-
淡水危机一直是人类生存面临的主要挑战之一[1-2],而脱盐是解决淡水危机的重要途径之一。目前被广泛应用的脱盐技术包括反渗透[3]、蒸馏[4]、电渗析[5]等,但这些技术仍存在着二次污染、能耗高、成本高等弊端。基于双电层理论的电容去离子技术(capacitive deionization, CDI)是一种操作简单、能耗低(其运行电压一般在1.2 V以下)、绿色环保的新型电化学脱盐技术,已经被越来越多的研究者所关注。
但CDI在运行过程中,由于同离子效应的存在,系统的电荷效率很低(60%左右)。为了避免同离子效应,提高电荷利用率,在CDI装置中正/负电极表面分别增加阴/阳离子交换膜,利用阴阳离子交换膜的选择透过性来提升脱盐系统电荷效率,形成了膜电容去离子技术(membrane capacitive deionization, MCDI)[6]。有研究[7]表明,MCDI脱盐性能除了与运行参数有关外,电极材料也是影响MCDI脱盐性能的关键因素。目前,应用较多的电极活性吸附材料有活性炭[8]、炭气凝胶[9]和石墨烯[10]等。其中,活性炭因廉价易得,具有丰富的孔径和良好的稳定性而被研究者们重点关注。但因其导电性差,在应用过程中通常需要添加导电剂炭黑制备混合电极,并利用粘结剂来增强混合电极的机械性能,以提升MCDI装置的脱盐能力。而混合电极中各组分(活性炭、炭黑及粘结剂)的质量比对其脱盐性能具有重要的影响,但此方面的研究尚鲜见报道。
本研究考察了MCDI混合电极中材料质量比对脱盐性能的影响,并探究了加电电压、进水流速以及进水盐浓度等运行参数对MCDI系统脱盐性能的影响; 进一步利用循环伏安法和电化学阻抗谱测试对不同质量比的电极进行了电化学表征;最后利用热力学和动力学方程对不同组分电极的吸附过程进行了模拟,以期得到此混合电极的最佳运行条件及动力学热力学参数,为后期工程化应用提供参考。
活性炭与炭黑混合电极的脱盐性能及相关工艺参数的优化
Optimization of membrane capacitive deionization performance of activated carbon and carbon black mixed electrode
-
摘要: 混合电极中各组分的质量比是影响膜电容去离子(membrane capacitive deionization, MCDI)系统脱盐性能的重要因素。重点研究了混合电极中活性材料(活性炭)、导电剂(炭黑)和粘结剂(聚四氟乙烯)3种组分的质量比对MCDI系统脱盐性能的影响,并优化了工艺参数。实验结果表明,在进水氯化钠质量浓度为0.4 g·L−1时,控制活性炭、炭黑及聚四氟乙烯的质量比为8∶1∶1、运行电压为1.2 V,进水流速为4 mL·min−1,MCDI系统具有较优异的脱盐性能,其吸附容量和脱盐速度分别为10.13 mg·g−1和0.44 μmol·(cm2·min)−1,电荷效率和单位能量脱盐量可分别达95.27%和8.23 μmol·J−1;而且,增大进水中氯化钠浓度会进一步提升MCDI系统的吸附容量和脱盐速度,但其脱盐率会有所降低。吸附热力学和动力学拟合结果表明,此混合电极材料脱盐过程分别符合Freundlich吸附等温方程和准二级动力学方程。Abstract: The mass ratio of each component in the mixed electrode is an important factor for the desalination performance of membrane capacitor deionization (MCDI). In this study, the effects of the mass ratio of active ingredient (activated carbon), conductive agent (carbon black) and binder (polytetrafluoroethylene) on the desalination performance of MCDI were investigated, and the operation parameters were optimized. The experimental results showed that the MCDI system had a good desalination performance when the influent sodium chloride concentration was 0.4 g·L−1, the mass ratio of activated carbon, carbon black and polytetrafluoron was 8∶1∶1, the operating voltage was 1.2 V and the influent flow rate was 4 mL·min−1. The adsorption capacity and desalination rate were 10.13 mg·g−1 and 0.44 μmol·cm−2·min−1, respectively, charge efficiency and unit energy desalination capacity could reach 95.27% and 8.23 μmol·J−1, respectively. Moreover, the increase of the influent sodium chloride concentration could further improve the adsorption capacity and desalination rate of MCDI system, but the desalination rate decreased. The fitting results of adsorption thermodynamics and kinetics showed that the desalination process of the mixed electrode material conforms to Freundlich adsorption isothermal equation and second-order kinetic equation, respectively.
-
Key words:
- mixed electrode /
- MCDI /
- parameter optimization /
- dynamics /
- thermodynamics
-
表 1 8-1-1电极片吸附盐离子的等温吸附参数
Table 1. Isothermal adsorption parameters of 8-1-1 electrodes to salt ions
Langmuir模型 Freundlich模型 qm/(mg·g−1) $ {K}_{\mathrm{L}} $ R2 n $ {K}_{\mathrm{F}} $ R2 17.14 0.372 0.895 2.729 17.760 0.904 表 2 不同条件的准一级和准二级动力学模型拟合数据
Table 2. First order and second order dynamic model fitting data under different conditions
序号 一级动力学模型 二级动力学模型 K1 R2 K2 R2 1 0.005 18 0.933 0.018 36 0.996 2 0.004 21 0.961 0.015 10 0.994 3 0.004 09 0.961 0.011 72 0.997 4 0.006 97 0.998 0.012 61 0.990 5 0.003 59 0.970 0.003 20 0.999 6 0.003 86 0.958 0.013 78 0.997 7 0.004 48 0.892 0.001 60 0.969 8 0.003 79 0.951 0.004 60 0.985 9 0.003 96 0.968 0.012 00 0.998 10 0.001 41 0.980 0.001 00 0.994 11 0.001 83 0.968 0.001 61 0.996 12 0.002 19 0.961 0.001 00 0.980 13 0.005 18 0.933 0.018 36 0.996 14 0.004 21 0.962 0.015 10 0.994 注: 1~4分别为8-1-1、9-0-1、6-3-1、0-9-1; 5~7分别为0.6、1.2、1.8 V;序号8~11分别为1、2、4、6 mL·min−1;序号12~14分别为不同进水盐质量浓度0.2、0.4、0.6 g·L−1。 -
[1] SUSS M, PORADA S, SUN X, et al. Water desalination via capacitive deionization: What is it and what can we expect from it?[J]. Energy & Environmental Science, 2015, 8(8): 2296-2319. [2] Ma J X, HE C, HE D, et al. Analysis of capacitive and electrodialytic contributions to water desalination by flow-electrode CDI[J]. Water Research, 2018, 144: 296-303. doi: 10.1016/j.watres.2018.07.049 [3] XING W L, LIANG J, TANG W W, et al. Perchlorate removal from brackish water by capacitive deionization: Experimental and theoretical investigations[J]. Chemical Engineering Journal, 2019, 361: 209-218. doi: 10.1016/j.cej.2018.12.074 [4] SHANNON M A, BOHN P W, ELIMELECH M, et al. Science and technology for water purification in the coming decades[J]. Nature, 2009, 452: 337-346. [5] TAN C, HE C, TANG W W, et al. Integration of photovoltaic energy supply with membrane capacitive deionization (MCDI) for salt removal from brackish waters[J]. Water Research, 2018, 147(15): 276-286. [6] 赵飞, 苑志华, 钟鹭斌, 等. 电容去离子技术及其电极材料研究进展[J]. 水处理技术, 2016, 42(5): 38-44. [7] THAMILSELVAN A, NESARAJ A S, NOEL M. Review on carbon-based electrode materials for application in capacitive deionization process[J]. International Journal of Environmental Science and Technology, 2016, 13(12): 2961-2976. doi: 10.1007/s13762-016-1061-9 [8] YANG S J, KIM T, LEE K, et al. Solvent evaporation mediated preparation of hierarchically porous metal organic framework-derived carbon with controllable and accessible large-scale porosity[J]. Carbon, 2014, 71: 294-302. doi: 10.1016/j.carbon.2014.01.056 [9] HARO M, RASINES G, MACIAS C, et al. Stability of a carbon gel electrode when used for the electro-assisted removal of ions from brackish water[J]. Carbon, 2011, 49(12): 3723-3730. doi: 10.1016/j.carbon.2011.05.001 [10] WIMALASIRI Y, MOSSAD M, ZOU L. Thermodynamics and kinetics of ammonium ions by graphene laminate electrodes in capacitive deionization[J]. Desalination, 2015, 357: 178-188. doi: 10.1016/j.desal.2014.11.015 [11] XU S, WANG T H, WANG C F, et al. The effect of crystal phase of manganese oxide on the capacitive deionization of simple electrolytes[J]. Science of the Total Environment, 2019, 675: 31-40. doi: 10.1016/j.scitotenv.2019.04.172 [12] HUYSKENS C, HELSEN J, HAAN A D. Capacitive deionization for water treatment: Screening of key performance parameters and comparison of performance for different ions[J]. Desalination, 2013, 328: 8-16. doi: 10.1016/j.desal.2013.07.002 [13] MOSSAD M, ZOU L. A study of the capacitive deionization performance under various operational conditions[J]. Journal Hazardous Materials, 2012, 213: 491-497. [14] ZHAO R, SATPRADIT O, RIJNAARTS H, et al. Optimization of salt adsorption rate in membrane capacitive deionization[J]. Water Research, 2013, 47(5): 1941-1952. doi: 10.1016/j.watres.2013.01.025 [15] DING Z B, XU X T, LI Y Q et al. Significantly improved stability of hybrid capacitive deionization using nickel hexacyanoferrate/reduced graphene oxide cathode at low voltage operation - ScienceDirect[J] Desalination, 2019, 468: 114078-114087. [16] MOSSAD M, ZOU L. A study of the capacitive deionization performance under various operational conditions[J]. Journal Hazardous Materials, 2012, 213-214: 491-497. doi: 10.1016/j.jhazmat.2012.02.036 [17] 杨宏艳, 张卫珂, 葛坤, 等. 流动性电极电容去离子技术的脱盐性能研究[J]. 环境污染与防治, 2017, 39(8): 911-919. [18] KIM Y H, TANG K, CHANG J, et al. Potential limits of capacitive deionization and membrane capacitive deionization for water electrolysis[J]. Separation Science and Technology, 2019, 54(13): 2112-2125. doi: 10.1080/01496395.2019.1608243 [19] LIANG P, SUN X, BIAN Y, et al. Optimized desalination performance of high voltage flow-electrode capacitive deionization by adding carbon black in flow-electrode[J]. Desalination, 2017, 420(5): 63-69. [20] OREN Y. Capacitive deionization (CDI) for desalination and water treatment-past, present and future: A review[J]. Desalination, 2008, 228(1-3): 10-29. doi: 10.1016/j.desal.2007.08.005 [21] SHIN Y, DONG C D, HUANG Y H, et al. Electro-sorption of ammonium ion onto nickel foam supported highly microporous activated carbon prepared from agricultural residues (dried Luffa cylindrica)- ScienceDirect[J]. Science of the Total Environment, 2019, 673: 296-305. doi: 10.1016/j.scitotenv.2019.04.066 [22] AMP N G T, RITTERSUPA/SUP U. Influence of concentration of supporting electrolyte on electrochemistry of redox systems on multi-walled carbon nanotubes[J]. Physics and Chemistry of Liquids, 2012, 50(5): 661-668. doi: 10.1080/00319104.2012.663496 [23] LI H, LIANG S, LI J, et al. The capacitive deionization behavior of a carbon nanotube and reduced graphene oxide composite[J]. Journal of Materials Chemistry A, 2013, 1(21): 6335-6341. doi: 10.1039/c3ta10681k [24] XU B, XU X, GAO H, et al. Electro-enhanced adsorption of ammonium ions by effective graphene-based electrode in capacitive deionization[J]. Separation and Purification Technology, 2020, 250: 117243. doi: 10.1016/j.seppur.2020.117243 [25] ZHANG X, XIE K, GAO J, et al. Highly pore-expanded benzidine-functionalized graphene framework for enhanced capacitive deionization[J]. Desalination, 2018, 445: 149-158. doi: 10.1016/j.desal.2018.08.001 [26] JOLANTA N, DOROTA G F, KRZYSZTOF N, et al. The effect of supporting electrolyte concentration on zinc electrodeposition kinetics from methimazole solutions[J]. Electroanalysis, 2019, 31(6): 1141-1149. doi: 10.1002/elan.201800852 [27] WANG C, SONG H, ZHANG Q, et al. Parameter optimization based on capacitive deionization for highly efficient desalination of domestic wastewater biotreated effluent and the fouled electrode regeneration[J]. Desalination, 2015, 365: 407-415. doi: 10.1016/j.desal.2015.03.025 [28] NIE C, PAN L, LIU Y, et al. Electrophoretic deposition of carbon nanotubes-polyacrylic acid composite film electrode for capacitive deionization[J]. Electrochemical Acta, 2012, 66: 06-109. [29] YAN W, LUO H, HOU W, et al. Adsorption of hexavalent chromium from aqueous solutions by graphene modified with cetyltrimethylammonium bromide[J]. Journal of Colloid & Interface Science, 2013, 394(1): 183-191.