-
煤化工是煤炭清洁利用的主要方式,但煤化工在煤炭催化裂解为产品的过程中会产生大量煤化工废水。大规模发展的煤化工产业用水量高达2~3×107 m3,每年产生近4.75×108 t的煤化工高盐废水[1]。高盐废水中含有许多无机含盐离子、重金属物质和有机杂物,成分比较复杂,可生化性较差,大量存储会带来严重的污染,危害环境。
煤气化废水是在使用气化炉生产煤气的洗涤、冷凝、分馏工序中产生的废水[2]。煤气化废水经过初步气浮、混凝、过滤等步骤后进入膜浓缩系统进行超滤和反渗透,后续通过蒸发结晶工艺进行进一步的提浓和固化[1]。现阶段,高盐废水的处理方式多为蒸发结晶、膜分离技术等,这些处理方式普遍存在于处理成本较高、得到的结晶盐成分复杂难以利用的问题。随着我国对工业含盐废水排放标准的不断提高,煤化工企业实现含盐废水零排放是未来的发展方向[2]。
多项研究表明,建筑工业废水可以被用作混凝土拌合水来使用。何春玫等[3]采用水泥固化法处理高校实验废水,将重金属离子与有机污染物以不溶性沉淀,络合物等形式固封于水泥固溶体中,从而有效降低实验废水污染环境的危害。向亚军[4]通过掺入粉煤灰,河砂等形成固溶体,用水泥固化电厂脱硫废水。MOJAPELO等[5]发现,混凝土可以固化废水中的污染物,且废水的加入可以减少饮用水的使用。煤化工高盐废水中含有一定量的硫酸盐与氯盐,硫酸盐与氯盐在和水泥内掺时会加速水泥水化提高早期强度,是无机盐型早强剂,且反应产生的水化产物不会膨胀破坏,而使结构更加密实[6]。BALONIS等[7]发现,体系中Cl−浓度较低时,可与SO42−发生置换反应形成Kuzel’s盐,而Cl−浓度过高则可形成Friedel’s盐。SO42−与体系中C3A形成AFt,从而引起体系宏观上表现出体积更密实或在微观上封闭孔隙或两者兼有。张路等[8]发现,在有硫酸钠存在的情况下,加速了水泥水化,水化早期硫酸钠能够在一定程度上细化毛细孔,且细小孔隙数量和硫酸钠掺量呈正相关。曹文章等[9]发现,NaCl和Na2SO4对水泥水化具有交互作用,同时掺入可以显著地缩短水泥的进程。
基于高盐废水难以处理以及我国西部水资源短缺的现状,本研究将高盐废水作为拌合水,按照不同掺量在不同养护温度下与胶凝材料进行拌合制备砂浆与净浆试块,研究观察后续试块宏观力学及微观性能的变化;并研究水化产物对胶凝材料微观结构的影响。本研究拟实现在不降低胶凝材料性能的同时,利用高盐废水作为拌合水的目标,以为高盐废水的利用提供一种新思路。
煤化工高盐废水拌合水泥制备生态胶凝材料的性能
Properties of eco-cementitious materials prepared by mixing cement with high-salt wastewater from coal chemical industry
-
摘要: 针对目前处理高盐废水成本较高且处理不彻底等问题,采用掺入高盐废水拌合水泥制备生态胶凝材料的方法,以达处理和利用高盐废水的目的。同时,探究了不同养护温度下不同掺量高盐废水拌合水泥制备的生态胶凝材料的相关性能。结果表明,高盐废水的掺入可以有效促进水泥拌和过程中C-S-H凝胶和Friedel’s盐、钙钒石的生成,进而优化试样内部的孔隙结构。这不仅有利于胶凝材料强度的发展,而且可以减少危害物的浸出。在常温养护条件下,掺入50%高盐废水拌合水泥制备的生态胶凝材料的28 d抗压强度可以达到55.5 MPa,且对重金属元素的固化率可以达到50%以上。本研究结果可为煤化工高盐废水拌合水泥制备生态胶凝材料提供参考。Abstract: In order to solve current defects of high-concentration salt-containing methods such as high cost and incomplete treatment, this research dealt with the wastewater and made use of it by mixing the wastewater with cement to produce ecological cementitious materials. The related properties of ecological cementitious materials prepared by mixing cement with different dosages of high-concentration salt-containing wastewater at different curing temperatures were analyzed and studied by means of electric pressure tester, X-ray diffraction, scanning electron microscope, and synchronous thermal analysis. The results showed that the incorporation of high-concentration salt-containing wastewater can effectively promote the formation of C-S-H gel, Friedel’s salt and AFt in the cement mixing process, and further optimize the pore structure of the sample, which was not only conducive to the development of the strength of the cementitious materials, but also could reduce the leaching of harmful substances. The 28 d compressive strength of the ecological cementitious materials prepared by mixing 50% high-concentration salt-containing wastewater with cement under room temperature curing could reach 55.5 MPa, and the curing rate of heavy metal elements could reach more than 50%. This research provides a reference for future use of high-concentration salt-containing wastewater.
-
表 1 基准水泥化学分析结果
% Table 1. Chemical composition of cement
% SiO2 Al2O3 CaO Fe2O3 MgO Na2Oeq f-CaO SO3 Cl− 其他 20.58 5.03 63.32 3.38 2.01 0.55 0.68 2.06 0.018 1.76 表 2 基准水泥物理性能检测结果
Table 2. Physical properties of cement
比表面积/
(m2·kg−1)标准
稠度/%凝结时间/min 抗折强度/Mpa 抗压强度/Mpa 初凝 终凝 3 d 7 d 28 d 3 d 7 d 28 d 354 24.60 98 157 6.2 7.6 9.4 27.6 38.5 53.8 表 3 高盐废水化学组成
Table 3. Chemical composition of high-salt wastewater
mg·L−1 硫酸盐 氯盐 磷酸盐 总磷 硝氮 亚硝氮 氨氮 总氮 Cr Ni Cu Zn As Cd Pb 61.44 84.70 21.10 25.96 1 145.00 92.34 25.58 1 283.00 0.12 0.33 0.47 0.17 0.56 0.02 — 注:“—”表示待测样元素质量浓度低于检出限。 表 4 净浆水泥胶体配比
Table 4. Water cement ratio of paste
高盐废水掺量 水泥质量/g 去离子水质量/g 高盐废水质量/g 0 550 220 0 50% 550 110 110 100% 550 0 220 表 5 砂浆水泥胶体配比
Table 5. Mortar water cement ratio
高盐废水
掺量水泥
质量/g砂子
质量/g去离子水
质量/g高盐废水
质量/g0 450 1 350 225.0 0 50% 450 1 350 112.5 112.5 100% 450 1 350 0 225.0 表 6 28 d生态胶凝材料重金属浸出质量浓度
Table 6. Leaching content of heavy metals in 28 d ecological cementitious materials
mg·L−1 高盐废水掺量或限值 Cr Ni Cu Zn As Cd Pb 0 0.010 — — — — — — 50% 0.040 — — — — 0.004 — 100% 0.060 — — — — — — 待测元素检测限 0.01 0.01 0.01 0.006 0.1 0.003 0.05 Ⅳ级地下水排放限值 0.10 0.10 1.50 5.00 0.05 0.01 0.10 注:“—”表示待测样元素质量浓度低于检出限。 -
[1] 陈莉荣, 邬东, 谷振超, 等. 煤化工含盐废水的处理技术应用进展[J]. 工业水处理, 2019, 39(12): 12-18. doi: 10.11894/iwt.2018-1167 [2] 赵刚. 煤化工高盐废水处理技术研究[J]. 能源与节能, 2019(8): 73-74. doi: 10.3969/j.issn.2095-0802.2019.08.030 [3] 何春玫, 梁宇宁. 固化法处理实验室综合废水的研究[J]. 轻工科技, 2016, 32(6): 95-96. [4] 向亚军. 高盐废水水泥化固定技术实验研究[D]. 华北电力大学, 2019. [5] MOJAPELO K S, KUPOLATI W K, NDAMBUKI J M, et al. Utilization of wastewater sludge for lightweight concrete and the use of wastewater as curing medium - ScienceDirect[J]. Case Studies in Construction Materials, 2021. [6] 马保国, 董荣珍, 张莉, 等. 硅酸盐水泥水化历程与初始结构形成的研究[J]. 武汉理工大学学报, 2004(7): 17-19. doi: 10.3321/j.issn:1671-4431.2004.07.006 [7] BALONIS M, LOTHENBACH B, SAOUT G L, et al. Impact of chloride on the mineralogy of hydrated Portland cement systems[J]. Cement & Concrete Research, 2010, 40(7): 1009-1022. [8] 张路, 杨正宏, 曲生华. 硫酸钠对水泥硬化性能的影响[J]. 新型建筑材料, 2014, 41(2): 28-30+56. doi: 10.3969/j.issn.1001-702X.2014.02.008 [9] 曹园章, 郭丽萍, 薛晓丽. NaCl和Na2SO4对水泥水化机理的影响[J]. 东南大学学报(自然科学版), 2019, 49(4): 712-719. [10] 中华人民共和国国家质量监督检验检疫总局, 中国国家标准化管理委员会. 水泥胶砂流动度测定方法: GB/T 2419-2005[S]. 北京: 中国环境科学出版社, 2005. [11] 中华人民共和国国家质量监督检验检疫总局, 中国国家标准化管理委员会. 水泥标准稠度用水量、凝结时间、安定性检验方法: GB/T 1346-2011[S]. 北京: 中国环境科学出版社, 2011. [12] KOCABA V. Development and evaluation of methods to follow microstructural development of cementitious systems including slags[J]. Epfl, 2009. [13] LOTHENBACH B, SAOUT G L, GALLUCCI E, et al. Influence of limestone on the hydration of Portland cements[J]. Cement and Concrete Research, 2008, 38(6). [14] 姜文斌. 水泥矿物及其水化产物对氯离子的固化机理[D]. 武汉理工大学, 2018. [15] JIE Z, SCHERER G W. Comparison of methods for arresting hydration of cement[J]. Cement & Concrete Research, 2011, 41(10): 1024-1036. [16] 行业标准-环保. 固体废物 浸出毒性浸出方法 水平振荡法: HJ 557-2010[S]. 北京: 中国环境科学出版社, 2010. [17] 国家质检总局. 危险废物鉴别标准 浸出毒性鉴别: GB 5085.3-2007[S]. 北京: 中国环境科学出版社, 2007.