,由粪管中心或区主管部门提供运营单位需要的技术支持及其他服务;⑤体系外部监督和审计系统,粪管中心定期向社会公布粪污收运和处理的各项资料和费用征收使用情况,审计部门定期对粪污处理费用的征收使用情况进行审计。
-
1)调研所得宝安区2018年全年粪污清运量总计14.56×104 t,即398.9 t·d−1,其结果与理论清运量存在较大差距。其要原因包括:化粪池粪污直接混入市政污水管道;化粪池粪污清理不彻底;化粪池粪污偷运。
2)结合现阶段粪污理论清运量和实地调研清运量,建议宝安区粪污清运与处理设施规模按照800 t·d−1(含水率95%)设计,按照分散布点的方式在辖区内3座污水处理厂分别建设2条处理线(1用1备)。
3)根据技术调研和分析,宝安区粪污处理技术方案为:①粪污收运,采用抽脱一体化的多功能吸粪车,原位对粪污进行分离和机械脱水使含水率降至80%左右;②深度脱水,采用除湿热泵型低温干化设备对粪污进行深度脱水至30%,以满足焚烧要求;③脱水后的粪污处理,经低温干化脱水后的粪污可作为有机肥原料出售或拖入老虎坑垃圾焚烧厂进行焚烧。
4)建议采取PPP方式委托有资质的企业负责宝安区粪污处理厂站的设计、建设和运营管理。通过提高行业准入门槛、政策补贴扶持等措施,形成以政府为主导,市场参与的运作模式。成立宝安区粪污处理管理中心,加强粪污处理运营的统一监管,将粪污运送至指定地点进行处理。
深圳市宝安区城市粪污污泥处理管理现状及对策
Management status and countermeasures of disposal of fecal sludge -A case study of Bao'an District, Shenzhen City
-
摘要: 为了解城市粪污污泥处理和管理所存在的问题,以深圳市宝安区为研究区域,采用实地调研的方法,对该区域粪污产生量和清运量进行测算和分析。通过人均推算法和抽样调查法确定宝安区理论和实际的粪污清运量,以确定该区域的粪污处理规模以及合适的处理工艺和管理模式。实地调研发现,宝安区尚未建立完整的粪污收运体系,清掏工艺及粪污去向难以追踪成为粪污收运体系监管的主要痛点;同时,宝安区辖区内没有专门用于填埋、堆肥或焚烧的粪污处理厂,深圳市唯一1座粪污无害化处理厂由于设计规模有限且设备工艺老旧使得该处理厂无法满足宝安区粪污处理需求。根据粪污清运量的分析结果,从粪污收运、粪污深度脱水和脱水粪污处理3个方面提出一套城市粪污无害化、资源化处理工艺和与其对应的项目建设和运营管理模式。本研究结果可为宝安区及我国其他有类似粪污污泥处理管理问题的地区提供参考。Abstract: To understand the problems existing in the disposal and management of fecal sludge, taking Bao'an District of Shenzhen City as the study area, the amount of fecal produced and removal volume in this area were calculated and analyzed by using the method of field investigation. Through the per capita calculation and sampling survey methods to determine the theoretical and actual fecal removal volume in Bao'an District, the scale of fecal treatment and the appropriate treatment processes and management modes were recommended. The field investigation showed that a complete fecal collection and transportation system had not yet been established in Bao’an District, and the difficulty in tracing cleaning process and whereabouts of fecal had become the main pain points in the supervision of fecal collection and transportation system. In addition, there was no fecal treatment plant specially used for landfill, composting, or incineration in Bao'an District. The only harmless fecal treatment plant in Shenzhen could not meet the needs of fecal disposal in Bao'an District because of its limited design scale and outdated equipment. According to the analysis results of fecal removal volume, a set of harmless and resourceful disposal process of fecal and its corresponding project construction and operation management mode was proposed from three aspects of collection and transportation, deep dehydration, and dehydrated fecal treatment. This study can provide references for Bao'an District and other cities with similar problems on disposal and management of fecal sludge.
-
厌氧氨氧化(anaerobic ammonium oxidation, anammox)工艺相较于传统硝化-反硝化脱氮工艺,具有曝气量少、不消耗有机物及污泥产率低等特点[1-3],并已成功应用于城市污水处理厂污泥水及与此类似的含有高浓度氨氮废水[4-6]。在厌氧氨氧化技术成功应用于处理高浓度含氮废水后,研究重点则从处理水量小、浓度高的污泥水(侧流)转变到处理水量大、浓度低的城镇污水(主流)处理[7-10]。
厌氧氨氧化反应的功能菌为厌氧氨氧化菌(AnAOB),而温度是AnAOB生长和代谢的一个重要参数,大多数厌氧氨氧化菌的最适生长温度为30~35 ℃[11]。而在实际污水处理厂主流的水温基本处于10~25 ℃。有研究[12-13]表明,温度每降低5 ℃,厌氧氨氧化菌的比生长速率下降30%~40%,从而影响反应器的脱氮效能。MA等[14]在利用厌氧氨氧化UASB反应器在中低温条件下处理低浓度废水时发现,当反应器温度由30 ℃降至16 ℃时,总氮去除率下降62%。因此,研究厌氧氨氧化菌活性随温度变化的规律对anammox技术应用于城市污水主流处理具有重要意义。
近年来,相比于传统活性污泥工艺,基于生物膜或颗粒污泥的主流工艺表现突出[15]。有研究表明,相较于活性污泥,在温度低于15 ℃的条件下,好氧颗粒污泥可长期稳定进行亚硝化过程并表现出0.63~0.7 kg·(m3·d)−1(以氮素计)的处理能力[16-17]。这说明不同形态的污泥在遭受温度变化时微生物响应特征存在差异。LOTTI等[18]在温度为10~30 ℃条件下,研究了以游离态和颗粒态存在的厌氧氨氧化菌的反应活化能,结果表明,以游离态存在的厌氧氨氧化菌对温度变化的敏感程度大于厌氧氨氧化颗粒污泥。这说明厌氧氨氧化菌的存在形态影响其对温度的适应性。随着以颗粒污泥和生物膜形式的厌氧氨氧化技术拟在城市污水处理厂主流工艺应用中的推进,厌氧氨氧化菌在不同温度和污泥形态条件下的反应活性和特性亟需了解和研究。
本研究以培养成熟的厌氧氨氧化颗粒污泥和生物膜为研究对象,通过测定anammox菌在不同温度(15~35 ℃)和不同形态下(游离态、颗粒污泥和生物膜)的活性,探讨了厌氧氨氧化反应的活化能和温度系数的变化,以期为厌氧氨氧化技术在主流系统脱氮的应用提供参考。
1. 材料与方法
1.1 实验装置及污泥
厌氧氨氧化活性(specific anammox activity, SAA)采用基质消耗速率法进行测定,测定装置如图1所示。反应器有效容积为7 L,内置推进器且在顶部设置进出水及取样口,温度由外部水浴控制,pH控制为7.5~8.1,DO控制在0.1 mg·L−1以下。活性测定过程中NH4+-N和NO2−-N由NH4Cl和NaNO2提供,质量浓度分别为30 mg·L−1和40 mg·L−1,每隔15~50 min(根据不同温度进行设定)取样并测定NH4+-N、NO2−-N和NO3−-N质量浓度,按式(1)计算厌氧氨氧化菌活性。
ki=dcidt⋅1X (1) 式中:ki为颗粒污泥、生物膜或游离状态厌氧氨氧化菌的厌氧氨氧化活性,g·(g·d)−1;ci为氮浓度变化(NH4+-N、NO2−-N及NO3−-N),mg·L−1;X为污泥浓度(mixed liquid volatile suspended solid,MLVSS),g·L−1。
厌氧氨氧化颗粒污泥取自实验室已稳定运行的厌氧氨氧化反应器,温度控制为35℃,进水负荷(nitrogen loading rate, NLR)为2.508 g·(L·d)−1,总氮(total nitrogen,TN)去除率为(87.77±1.59)%,MLVSS为(12.45±0.37) g·L−1,MLVSS/MLSS比值为0.67±0.04。厌氧氨氧化颗粒污泥呈红棕色且颗粒形态良好,直径为2 mm左右,SAA颗粒污泥为0.129 g·(g·d)−1。
厌氧氨氧化生物膜取自实验室已稳定运行的移动床生物膜反应器(moving bed biofilm reactor, MBBR),反应器温度控制为35 ℃,NLR为5.446 g·(L·d)−1,TN去除率为(73.15±5)%,填料型号为K3(比表面积为500 m2·m−3),生物膜厚度为2~3 mm,外观呈现红棕色,SAA生物膜为0.117 g·(g·d)−1 。
游离状态的厌氧氨氧化菌为实验所用颗粒污泥和生物膜通过磁力搅拌分散,以1 000 r·min−1搅拌时间3 min。由Microtrac Sync粒度仪(SYNC,美国)测定分散后的污泥粒径约为7.02~30.36 μm(≤30 μm),此时可认为污泥中的anammox处于游离态[19]。
1.2 水质指标测定
NH4+-N、NO2−-N和NO3−-N的测定参照标准方法[20]进行。NH4+-N使用纳氏试剂分光光度法测定;NO2−-N使用N-(1-萘基)-乙二胺光度法测定;NO3−-N使用紫外分光光度法测定。MLSS和MLVSS使用标准重量法测定;pH使用雷磁PH-3C pH计测定;DO使用便携式溶氧仪测定。
1.3 活化能及温度系数的计算
厌氧氨氧化菌的生物反应速率(活性)和温度的关系通过Arrhenius方程(式(2))表示,对式(2)进行积分可得式(3)。
dlnkdT=EaRT2 (2) 式中:k为厌氧氨氧化活性,g·(g·d)−1;Ea为反应所需活化能,J·mol−1;T为热力学温度,K;R为气体常数,8.314 J·(K·mol)−1。
lnk=−EaRT+lnA (3) 式中:A为Arrhenius常数。通过测定不同温度下的k,做lnk与1/T的关系图,直线的斜率为-Ea/R,由此可确定相应形态下的厌氧氨氧化活化能Ea。若温度分别为T1和T2时,反应速率分别为k1和k2,将其分别代入式(3),得式(4)和式(5)。将式(4)和式(5)相减可得式(6),再进一步换算可得式(7)。
lnk1=−EaRT1+lnA (4) lnk2=−EaRT2+lnA (5) lnk2k1=−EaR⋅T1−T2T1T2 (6) k2=k1⋅eEaRT1T2⋅(T2−T1) (7) 令Ea/(R·T1·T2)=KT (温度影响因子),e^(KT)=θ (温度系数),则(7)式可改为式(8)
k2=k1⋅θ⋅(T2−T1) (8) 根据不同温度下的Ea,计算温度影响因子KT,从而确定温度系数θ。
1.4 Anammox种群结构分析
对实验污泥采用高通量测序,确定污泥中anammox菌的种群结构。取一定数量的生物膜及颗粒污泥,经去离子水淘洗离心后按照试剂盒E.Z.N.A.® soil DNA Kit (Omega Bio-tek,Norcross GA, U.S.)规定的方法对DNA进行提取。以提取的DNA为PCR模板,采用V3-V4引物(序列为338F:5'-ACTCCTACGGGAGGCAGCAG-3'和806R:5'-GGACTACHVGGGTWTATAAT-3'),在ABI Gene Amp® 9700 PCR thermo-cycler(ABI, CA,USA)上进行PCR反应。将同一样本的PCR产物混合后使用2%琼脂糖凝胶回收PCR产物,利用AxyPrep DNA Gel Extraction Kit (Axygen Biosciences,Union City,CA,USA)进行回收产物纯化,2%琼脂糖凝胶电泳检测,并用Quantus™ Fluorometer (Promega,USA)对回收产物进行检测定量。使用NEXTflexTM Rapid DNA-Seq Kit (Bioo Scientific,美国)进行建库,利用Illumina公司的Miseq PE300/NovaSeq PE250平台进行测序(上海美吉生物医药科技有限公司,www.majorbio.com)。
2. 结果与讨论
2.1 厌氧氨氧化颗粒污泥和生物膜微生物群落结构分析
由图2可见,从门水平上来看,Planctomycetes门的微生物相对丰度分别为31.36%和18.86%,而Planctomycetes门中包含所有已知的anammox菌[21-22]。在属水平上,颗粒污泥和生物膜上探明的主要anammox菌属为Ca. Brocadia,此结果和主流系统内已探明的典型种属相同[23-24],相对丰度达到27.96%和17.52%。该结果表明anammox菌在颗粒污泥上和生物膜上均占据主导地位。除此之外,污泥中还含有Chloroflexi、Proteobacteria、Bacteroidetes。这些微生物的存在对颗粒污泥颗粒化及颗粒形态维持的过程中具有重要的作用[25]。因此,以上述2种污泥样品进行不同温度条件下的厌氧氨氧化活性特性研究是可行的。
2.2 颗粒污泥和生物膜的SAA
图3为不同温度条件下SAA的测定结果。SAA颗粒污泥随温度的下降而下降,当温度由35 ℃降至15 ℃时,SAA颗粒污泥由0.128 g·(g·d)−1下降至0.013 g·(g·d)−1,活性损失了89.89%。在对颗粒污泥进行分散处理后,SAA颗粒污泥(游离)由0.118 g·(g·d)−1(35 ℃)下降至0.008 g·(g·d)−1(15 ℃),活性损失增至93.58%。同样,当温度由35 ℃降至15 ℃时,SAA生物膜由0.117 g·(g·d)−1下降至0.016 g·(g·d)−1,活性损失为86.19%。在对生物膜进行分散处理后,SAA生物膜(游离)由0.106 g·(g·d)−1(35 ℃)下降至0.010 g·(g·d)−1(15 ℃),活性损失升至90.17%。由此可见,随着温度降低,SAA颗粒污泥和SAA生物膜均有不同程度的减小,但生物膜抵抗温度变化的能力较强。
2.3 厌氧氨氧化反应Ea
Ea值越大,说明反应过程中要跨越的能垒越大,该反应越难进行;反之,Ea值越小,则说明反应过程中要跨越的能垒越小,反应则越容易进行。由图4可见,不论颗粒污泥还是生物膜,若以15~35 ℃进行拟合,lnk和1/T线性关系较差,而若分别以15~25 ℃和25~35 ℃拟合,则能取得较好的线性关系。这表明颗粒污泥和生物膜的厌氧氨氧反应在不同温度范围内的活化能不同。谭锡诚等[26]在运行厌氧氨氧化反应器时也有相同发现。针对厌氧氨氧化活性存在拐点这一现象,ISAKA等[27]认为可能是由于厌氧氨氧化反应在不同温度区间酶活性存在差异所致。因此,将15~35 ℃分为15~25 ℃和25~35 ℃ 2个区间更符合anammox对温度的效应。由图4(a)可见,在15~25 ℃和25~35 ℃的活化能Ea-颗粒污泥分别为105.60 kJ·mol−1和62.15 kJ·mol−1;在15~25 ℃和25~35 ℃ Ea-颗粒污泥(游离)分别为132.00 kJ·mol−1和68.60 kJ·mol−1。由图4(b)可见,对生物膜而言,在15~25 ℃和25~35 ℃的活化能Ea-生物膜分别为88.25 kJ·mol−1和56.78 kJ·mol−1;在15~25 ℃和25~35 ℃ Ea-生物膜(游离)分别为104.52 kJ·mol−1和65.42 kJ·mol−1。以上数据说明不同形态的厌氧氨氧化菌活化能在不同温度区间有明显差异,温度较高时(25~35 ℃)的活化能明显小于温度较低时(15~25 ℃)的活化能。因此,厌氧氨氧化反应在温度较高时更容易进行。LOTTI等[18]的研究结果也证实了这一点。颗粒污泥和生物膜在进行分散处理后,Ea值均有不同程度的升高,说明Anammox菌的Ea与其存在状态有关。当Anammox菌以颗粒污泥和生物膜形态存在时,Anammox菌被胞外聚合物(EPS)包裹,这有助于抵抗外界温度变化[28];而当anammox菌以游离态存在时,由于缺少EPS的保护,anammox菌对温度变化就变得敏感。王淑莹等[29]研究温度对硝化反应的影响时也发现,同一温度范围内颗粒污泥的硝化反应Ea值低于絮状污泥。这说明颗粒污泥或生物膜空间结构的确有助于微生物抵抗外界的温度变化。除分散前后Ea发生变化外,生物膜所得Ea值与颗粒污泥所得Ea值两者存在差异,推测其原因可能是颗粒污泥与生物膜内EPS的含量不同。有研究表明,厌氧氨氧化颗粒污泥EPS含量为71.82~140.3 mg·g−1[30-34](以EPS计),而生物膜中EPS含量可高达300.84 mg·g−1[35]。此外,郭静[36]发现厌氧氨氧化生物膜中的EPS总量略高于颗粒污泥。这可能是造成生物膜Ea值与颗粒污泥Ea值存在差异的主要原因,但还需进一步研究。
表1比较了本研究与文献报道的厌氧氨氧化反应Ea值。本研究颗粒污泥和生物膜中的厌氧氨氧化菌在25~35 ℃下的反应活化能分别为62.15 kJ·mol−1和56.78 kJ·mol−1,上述数值与STROUS等[13]报道的Ca. Brocadia在20~43 ℃下的Ea为70 kJ·mol−1 相近。此外,LOTTI等[18]报道,厌氧氨氧化菌活化能为68 kJ·mol−1(25~30 ℃),这也与本研究获得的Ea值相近。颗粒污泥中的厌氧氨氧化菌在15~25 ℃下的反应活化能为105.60 kJ·mol−1。PARK等[37]利用厌氧氨氧化颗粒污泥在13~23 ℃下获得Ea为89.6 kJ·mol−1,略低于本研究的结果。这可能是因为实验所用anammox菌不同而存在差异。本研究中Anammox菌为Ca. Brocadia菌,而PARK等[37]研究的anammox菌是Ca. Kuenenia菌。
表 1 不同实验厌氧氨氧化反应Ea值Table 1. Ea values for anaerobic ammonia oxidation reactions in different tests污泥形态 anammox种属 Ea/(kJ·mol−1) 参考文献 生物膜 Ca. Brocadia 88.25(15~25 ℃);56.78(25~35 ℃) 本研究 生物膜(游离) 104.52(15~25 ℃);65.42(25~35 ℃) 颗粒污泥 Ca. Brocadia 105.60(15~25 ℃); 62.15(25~35 ℃) 本研究 颗粒污泥(游离) 132.00(15~25 ℃);68.60(25~35 ℃) 颗粒污泥 Ca. KueneniaCa.Jettenia 93~94(6~28 ℃);33(28~37 ℃) [27] 颗粒污泥 Ca.Brocadia 230(10~15 ℃);105(15~20 ℃)68(20~25 ℃);46(25~30 ℃) [18] 颗粒污泥 Ca. Kuenenia 89(20~43 ℃) [37] 颗粒污泥 Ca. Kuenenia. 72.8(10~30 ℃) [37] 颗粒污泥 Ca.Brocadia 89.6(13~23 ℃);16.4(23~33 ℃) [37] 活性污泥 Ca. Brocadia 107.4(10~25 ℃) [37] 活性污泥 Ca. Brocadia 70(20~43 ℃) [13] 活性污泥 Ca.Brocadia 293(10~15 ℃);131(15~20 ℃)79(20~25 ℃);68(25~30 ℃) [18] 2.4 温度系数θ
依据各温度区间所得Ea,可得出不同形态下anammox污泥的温度系数θ。结果表明,颗粒污泥在15~25 ℃和25~35 ℃下的温度系数θ分别为1.14和1.09;生物膜在15~25 ℃和25~35 ℃的θ分别1.12和1.08。
在污水处理中,温度系数可以衡量系统温度对反应速率和净化能力的影响,θ值越大,表明温度变化对该微生物活性的影响越大。我国城市污水处理厂生物池中温度通常为15~25 ℃,且厌氧氨氧化过程必须与亚硝化或部分反硝化配合使用,因此,对比15~25 ℃厌氧氨氧化工艺中各功能微生物的KT和θ是必要的。表2为本研究和文献报道的厌氧氨氧化工艺中功能微生物的KT和θ值。可见,当温度为15~25 ℃时,各功能微生物的θ值大致为θ反硝化<θAOB<θanammox。这可能与3种功能菌的最适温度有关。Anammox菌、氨氧化菌(ammonium oxidizing bacteria, AOB)和反硝化菌的适宜温度依次为30~40、20~30和15~35 ℃,使得anammox菌的θ值较大,即anammox菌对低温环境的适应性弱于其他2种微生物。相比于反硝化菌,AOB温度系数θ值略小,这表明AOB抵抗温度变化的能力较强。因此,在主流系统内采用亚硝化厌氧氨氧化工艺比部分反硝化厌氧氨氧化工艺更有优势。
表 2 厌氧氨氧化工艺中功能微生物的KT和θTable 2. KT and θ of functional microorganisms in anammox process3. 结论
1)当温度由35 ℃降至15 ℃时,以颗粒污泥形态存在的anammox菌活性由0.128 g·(g·d)−1下降至0.013 g·(g·d)−1,以生物膜形态存在的anammox菌活性由0.117 g·(g·d)−1下降至0.016 g·(g·d)−1。
2)以颗粒污泥形态存在的anammox菌在15~25 ℃和25~35 ℃的Ea分别为105.60 kJ·mol−1和62.15 kJ·mol−1;以生物膜形态存在的anammox菌在15~25 ℃和25~35 ℃的活化能分别为88.25 kJ·mol−1和56.78 kJ·mol−1。这表明以生物膜形态存在的anammox菌对于温度变化的抵抗能力较强。
3)以颗粒污泥形态存在的anammox菌在15~25 ℃和25~35 ℃的θ分别为1.14和1.09;以生物膜形态存在的anammox菌在15~25 ℃和25~35 ℃的θ分别为1.12和1.08。与硝化菌或反硝化菌相比,本实验所获得的厌氧氨氧化菌的温度系数θ偏大。这表明,厌氧氨氧化菌对温度的变化更为敏感,使得厌氧氨氧化在低温条件下首先将成为限制步。
-
表 1 宝安区粪污处理面临的困境
Table 1. Dilemma of fecal sludge treatment in Bao'an District
粪污处理面临的困境 主要难点 污染问题 1.粪污被恶意倾倒至河流和绿地等场所,造成恶劣的环境污染;2.储粪池未及时清理,造成管网堵塞,臭气扰民。 成本问题 1.粪污处理包括运输和终端处理等多个方面,需要的成本较高;2.粪污日产生量大于终端设施处理量,需要投入更多的成本扩大设施规模。 监管问题 1.住宅、商场和工厂等的粪污处理无法统一化管理,导致不规范的处理现象;2.未设置清掏相关的特别许可或专门要求,导致清掏公司鱼龙混杂。 表 2 宝安区污水处理厂污泥处理概况
Table 2. Sludge disposal of wastewater treatment plants (WWTPs) in Bao'an District
污水厂编号 污泥处理量/(t·d−1) 脱水设备 设备数量/台 脱泥量/(t·d−1) 盈余容量/(t·d−1) 出泥含水率/% 污泥出路 WWTP1 195 离心脱水机板框压滤机 32 18022 0 8060 焚烧填埋、制环保砖及生物燃料 WWTP2 422.5 离心脱水机板框压滤机 13 100100 0 8060 焚烧发电 WWTP3 227.5 离心脱水机板框压滤机带式压滤机 321 1705020 10 806060 制环保砖 WWTP4 364 离心脱水机板框压滤机 53 30050 0 8060 焚烧发电 表 3 宝安区粪污清运量测算方法及数据来源
Table 3. Measurement methods and data sources of fecal sludge clearing volume in Bao'an District
表 4 宝安区各街道粪污清运量
Table 4. Fecal sludge clearing volume of each street in Bao’an District
街道名称 年清运量/(104 t) 住宅办公类 综合商业类 厂房类 市政配套设施 合计 新安街道 2.98 0.04 — 0.12 3.14 西乡街道 1.92 0.30 0.12 0.13 2.46 航城街道 0.93 0.01 0.20 0.01 1.15 福永街道 0.39 — — 0.03 0.42 新桥街道 2.29 — 0.05 0.02 2.36 沙井街道 1.56 — — 0.03 1.59 松岗街道 2.88 0.05 0.08 0.08 3.09 福海街道 0.07 — — 0.02 0.09 石岩街道 0.11 — — 0.00 0.11 燕罗街道 0.08 — — 0.07 0.15 注:表中“—”表示未收集到相关数据。 表 5 抽脱一体车与其他化粪池清掏方法对比
Table 5. Comparison of Integrated manure suction truck with other septic tank cleaning methods
作业方式 作业效率 作业频率 环境影响 交通影响 能源影响 安全影响 作业成本 人工清掏 效率低,劳动强度大,清理时间长 清掏后易堵塞,1年需清掏3~4次 造成二次污染,邻避效应强 固定区域多次作业,对区域交通影响小 耗费人工,无法实现废物循环利用 安全隐患高,人工下井清掏程度有限,易造成沼气淤积发生爆炸 人工成本高,收费无依据 传统吸粪车 效率较低,清理时间较长,往返运输时间长 清掏后易堵塞,1年需清掏2~3次 造成二次污染,邻避效应强 多次往返运输排放,对区域交通存在一定影响 作业需大量清水稀释以及清洗滴漏,往返运输耗费油料 安全隐患较高,彻底清掏成本高,局部清掏易造成沼气淤积发生爆炸 按车收费,均价约150元·m−3,综合费用高 抽脱一体车 效率高,可原地不间断作业 可全面彻底清掏,1年仅需清掏1次 臭氧除臭可消除异味,邻避效应较弱 固定区域一次性作业,对区域交通影响小 不间断作业,产出的有机肥和清水可以循环利用 安全隐患低,彻底清掏成本低,全面清掏不易造成沼气淤积 收费有章可循,约30元·m−3,节约30%的成本 表 6 粪污污泥深度脱水技术对比
Table 6. Comparison of deep dehydration technology of fecal sludge
干化设备 干化温度/℃ 干化方式 供热方式 粉尘含量 安全性 废气处理 低温余热干化系统 40~68 热风循环 热泵 无 低温安全 无 滚筒式干化机 >150 热传导 蒸汽、导热油 较高 运行温度高 需配置除臭系统 空心桨叶干化机 200~300 热对流 热风、烟气 高 填充度高、运行温度高 需配置除臭系统 表 7 郁南粪污处理厂脱水粪污成分及处理限值
Table 7. Composition and treatment limits of dehydrated fecal in Yu'nan dung residue Treatment Plant
测试项目 测试结果 土地资源化利用限值 焚烧发电厂入场限值 Cd/(mg·kg−1) <2.00 ≤10 ≤10 Cr/(mg·kg−1) <4.50 ≤500 ≤50 Pb/(mg·kg−1) <7.50 ≤150 ≤600 As/(mg·kg−1) 5.32 ≤50 ≤5 Hg/(mg·kg−1) 2.98 ≤5 ≤2 蛔虫卵死亡率/% 100 ≥95 — 粪大肠菌值 >0.111 ≥10−2 — 沙门氏菌 未检出 不得检出 — -
[1] 中华人民共和国国家统计局. 中国统计年鉴[M]. 北京: 中国统计出版社, 2017. [2] LENS P, ZEEMAN G, LETTINGA G. Decentralised Sanitation and Reuse-Concepts, Systems and Implementation[M]. London: IWA Publishing, 2001. [3] U. S. Environmental Protection Agency. Onsite Wastewater Treatment Systems Manual[M]. Washington D. C. : United States Environmental Protection Agency, 2002. [4] BUTLER D, PAYNE J. Septic tanks: Problems and practice[J]. Building and Environment, 1995, 30(3): 419-425. doi: 10.1016/0360-1323(95)00012-U [5] 陈朱蕾. 国内外城市粪污处理系统模式比较的研究[J]. 武汉城市建设学院学报, 2000(1): 48-51. [6] 北京生态环境局. 北京市环境保护局关于发布北京市2016年固体废物污染环境防治信息的公告[EB/OL]. [2017-06-05]. http://sthjj.beijing.gov.cn/bjhrb/index/xxgk69/sthjlyzwg/1718880/1718881/1718883/1723627/index.html. [7] 上海市人民政府. 上海市城镇环境卫生设施设置规定[EB/OL]. [2010-12-20]. https://www.shanghai.gov.cn/xxzfgzwj/20210608/27a5af3cee1e44ce9f0855240e299081.html. [8] 林增炜, 张彦敏, 朱佳, 等. 城市粪渣无害化处理工艺探究[J]. 环境保护与循环经济, 2020, 40(11): 18-22. doi: 10.3969/j.issn.1674-1021.2020.11.007 [9] 魏薇, 马晓明. 深圳市粪渣污泥污染防治管理现状及对策分析[J]. 环境与发展, 2018, 30(6): 34-36. doi: 10.16647/j.cnki.cn15-1369/X.2018.06.019 [10] 深圳市人民代表大会常务委员会. 深圳经济特区市容和环境卫生管理条例[EB/OL]. [2020-08-13]. http://www.sz.gov.cn/zfgb/2020/gb1164/content/post_8049484.html. [11] 林增炜, 张彦敏, 朱佳, 等. 移动式污水处理机对深圳粪污处理工艺的影响[J]. 绿色科技, 2020(10): 79-81. doi: 10.3969/j.issn.1674-9944.2020.10.028 [12] 中华人民共和国住房和城乡建设部. 2016年城乡建设统计公报[EB/OL]. [2017-08-22]. http://www.mohurd.gov.cn/xytj/tjzljsxytjgb/tjxxtjgb/201708/t20170818_232983.html. [13] 柯贤成. 小型污水处理厂污泥深度脱水设计探究[J]. 环境与发展, 2018, 30(7): 51-52. doi: 10.16647/j.cnki.cn15-1369/X.2018.07.027 [14] 深圳市宝安区水务局. 宝安区水务发展“十四五”规划[EB/OL]. [2022-04-01]. http://www.baoan.gov.cn/hbswj/zwgk/lzyj/zcwj/content/post_9673967.html. [15] 刘钰坤. 市政污泥与生活垃圾协同焚烧处理技术分析[J]. 低碳世界, 2021, 11(10): 12-13. doi: 10.3969/j.issn.2095-2066.2021.10.006 [16] 张琳, 周国顺, 郭镇宁, 等. 利用生活垃圾焚烧电厂余热协同处置市政污泥[J]. 节能, 2021, 40(6): 47-51. doi: 10.3969/j.issn.1004-7948.2021.06.016 [17] 王荣建. 生活垃圾焚烧炉协同处置污泥技术的研究[J]. 化工设计通讯, 2020, 46(12): 176-177. doi: 10.3969/j.issn.1003-6490.2020.12.089 [18] 余粮. 城市小区化粪池粪渣好氧高温堆肥技术的研究[J]. 环境与发展, 2017, 29(3): 62-63. doi: 10.16647/j.cnki.cn15-1369/X.2017.03.027 [19] 盛婧, 孙国峰, 郑建初. 典型粪污处理模式下规模养猪场农牧结合规模配置研究Ⅱ. 粪污直接厌氧发酵处理模式[J]. 中国生态农业学报, 2015, 23(7): 886-891. [20] 韩永胜, 张淑芬. 肉牛粪污肥料化处理与还田技术[J]. 黑龙江畜牧兽医, 2016(18): 66-67. doi: 10.13881/j.cnki.hljxmsy.2016.1571 [21] 宾银平, 李振山, 夏孟婧, 等. 北京市粪便消纳站耗能排污特征及影响因素分析[J]. 环境工程, 2014, 32(11): 163-167. doi: 10.13205/j.hjgc.201411037 [22] 中国环境保护部, 中国国家质量监督检验检疫总局. 生活垃圾焚烧污染控制标准: GB 18485-2014[S]. 北京: 中国环境科学出版社, 2014. [23] 中国国家市场监督管理总局, 中国国家标准化管理委员会. 有机无机复混肥料: GB/T 18877-2020[S]. 北京: 中国环境科学出版社, 2021. [24] 中华人民共和国卫生部, 中国国家标准化管理委员会. 粪便无害化卫生要求: GB 7959-2012[S]. 北京: 中国环境科学出版社, 2013. [25] 深圳市城市规划设计研究院. 深圳市环境卫生设施系统布局规划(2006-2020)[EB/OL]. [2021-11-26]. https://www.renrendoc.com/paper/168498858.html. [26] 蒋宇. 成都市中心城区粪污收运体系的构建[J]. 环境卫生工程, 2010, 18(3): 12-14. doi: 10.3969/j.issn.1005-8206.2010.03.005 [27] 边军, 常杪, 朱凌云, 等. 深圳市龙岗区政府监管市场化运营污水处理厂的措施[J]. 中国给水排水, 2007(10): 68-71. doi: 10.3321/j.issn:1000-4602.2007.10.020 -