-
碳纤维增强聚合物基复合材料(CFRP)因其重量轻、强度高、耐腐蚀,被广泛应用于航空航天、风电叶片、交通工具、桥梁建筑等领域[1-3]。CFRP在日常生活中的普及应用造成废弃CFRP产生量也逐年增多。CFRP废料主要包括过期的预浸料、剩余边角材料和报废的CFRP产品。预计到2025年,全球每年产生废弃CFRP的数量将达到2×104 t左右[4]。废弃CFRP中含有大量难降解环氧树脂,填埋处理会占用大量土地,焚烧处理则会造成大气污染问题。此外,碳纤维制备成本高,能源消耗大,回收废弃CFRP可显著降低碳纤维生产成本,节约能源[5]。发展绿色高效的废弃CFRP回收技术将对我国环境保护和碳纤维产业可持续发展具有重要意义。
环氧树脂和不饱和聚酯树脂等固化树脂常作为CFRP结构的基体,为CFRP提供了优异的机械强度和化学稳定性[6]。但固化树脂具有不可逆三维网状结构,造成固化树脂无法二次熔化、重塑或再加工,增大了CFRP回收难度[7]。CFRP回收方法主要包括热解法、化学回收法和机械回收法[8-10]。热解法或化学降解法可去除CFRP中的热固性树脂,得到再利用价值较高的长丝束碳纤维。但是,热解法能耗较高,而化学法会产生大量废弃化学试剂;同时,CFRP中的固化树脂大多会被降解为小分子气相和油相产物[11]。油相降解产物中含有大量芳烃和酚类有毒物质,必须得到妥善处置,以避免环境污染。机械回收法主要通过粉碎、研磨等工艺将CFRP破碎成小块或粉末[12]。机械方法工艺简单、成本低,还可以避免废弃树脂降解所造成的环境污染问题。但是,CFRP具备较高的比强度和比模量,导致在机械回收过程中碳纤维的长度和强度损失较高,只能得到增强效果较差的碳纤维粉末或短纤维产物,极大限制了机械法的推广应用。因此,如何在机械回收过程中有效保留原始碳纤维长度和强度,提高机械回收产物的再利用价值,已成为机械回收法在推广应用过程中亟待解决的难题。
普通化学试剂很难在温和条件下高效降解固化环氧树脂(CEP),但是一些有机溶剂可以在一定程度上溶胀CEP。WANG等[13]研究发现,CEP在醋酸(180 °C,6 h)中的溶胀率约为56%,明显优于甲醇(18.79%)、乙醇(20.85%)、正丙醇(16.16%)、异丙醇(11.06%)和水(3.80%)。之后,选用醋酸作为溶胀剂,可配合AlCl3实现CEP高效催化降解。溶胀法不仅可以用于CEP选择催化断键降解,也可以用于复合材料分层解离回收。ZHU等[14]利用离子液体[EMIM+][BF4−](260 °C,20 min)成功实现废弃印刷线路板溶胀解离回收。WATH等[15]分别采用n-甲基-2-吡咯烷酮(100 ℃,90 min)和二甲基亚砜(90 ℃,90 min)成功实现废弃印刷线路板溶胀解离回收。当前溶胀法主要用于废弃印刷线路板解离回收,有关废弃CFRP的溶胀解离回收研究较少。因此,本研究尝试利用醋酸溶胀法实现废旧CFRP绿色回收,主要研究CEP在醋酸介质中的溶胀与降解特性;分析影响CEP溶胀和降解的主要因素和作用机制;并揭示CEP溶胀与降解作用对溶胀产物软化和分层现象的作用机制;同时,研究不同溶胀处理条件下制备CFRP的抗弯强度。
醋酸溶胀回收废弃碳纤维增强聚合物基复合材料
Recycling of waste carbon fiber-reinforced polymer composite by acetic acid swelling method
-
摘要: 针对废弃碳纤维增强聚合物基复合材料(CFRP)在机械法回收过程中碳纤维长度和强度损失较高的难题,采用醋酸溶胀法改善CFRP机械加工性能,以降低碳纤维长度和强度损失,提高CFRP机械回收产物再利用价值。结果表明,CFRP中的固化环氧树脂(CEP)能够在醋酸介质中快速溶胀并发生轻微降解。CFRP在140 °C醋酸中浸泡1 h会发生软化现象(树脂溶胀率和降解率分别为78.88%和4.49%),当温度提升至160~220 °C后CFRP会发生分层现象(树脂溶胀率为101.54%~147.00%,降解率为9.08%~14.40%)。这些软化或分层产物易于被机械裁切成细条状、薄片状或其他各种形状。将烘干后的裁切产物或分层产物与适量未固化环氧树脂混合,采用热压法可重新制备CFRP。新制备的CFRP的抗弯强度可达到原始CFRP的47%~89%。本研究结果可为热固性环氧树脂复合材料绿色回收提供参考。Abstract: The losses of carbon fiber length and strength were high during the mechanical recycling process of the waste carbon fiber-reinforced polymer composite(CFRP). In response to this problem, acetic acid swelling method was used to improve the machinability of CFRP in order to reduce the losses of carbon fiber length and strength and improve the reuse value of CFRP mechanical recycled products. The results showed that cured epoxy resin (CEP) in CFRP could be fully swelled and slightly degraded in acetic acid medium. The stiff CFRP became soft in the acetic acid medium at 140 ℃ (swelling ratio and degradation ratio were 78.88% and 4.49%, respectively), and it delaminated into soft single CFRP layers at 160 ℃–220 ℃ within 1 h (swelling ratio and degradation ratio were 101.54%~147.00% and 9.08%~14.40%, respectively). Thus, the swollen CFRP can be easily cut into long strips, large thin slices, or other customized shapes while the length and strength of the carbon fibers were preserved well. The shear and delamination products (after drying) were mixed with uncured epoxy resin and prepared into new CFRP products through hot pressing method. The flexural strength of re-prepared CFRP boards can reach 47%~89% of the original CFRP board. This work can provide a green method for thermosetting composites recycling.
-
Key words:
- carbon fiber /
- cured epoxy resin /
- waste composites /
- resin swelling /
- resource utilization
-
-
[1] TANG S F, HU C L. Design, preparation and properties of carbon fiber reinforced ultra-high temperature ceramic composites for aerospace applications: a review[J]. Journal of Materials Science & Technology, 2017, 33(2): 117-130. [2] MACHADO J J M, GAMARRA P M R, MARQUES E A S, et al. Numerical study of the behaviour of composite mixed adhesive joints under impact strength for the automotive industry[J]. Composite Structures, 2018, 185: 373-380. doi: 10.1016/j.compstruct.2017.11.045 [3] ONWUDILI J A, MISKOLCZI N, NAGY T, et al. Recovery of glass fibre and carbon fibres from reinforced thermosets by batch pyrolysis and investigation of fibre re-using as reinforcement in LDPE matrix[J]. Composites Part B:Engineering, 2016, 91: 154-161. doi: 10.1016/j.compositesb.2016.01.055 [4] LONGANA M L, ONG N, YU H N, et al. Multiple closed loop recycling of carbon fibre composites with the HiPerDiF (High Performance Discontinuous Fibre) method[J]. Composite Structures, 2016, 153: 271-277. doi: 10.1016/j.compstruct.2016.06.018 [5] 杜晓渊, 程小全, 王志勇, 等. 碳纤维复合材料回收与再利用技术进展[J]. 高分子材料科学与工程, 2020, 36(8): 182-190. [6] 马金焕. 胺类固化环氧树脂的解聚机理及CFRP回收技术研究[D]. 哈尔滨: 哈尔滨工业大学, 2010. [7] ZHANG J, CHEVALI V S, WANG H, et al. Current status of carbon fibre and carbon fibre composites recycling[J]. Composites Part B:Engineering, 2020, 193: 108053. doi: 10.1016/j.compositesb.2020.108053 [8] MUSTATA F, TUDORACHI N. Curing kinetics and thermal characterization of epoxy resin cured with amidodicarboxylic acids[J]. Applied Thermal Engineering, 2017, 125: 285-296. doi: 10.1016/j.applthermaleng.2017.07.037 [9] KIM D H, LEE M, GOH M. Enhanced and eco-friendly recycling of carbon-fiber-reinforced plastics using water at ambient pressure[J]. ACS Sustainable Chemistry & Engineering, 2020, 8(6): 2433-2440. [10] UHLMANN E, MEIER P. Carbon fibre recycling from milling dust for the application in short fibre reinforced thermoplastics[J]. Procedia CIRP, 2017, 66: 277-282. doi: 10.1016/j.procir.2017.03.277 [11] 金鑫, 隋刚, 杨小平. T700碳纤维/环氧树脂复合材料热降解实验研究[J]. 玻璃钢/复合材料, 2017(11): 56-61. [12] HOWARTH J, MAREDDY S S R, MATIVENGA P T. Energy intensity and environmental analysis of mechanical recycling of carbon fibre composite[J]. Journal of Cleaner Production, 2014, 81: 46-50. doi: 10.1016/j.jclepro.2014.06.023 [13] WANG Y Q, CUI X J, GE H, et al. Chemical recycling of carbon fiber reinforced epoxy resin composites via selective cleavage of the carbon–nitrogen bond[J]. ACS Sustainable Chemistry & Engineering, 2015, 3(12): 3332-3337. [14] ZHU P, CHEN Y, WANG L Y, et al. A new technology for separation and recovery of materials from waste printed circuit boards by dissolving bromine epoxy resins using ionic liquid[J]. Journal of Hazardous Materials, 2012, 239-240: 270-278. doi: 10.1016/j.jhazmat.2012.08.071 [15] WATH S B, KATARIYA M N, SINGH S K, et al. Separation of WPCBs by dissolution of brominated epoxy resins using DMSO and NMP: a comparative study[J]. Chemical Engineering Journal, 2015, 280: 391-398. doi: 10.1016/j.cej.2015.06.007 [16] 中华人民共和国国家质量监督检验检疫总局, 中国国家标准化管理委员会. 纤维增强塑料弯曲性能试验方法: GB/T 1449-2005[S]. 北京: 中国标准出版社, 2005. [17] VERMA H R, SINGH K K, MANKHAND T R. Dissolution and separation of brominated epoxy resin of waste printed circuit boards by using di-methyl formamide[J]. Journal of Cleaner Production, 2016, 139: 586-596. doi: 10.1016/j.jclepro.2016.08.084 [18] BATRA D, HAY D N T, FIRESTONE M A. Formation of a biomimetic, liquid-crystalline hydrogel by self-assembly and polymerization of an ionic liquid[J]. Chemistry of Materials, 2007, 19(18): 4423-4431. doi: 10.1021/cm062992z [19] HANSEN C M. Hansen solubility parameters: a user’s handbook[M]. Boca Raton, FL: CRC Press, 2007. [20] VERMA H R, SINGH K K, MANKHAND T R. Comparative study of printed circuit board recycling by cracking of internal layers using organic solvents-dimethylformamide and dimethylacetamide[J]. Journal of Cleaner Production, 2017, 142: 1721-1727. doi: 10.1016/j.jclepro.2016.11.118 [21] YIN J, LI G M, HE W Z, et al. Hydrothermal decomposition of brominated epoxy resin in waste printed circuit boards[J]. Journal of Analytical and Applied Pyrolysis, 2011, 92(1): 131-136. doi: 10.1016/j.jaap.2011.05.005 [22] XING M F, LI Y, ZHAO L, et al. Swelling-enhanced catalytic degradation of brominated epoxy resin in waste printed circuit boards by subcritical acetic acid under mild conditions[J]. Waste Management, 2020, 102: 464-473. doi: 10.1016/j.wasman.2019.11.011