-
近年来,随着重污染工业企业的关闭和搬迁,产生了大量土壤和地下水严重污染的工业企业遗留场地,1,2-二氯乙烷(1,2-DCA)是化工污染场地典型污染物之一。1,2-DCA作为一种重要的化工原料,具有致癌、致畸、致突变“三致”效应[1-2],同时其具有易迁移和难降解的特点,会对生态环境产生危害。1,2-DCA污染地下水主要修复方法有异位修复、原位修复、监测自然衰减等。异位修复耗时长费用高,难以彻底降解1,2-DCA。原位修复包括热脱附[3]、蒸汽浸提[4]、原位化学氧化技术[5]。其中高级氧化技术能够在短时间内高效处理地下水中污染物,使其达到可接受的水平。
基于活化过硫酸盐(PS)的高级氧化技术被广泛应用于有机污染土壤和地下水治理中[6]。在碱、热、光、过渡金属等活化下,PS可分解产生氧化性更强的硫酸根自由基(
SO⋅−4 ,E0=2.5~3.1 eV)。SO⋅−4 通过吸氢、加成和电子转移与有机分子发生反应[7],从而可降解氯代烃、多环芳烃等多种有机污染物[8-11]。SO⋅−4 可由过硫酸盐阴离子(S2O2−8 )与过渡金属的反应生成(式(1)~式(2)),在碱性环境下,还会诱发链式反应产生HO·反应(式(3))。纳米零价铁(nZVI)具有粒径较小、比表面积较大、反应活性强等特点,既是良好的还原剂,又可作为PS活化剂,因此,被广泛应用于土壤和地下水修复工程[12-13]。nZVI活化PS具有较窄的pH适应范围,在碱性环境下活化效果不理想,在酸性环境下有较好的活化效果[14]。但在酸性环境下,nZVI活化PS反应快速,迅速产生大量的Fe2+,而过量的Fe2+易与自由基反应生成Fe3+,对自由基产生清除作用,不利于自由基的生成。有研究表明,螯合剂(2,2'-联吡啶、1,10-二氮菲、乙二胺四乙酸、柠檬酸等)可与Fe2+结合,降低溶液中游离Fe2+浓度,减少自由基的清除,进而提高PS对污染物氧化降解的效率[15-19]。李明等[20]发现,加入柠檬酸后,60 min内nZVI/PS体系对TCE降解率高达94.7%。ZHANG[21]的研究表明,EDTA的强化性能优于柠檬酸,这是因为EDTA与铁的螯合能力高于柠檬酸,Fe2+(EDTA)的高稳定性使得较少的
SO⋅−4 被清除。目前,nZVI/PS降解地下水中1,2-DCA尚存在诸多问题,1,2-DCA去除效果和药剂利用效率有待提高。因此,本研究拟以水中1,2-DCA为目标污染物,以nZVI为活化剂,EDTA为稳定剂,建立nZVI/PS/EDTA还原/氧化体系,以提高1,2-DCA降解效果和药剂有效利用率,考察了EDTA对nZVI/PS体系降解1,2-DCA强化效果、作用机制及影响因素,以期为1,2-DCA污染地下水化学修复提供参考。
-
实验试剂:1,2-二氯乙烷(上海凌峰化学试剂有限公司)、过硫酸钠(捷润化学)、纳米零价铁(上海麦克林生化科技有限公司,粒径50 nm,纯度>99.9%)、氢氧化钠和氯化钠(无锡市晶科化工有限公司)、氯化铵、氯化钾、乙二胺四乙酸(天津科密欧化学试剂有限公司)、碳酸氢钠(国药集团化学试剂有限公司),以上试剂均为分析纯。实验用水为超纯水,电导率为0.055 μs·cm−1。
实验仪器:气相色谱质谱联用仪(7890B GC system,5977A MSD)、离子色谱仪(Thermo-ICS-1100)、总有机碳分析仪(耶拿MultiN/C3100)、紫外可见分光光度计(岛津UV-2600)、电子分析天平(德国赛多利斯BSA124S)、水质多参数检测仪(梅特勒托利多Multiparameter)、超纯水机(Milli-Q)、数显水浴恒温振荡器(THZ-82A)、固相萃取仪(NAI-YXCQY-24A)。
-
1) EDTA强化nZVI/PS降解1,2-DCA实验。用超纯水配置初始浓度为1.8 mmol·L−1的1,2-DCA溶液至250 mL锥形瓶中,依次加入1.8 mmol nZVI、3.6 mmol PS和1.8 mmol EDTA,建立nZVI、nZVI/PS、nZVI/PS/EDTA 3种氧化/还原反应体系,分析不同反应体系下1,2-DCA的降解效果。将反应瓶放置在恒温振荡器上,转速设置为150 r·min−1,从0 min开始,分别于不同时间间隔取样,测定1,2-DCA、Fe2+、Fe3+、总有机碳(TOC)、氯离子(Cl−)等指标。每组实验取3个样品,结果数据取三者平均值。实验过程中设置只加1,2-DCA的空白实验,结果表明,实验过程中1,2-DCA损失率小于5%,1,2-DCA的挥发可以忽略不计。
为了阐明EDTA对nZVI/PS体系降解1,2-DCA的影响,定义了以nZVI计的比降解率,即单位质量nZVI降解的1,2-DCA的质量(式(4))。
式中:Sq为比降解率,mg·g−1;V为反应溶液体积,L;C0为溶液中1,2-DCA初始质量浓度,mg·L−1;Ct为t时溶液中1,2-DCA质量浓度,mg·L−1;m为nZVI的投加质量,g。
TOC是水中有机物所含碳的总量,能够直接反映1,2-DCA被彻底降解程度,矿化度根据式(5)进行计算。
式中:M为矿化度,%;T0和Tt分别为溶液中初始和t时刻的总有机碳质量浓度,mg·L−1。
利用阿伦尼乌斯公式不同温度下的表观速率常数计算1,2-DCA降解反应所需要的活化能(式(6))。
式中:k为温度T时的反应速度常数;Ea为表观活化能,J·mol−1;R为摩尔气体常数,8.314 J·mol−1·K−1;T为绝对温度,K;A0为吉布斯自由能因子。
2) EDTA强化降解1,2-DCA影响实验。向nZVI/PS体系中分别投加0.5、0.9、1.2、1.8、3.6、5.4 mmol EDTA,调节pH分别为3、7、11,考察不同pH下nZVI/PS体系和nZVI/PS/EDTA体系的1,2-DCA降解率。配置含有10 mmol阴阳离子的模拟地下水,考察不同离子对EDTA强化nZVI/PS降解1,2-DCA效果的影响。
-
溶液中1,2-DCA采用HJ 810-2016《水质 挥发性有机物的测定顶空/气相色谱-质谱法》进行检测。气相色谱条件:色谱柱型号:HP-5MS;进样口温度250 ℃;进样模式为分流进样(分流比20∶1);柱流量(恒流模式)为1.0 mL·min−1;升温程序为40 ℃保持2 min,以8 ℃·min−1的速率升至100 ℃,保持4 min,再以15 ℃·min−1的速率升至120 ℃,保持5 min。
溶液中TOC采用总有机碳分析仪(耶拿MultiN/C3100)进行测定。测定原理:NDIR,进样体积1 mL,进样次数3 次;溶液中铁离子浓度采用HJ/T 345-2007《水质 铁的测定 邻菲啰啉分光光度法》进行测定,测定波长为510 nm;溶液中Cl−浓度采用GB/T 39305-2020《再生水水质 氟、氯、亚硝酸根、硝酸根、硫酸根的测定 离子色谱法》进行检测。
-
由图1可以看出,单独nZVI对1,2-DCA有一定的还原降解效果,60 min时,Sq约为90 mg·g−1;nZVI/PS体系对1,2-DCA降解效果较单独nZVI体系有显著提升,Sq约为165 mg·g−1,提高了83%;加入EDTA后,Sq进一步提升至约200 mg·g−1,较nZVI/PS体系提高了21%。在不同体系中,Sq均呈现先快速增长后缓慢增长的趋势,说明污染物降解速度逐渐变缓。这是因为随着反应进行,溶液中污染物浓度和化学药剂浓度均有所降低,导致化学反应速度逐渐变缓。
对比nZVI/PS体系和nZVI/PS/EDTA体系的Sq可知,反应初始阶段,2种体系中Sq增加速度相差不大。这说明2种体系中1,2-DCA降解速度基本相同。EDTA的加入并未在反应初始阶段快速提高1,2-DCA降解效率。这是因为:一方面,EDTA是一种弱酸,可促进nZVI转化为Fe2+,有利于活化PS产生自由基[22];另一方面,EDTA易与Fe2+发生螯合反应,可降低溶液中Fe2+质量浓度;2种作用相互拮抗,最终导致2种体系的初始反应速度基本相同。随着反应的进行,nZVI/PS/EDTA体系中1,2-DCA比降解率逐渐大于nZVI/PS体系,且Sq增长速度比nZVI/PS体系更快,EDTA对nZVI活化PS的强化效果逐渐显现。这是因为:一方面,EDTA可与Fe2+形成配合物,减小了Fe2+与自由基反应机率,降低了清除自由基的负面作用;另一方面,EDTA的弱酸性能够促进Fe2+产生,抑制氢氧化物沉淀产生[23]。EDTA的加入,提高了Fe2+在体系中的稳定性,同时提供了一种持续的弱酸环境,有利于反应过程中Fe2+的持续产生,从而提高了nZVI对PS活化的持续有效性。
-
TOC是水中有机物所含碳的总量,能够直接反映1,2-DCA被彻底降解程度。另外,溶液中Cl−的浓度变化可以反映1,2-DCA的脱氯程度,也从侧面反映1,2-DCA降解的彻底程度。在1,2-DCA降解过程中,1,2-DCA去除量、Cl−脱出量和TOC的变化如图2所示。根据1,2-DCA分子组成,理论上每降解1 mmol 1,2-DCA应有2 mmol Cl−生成。由图2可以看出,在反应60 min后,nZVI/PS/EDTA体系中1,2-DCA去除量、Cl−脱出量以及1,2-DCA矿化度均较nZVI/PS体系有所升高。nZVI/PS体系中Cl−生成与1,2-DCA去除摩尔质量比约为1∶1。加入EDTA后,Cl−生成与1,2-DCA去除摩尔质量比约为1.2∶1,但仍未达到二者理论摩尔质量比(2∶1)。nZVI/PS/EDTA体系矿化度为40.84%,较nZVI/PS体系矿化度(21.43%)提高了约1.9倍。这说明1,2-DCA降解过程中存在含氯中间产物。降解途径如图3所示:首先,PS与nZVI发生如式(1)和式(2)的反应生成
SO⋅−4 ,在碱性环境下,还会诱发式(3)的反应生成HO·,进而促进1,2-DCA降解。还原脱氯过程中碳原子与氯原子断裂一般是由于序贯氢解或是β消去反应,序贯氢解是由于1个氢原子取代1个氯离子从而释放1个氯离子,β消去反应是指释放2个氯原子,由烷烃转化为烯烃的过程[24]。在这个过程中,序贯氢解占主要地位,因此,nZVI/PS和nZVI/PS/EDTA体系中乙烷均为主要的产物,并有少量的乙烯和氯乙烷产生。YPABC等[19]发现,Fe2+可以与EDTA发生如式(7)~式(11)的反应,最终生成H2O2,从而促进1,2-DCA的降解。加入EDTA后,提高了1,2-DCA的降解、还原脱氯和矿化度。主要原因如前所述,EDTA提高了nZVI活化PS的有效性和持续性,促进了1,2-DCA的持续降解,提高了其矿化程度。 -
在不同温度条件下1,2-DCA降解动力学曲线见图4,动力学参数见表1。由图4可以看出,nZVI/PS体系与nZVI/PS/EDTA体系中1,2-DCA降解动力学均符合准一级动力学模型。由于EDTA的加入,在不同温度条件下,反应速率常数均有提高。当温度为20、30、40 ℃时,nZVI/PS/EDTA体系的反应速率常数较nZVI/PS体系分别提高了约18.75%、22.95%和10.06%。这主要是因为,EDTA的加入有效减缓了Fe2+对自由基的清除,同时可为反应提供弱酸环境,因此,反应速率常数比不加EDTA时有所提高。随着温度的升高,温度逐渐成为影响反应的主导因素[25],nZVI/PS/EDTA体系反应速率常数较nZVI/PS体系的提高有所减弱。
活化能可用于区分速率限制步骤,其中表面控制反应具有较大的活化能(>29 kJ·mol−1);相反,溶液扩散控制反应具有相对较低的活化能(8~21 kJ·mol−1)[26]。由表1可看出,在相同温度下nZVI/PS/EDTA体系较nZVI/PS体系反应活化能更低,说明降解反应更容易进行。这是因为PS的水解作用会随着pH的降低和温度的升高而增强。EDTA呈弱酸性,可为反应提供H+,从而促进了PS的水解作用并降低了体系反应所需能量[27]。两者反应活化能均大于29 kJ·mol−1,说明nZVI/PS降解1,2-DCA反应为表面控制反应[28]。
-
由图5可以看出,在反应过程中,游离Fe2+和Fe3+质量浓度总体呈现先增加后稳定的趋势,nZVI/PS体系中游离Fe2+质量浓度小于nZVI/PS/EDTA体系,游离Fe3+质量浓度大于nZVI/PS/EDTA体系。游离铁离子质量浓度取决于其生成和消耗。加入EDTA后,使反应体系呈弱酸性,促进了Fe2+的产生;另一方面,EDTA>与部分Fe2+发生络合作用生成Fe2+(EDTA)络合物,降低了Fe2+与自由基反应机率,从而减少了Fe2+与自由基反应导致的无效消耗(式(12)),使反应体系保留较高质量浓度的游离Fe2+和较高的降解效率[29]。这与前述章节EDTA对1,2-DCA降解效果影响的结果一致。EDTA与Fe2+和Fe3+均可发生络合作用,nZVI/PS/EDTA体系中EDTA与Fe3+的络合化合物是导致游离Fe3+浓度低于nZVI/PS体系的主要原因[30]。其次,与nZVI/PS体系相比,nZVI/PS/EDTA体系中Fe2+与自由基反应减少,Fe3+的产生也相应减少,因此,总体浓度低于nZVI/PS体系。
-
由图6可以看出,随着EDTA投加量的增加,Sq呈现先增加后减小的趋势,当EDTA投加量为1.8 mmol时达到最大值,约为215 mg·g−1。这表明适量的EDTA促进nZVI/PS降解1,2-DCA,过量的EDTA则会起到抑制作用。这是因为:当EDTA投加量较低时,EDTA与Fe2+产生少量络合,增加了体系中游离Fe2+质量浓度,有利于强化nZVI/PS体系对1,2-DCA降解。当EDTA过量时,大量的Fe2+与EDTA形成络合物,体系中游离Fe2+质量浓度降低,对PS的活化效果降低,不利于体系中自由基的产生。另一方面,过量的EDTA存在会与1,2-DCA竞争体系中的HO·,反应速率常数达到8.6×106 mol·(L·s)−1 ,消耗体系中的自由基,从而抑制了nZVI/PS对1,2-DCA降解[31]。
-
由图7可以看出,酸性环境更有利于nZVI/PS对1,2-DCA的降解。HUSSAIN等[32]提出,酸性环境比中性和碱性环境更有利于五氯苯甲醚的降解,当pH高于4时,Fe2+对
S2O2−8 活化效率将会降低,这与本实验研究结论一致。LIANG等[33]发现,pH影响SO⋅−4 和HO·的生成,在酸性环境下SO⋅−4 是主要自由基;而在强碱环境中,HO·成为主要自由基。SO⋅−4 较HO·具有更高的氧化还原电位(ESO4·-=2.5~3.1 V,EHO·=1.9~2.7 V)[34-35],因此,在酸性环境下1,2-DCA具有更高的降解效率。当pH为3、7、11时,反应60 min后,nZVI/PS/EDTA体系的Sq较nZVI/PS体系分别提高了约41.76、36.31和24.80 mg·g−1。这说明EDTA在酸性和碱性环境下均有一定的强化效果,但酸性环境更有利于EDTA强化nZVI活化PS降解1,2-DCA。这主要是因为:一方面,在碱性环境下,Fe2+容易与氢氧根形成氢氧化物;另一方面,氢氧根与EDTA产生中和作用,削弱了EDTA弱酸性对反应的积极作用。
-
对照组为在反应体系中不含阴阳离子。由图8可以看出,Cl−、NH4+和K+使nZVI/PS体系中Sq分别提高了约79.31、60.94和63.54 mg·g−1,使nZVI/PS/EDTA体系中Sq分别提高了约86.75、81.54和56.43 mg·g−1。
HCO−3 分别使nZVI/PS体系和nZVI/PS/EDTA体系中Sq降低了68.99和86.28 mg·g−1。这说明离子对nZVI/PS体系和nZVI/PS/EDTA体系呈现相同作用规律,即Cl−、NH+4 和K+均提高了1,2-DCA去除效率。这是因为Cl−能够通过位点腐蚀的方式进入钝化层内部与Fe2+结合形成易溶于水的FeCl2,并且Cl−的加入能够增加反应体系的电导率,因而促进nZVI腐蚀加速进行;K+和NH+4 存在会在有限范围提高1,2-DCE的降解率。这可能是由于K+和NH+4 的存在提高了反应体系的电导率,加快了nZVI腐蚀[36-37]。而HCO−3 则会抑制1,2-DCA的去除。这是因为:HCO−3 的加入会显著提高体系pH,该体系在碱性环境下降解率会有所削弱;此外,HCO−3 会与铁离子或亚铁离子反应生成铁的碳酸盐沉淀及其络合物,导致nZVI钝化并阻隔活性位点[25]。另外,对照组为在nZVI/PS反应体系中加入EDTA,其对Sq的提升率为21%。与对照组相比,引入
NH+4 后Sq由225.3 mg·g−1增至279.2 mg·g−1,提升率为23.9%。除NH+4 外,引入Cl−、K+和HCO−3 对Sq的提升率均低于对照组。尤其当K+存在时,Sq由227.92 mg·g−1增至254.08 mg·g−1,提升率仅为11.5%,EDTA对nZVI/PS降解1,2-DCA的强化效果降低约50%。这说明EDTA在实际地下水修复中可能因复杂的水质环境而难以达到理想效果。 -
1) EDTA对nZVI/PS降解1,2-DCA具有良好的强化效果,Sq和矿化度分别提高了21%和190%,在30 ℃时反应速率常数提高了22.95%,反应活化能降低了8.91 kJ·mol−1。
2) EDTA强化nZVI/PS降解1,2-DCA作用机制主要有2点:一是为反应提供了弱酸环境,促进Fe2+生成;二是EDTA与Fe2+反应生成螯合物,降低了Fe2+与自由基反应机率,提高了nZVI活化PS的持续有效性。
3) EDTA投加量、pH和水中阴阳离子均影响nZVI/PS/EDTA对1,2-DCA的降解效果。Sq随EDTA投加量先增加后减小,EDTA最佳投加量为1.8 mmol,Sq达到最大值214.798 mg·g−1;酸性环境更有利于EDTA强化nZVI/PS降解1,2-DCA;Cl−、K+和
HCO−3 均抑制EDTA强化作用,EDTA在实际复杂的水质环境条件下可能难以达到理想效果。
EDTA强化nZVI/PS降解地下水中1,2-二氯乙烷的作用机制及影响因素
Mechanism and influencing factors of 1,2-dichloroethane degradation in groundwater by EDTA-enhanced nZVI/PS
-
摘要: 采用乙二胺四乙酸(EDTA)强化纳米零价铁(nZVI)活化过硫酸钠(PS)降解地下水中1,2-二氯乙烷(1,2-DCA)。通过分析1,2-DCA比降解率(Sq)、矿化度、1,2-DCA降解动力学及游离Fe2+和Fe3+质量浓度变化规律,阐明了EDTA强化效果及作用机制;考察了EDTA投加量、pH、阴阳离子对EDTA强化效果的影响。结果表明:经EDTA强化后,1,2-DCA的Sq和矿化度分别提高了21%和190%,反应速率常数提高了10.06%~22.95%,活化能降低了6.98~8.91 kJ·mol−1;EDTA为反应提供了弱酸性环境,促进Fe2+生成,EDTA与Fe2+生成螯合物,降低了Fe2+与自由基反应的机率,提高了nZVI/PS的持续有效性;Sq随EDTA投加量的加大先增加后减小,EDTA投加量为1.8 mmol时Sq达到最大值214.80 mg·g−1。酸性环境下EDTA的强化效果更好。除
NH+4 外,Cl−、K+和HCO−3 均抑制EDTA的强化作用,说明EDTA在实际地下水修复中可能因多种离子存在而难以达到理想的强化效果。以上研究结果可为EDTA强化nZVI/PS降解地下水中1,2-DCA提供参考。Abstract: Ethylenediaminetetraacetic acid (EDTA) was used to strengthen nano-zero-valent iron (nZVI) activated sodium persulfate (PS) for 1,2-dichloroethane (1,2-DCA) degradation in groundwater. Through analyzing the specific degradation rate (Sq), mineralization, degradation kinetics of 1,2-DCA and mass concentration change rules of Fe2+ and Fe3+, the enhancement effect of EDTA and its mechanism were clarified. The effects of EDTA dosage, pH, anion and cation on the strengthening effect of EDTA were investigated. The results showed that after EDTA strengthening, Sq and the degree of mineralization of 1,2-DCA increased by 21% and 190%, respectively. Reaction rate increased by about 10.06%~22.95% and activation energy decreased by 6.98~8.91 kJ·mol−1. EDTA provided a weak acid environment for the promotion of Fe2+ formation. Then EDTA formed a chelate with Fe2+ which reduced the probability of the reaction between Fe2+ and free radicals, and improved the sustained effectiveness of nZVI/PS. Sq first increased and then decreased with the increase of EDTA dosage. Sq reached the maximum value of 214.80 mg·g−1 at EDTA dosage of 1.8 mmol. The strengthening effect of EDTA was better in acidic environment. ExceptNH+4 had a promoting effect, Cl−, K+ andHCO−3 all inhibited the strengthening effect of EDTA, indicating that EDTA might be difficult to achieve an ideal strengthening effect in remediation of actual groundwater due to the existence of multiple ions. The research results provide basic parameters and technical supports for degradation of 1,2-DCA in groundwater by EDTA-enhanced nZVI/PS.-
Key words:
- groundwater /
- 1,2-dichloroethane /
- PS advanced oxidation /
- EDTA enhancement /
- specific degradation rate
-
纳米银(nanosilver,nAg)因其具有强杀菌性而被广泛应用于玩具、衣物、洗手液等生活日用品及医疗用品中。截至2022年2月,在纳米材料数据库(The Nanodatabase)中共登记纳米材料5 224种,其中包含nAg的材料约占总数的1/7[1]。在nAg产品的生命周期中,约60%的nAg在制造、使用、废弃和循环过程中通过污水管网进入市政污水处理厂[2]。由于nAg的抑菌性能,进入污水生物处理系统中的nAg会影响微生物呼吸速率[3],导致污水处理厂净化污水的性能下降[4]。进入污水处理系统中的nAg随污泥排出时也可能带来环境风险,FOSTNER等[5]发现进水中投加10 mg·L−1 nAg,在运行30 d和90 d后的SBRs外排活性污泥进入土壤后,对土壤细菌群落组成有显著影响(P<0.05)。
作为金属纳米材料,nAg进入活性污泥污水处理系统后,必然受到污水组成和系统工艺参数如溶解氧、曝气时间、混合强度等影响,经历团聚[6]、溶解[7]、氧化[8] 、硫化[9]等过程,形态发生变化,从而影响nAg抑菌性能[10]。CHEN等[11]认为,活性污泥系统中的nAg通常与H2S、S2−发生硫化反应转化成其最终环境形态Ag2S,nAg的硫化过程可显著降低其对微生物的毒性[12]。然而,研究者认为污水中可能存在多种金属离子(Mg2+、Fe2+/Fe3+)及生物分子如蛋白质等,均可与Ag+竞争S2-[13],nAg在好氧环境中释放的Ag+远多于厌氧,抑菌能力显著高于厌氧[14]。也有研究表明,nAg在污水处理系统中可能转化为AgCl及AgO等形态[15]。nAg的化学形态显著影响其对活性污泥微生物的毒性效应。1 mg·L−1 AgCl胶体对硝化细菌硝化作用的抑制率为(46±4.0)%,与1 mg·L−1 Ag+对该菌的抑制效果相同[16]。以nAg、Ag+、可溶性银化合物、胶体银等形态存在的Ag,均具有很好的抑菌活性[17]。
研究者对nAg考察了活性污泥污水处理系统中的胁迫效应,明确了污水处理系统中nAg来源和进水浓度[18-19],确定了nAg对污水生物处理系统脱氮除磷功能的干扰[20-21],提出了nAg的生态毒性主不仅来源于nAg自身及还包括其释放的Ag+等[22-24]。但关于nAg在活性污泥污水处理系统中的分布、赋存形态等方面的研究却鲜有报道。基于此,本研究采用序批式反应器模拟活性污泥污水生物处理系统,在进水中分别添加不同浓度的nAg和Ag+,连续运行50 d,以分析污水处理系统中Ag在污泥、出水中的分布及Ag在污泥中的赋存形态,为解析、评估nAg对污水生物处理系统的胁迫效应及外排活性污泥的环境风险提供参考。
1. 材料与方法
1.1 实验进水与实验装置
实验进水为人工模拟中等强度的城市生活污水,主要组成成分[25]为:30 mg·L−1 C6H12O6、400 mg·L−1 CH3COONa、150 mg·L−1 NH4Cl、45 mg·L−1 KH2PO4、20 mg·L−1 MgSO4·7 H2O和1 mL·L−1微量元素溶液。其中,微量元素溶液组成[26]为:150 mg·L−1 H3BO3、150 mg·L−1 CoCl2·6H2O、30 mg·L−1 CuSO4·5H2O、150 mg·L−1 FeCl2·6H2O、30 mg·L−1 KI、120 mg·L−1 MnCl2·2H2O、60 mg·L−1 Na2Mo7O4·2H2O、120 mg·L−1 ZnSO4·7H2O。采用NaHCO3调节污水pH,使其保持在6.5~7.5。
SBR有效体积为1.6 L,采用空气压缩机从底端曝气,空气流速为2.0 L·min−1,实验期间每天运行2个周期,每周期5 h,其中进水15 min,静置90 min,曝气90 min,静置90 min,排水15 min (图1)。运行周期内换水比为50%,其余时间静置,每8 d排泥1次。反应器接种污泥取自南京某市政污水处理厂生化池的回流污泥,反应器内初始污泥混合液悬浮固体(mixed liquor suspended solids,MLSS)质量浓度为4 282~4 628 mg·L−1,污泥容积指数(settling velocity index,SVI)为79~87 mL·g−1。
1.2 实验处理
SBRs污水处理系统因具有出水水质好、占地面积小、可以同步脱氮除磷等优点被普遍应用于市政污水和工业污水处理。已有研究表明,市政污水中nAg或Ag质量浓度为16.4~74.7 ng·L−1,活性污泥中nAg或Ag含量为3~14 mg·kg−1[2]。nAg具有广谱抗菌性且不会导致细菌产生抗药性,因而nAg产品在环保、日用品、医疗等领域的使用日趋增多,这可能导致市政污水和活性污泥中Ag浓度不断升高[27]。本研究根据国内外相关研究中所使用的nAg浓度[4,28-30],选取低浓度nAg(1 mg·L−1)和高浓度nAg(10 mg·L−1)作为实验进水中的nAg浓度。采用超滤法[31]测定nAg溶解释放出的Ag+约为nAg质量浓度的30%,因此在进水中分别添加质量浓度为0.3 mg·L−1和3.0 mg·L−1 的Ag+,同步观察nAg溶解释放出的Ag+对污水处理系统的影响。
SBRs运行稳定后(反应器启动后运行约20 d,对污染物的去除效率稳定,污泥沉降性能良好,即达到稳定状态)。在进水中分别加入1 mg·L−1、10 mg·L−1 nAg和0.3 mg·L−1、3 mg·L−1 Ag+,启动反应器。实验所用nAg购自北京德科岛金科技有限公司,表面包被物为聚乙烯吡咯烷酮,平均粒径为10~12 nm;Ag+由AgNO3(国药集团化学试剂有限公司,≥99.8%)与去离子水(电阻率为18 MΩ·cm)配制而成。设置5组反应器:进水中不添加nAg,也不添加Ag+的SBRs为对照(简称CK组),进水中分别添加1 mg·L−1 nAg(简称1-nAg组)、10 mg·L−1 nAg(简称10-nAg组)、0.3 mg·L−1 Ag+(简称0.3-Ag+组)和3.0 mg·L−1 Ag+(简称3-Ag+组),每组SBRs各3个重复,在室温(22~28 ℃)下运行。
实验期间,反应器内MLSS质量浓度为3 800~4 500 mg·L−1,SVI为50~85 mL·g−1,pH为7.73~8.71。一个工作周期(5 h)内活性污泥混合液中溶解氧(dissolved oxygen,DO)为0.2~8.0 mg·L−1,反应器出水DO在3 mg·L−1以上,满足活性污泥微生物脱氮除磷、去除有机物所需要的厌氧、缺氧和好氧生境。
1.3 分析项目及测定方法
1)基本指标。活性污泥混合液MLSS和SVI采用水和水质分析(第四版)[32];DO和pH分别采用便携式溶解氧仪(JPB-607A,上海雷磁仪器厂)和pH测定仪(PB-10,赛多利斯科学仪器(北京)有限公司)测定。
2)活性污泥形态、粒径及Zeta电位。活性污泥形态及元素组成采用扫描电子显微镜(HITACHI,S-3400N Ⅱ,Japan)和X射线能谱仪(HORIBA,EX-250,Japan)测定;污泥絮体粒径及Zeta电位分别由Mastersizer 3000激光粒度分析仪(Malvern Instruments,UK)和Zs90纳米粒度电位仪(Malvern Instruments,UK)测定;活性污泥的胞外聚合物(extracellular polymeric substances,EPS)采用离心法提取[33],其含量以每克总固体悬浮物中含有的EPS量计算。
3) Ag含量测定。取曝气结束前30 min的泥水混合液,低温高速离心(4 ℃,20 000 r·min−1) 30 min、过0.45 µm醋酸纤维滤膜(Whatman,USA),上清液即污水,沉淀部分为污泥。污泥于110 ℃烘箱中烘至恒重,冷却后采用石墨炉-王水消煮法[34]浸出污泥中Ag;污水、污泥及EPS中Ag含量采用电感耦合等离子体质谱仪(ICP-MS,NexION 300,PerkinElmer,USA)测定。
4)活性污泥中Ag的形态。采用X-射线衍射分析仪(Thermo Fisher Scientific,XTRA,USA)和X射线光电子能谱仪(U1VAC-PHI,PHⅠ5000 VersaProbe,Japan)分析Ag在活性污泥中的赋存形态。XRD测定条件为Cu靶,管压40 kV,管流40 mA,扫描范围2Ɵ为30°~90°,步长0.02°。XPS中X射线源为是单色化AlKα,分析活性污泥中C、O、S、N、Ag可能的存在形态。
1.4 数据统计与分析
采用Microsoft Excel 2016软件对数据进行统计分析,结果以平均值±标准差(Mean ± SE)表示,数据绘图采用Origin 8.1软件。利用SPSS Statistic 25软件进行数据显著性差异检验,P<0.05 代表数据间存在显著性差异。
2. 结果与讨论
2.1 活性污泥的形态形貌、粒径及Zeta电位
1)活性污泥的形态。进水中投加不同浓度的nAg和Ag+,SBRs运行50 d后,活性污泥混合液形态如图2所示。CK组活性污泥呈黄褐色、毛绒状絮体;1-nAg组中活性污泥颜色略深、有少许黑色颗粒,其他性状与CK组污泥无明显差异;10-nAg组活性污泥呈黑褐色,且该组反应器中MLSS值比CK组低30%;0.3-Ag+组、3.0-Ag+组中活性污泥颜色与CK组及1-nAg组相近,但前者污泥中出现明显的黑色颗粒状物质。SBRs运行50 d后,在进水中分别投加nAg和Ag+会导致活性污泥形态发生改变,高浓度nAg (10 mg·L−1)暴露还可导致活性污泥生物量下降,这与李墨青[35]的研究结果一致。
2)活性污泥的微观形貌。采用扫描电镜(scanning electron microscope,SEM)和能谱分析仪(energy dispersive spectroscopy,EDS)观察5组SBRs中活性污泥的微观形貌并分析主要的能谱元素含量。由图3可看出,CK组活性污泥表面粗糙、孔隙明显,进水分别添加nAg和Ag+处理的活性污泥表面结构逐渐致密化、孔隙缩小,其中10-nAg组和3.0-Ag+组中活性污泥结构致密化的现象尤其明显。已有研究表明,活性污泥的生物活性与其孔隙度相关,当受到毒性物质刺激时,活性污泥表面孔隙收缩,降低内部与外界流通性,污泥生物活性减弱[36-37]。这表明进水中的nAg和Ag+可能对活性污泥系统生物活性造成影响,影响后续污水处理效率。
对运行至50 d时的反应器中活性污泥进行能谱元素分析(表1),1-nAg、3.0-Ag+和10-nAg组反应器活性污泥中均检测出Ag元素,分别占所测定元素总质量的0.22%、0.51%和4.38%;0.3-Ag+组的反应器活性污泥中Ag元素低于EDS检测下限(3‰)。由此可见,水中的Ag会被活性污泥所吸附,且进水中Ag含量越高,活性污泥中Ag含量也相应升高[38]。其中,3.0-Ag+组添加的Ag+含量与10-nAg组溶解的Ag+含量相同,但从能谱分析结果可知,3.0-Ag+组活性污泥中Ag含量远低于10-nAg组,这表明活性污泥吸附的不仅仅是nAg溶解释放出的Ag+,还包括nAg或其他形态Ag。
表 1 nAg 和 Ag+处理下SBRs运行至50 d时活性污泥的能谱元素含量% Table 1. EDS spectra analysis of activated sludgea with addition of different nAg and Ag+ concentrations in influent after 50 days running% 处理组 Na Mg Al Si P S Cl K Ca Fe Ag CK 1.18 0.45 2.92 1.95 2.80 0.29 0.27 0.39 3.20 0.74 -- 1-nAg 0.87 0.36 1.89 1.21 2.14 0.23 0.18 0.26 2.15 0.45 0.22 10-nAg 0.96 0.48 2.79 1.70 3.62 0.93 0.24 0.45 4.01 0.76 4.38 0.3-Ag+ 1.56 0.48 2.78 1.51 3.08 0.36 0.38 0.47 3.60 0.72 -- 3.0-Ag+ 1.18 0.41 2.36 1.62 2.57 0.39 0.26 0.32 3.16 0.58 0.51 3)活性污泥中EPS的含量。活性污泥微生物分泌的EPS与污泥的沉降及重金属吸附性能密切相关[39]。运行至50 d时,进水中分别添加1 mg·L−1和10 mg·L−1 nAg的活性污泥中EPS含量分别为(33.39±1.59)、(54.10±10.73) mg·g−1,均显著高于CK组(P<0.05),且活性污泥EPS含量随着进水中nAg质量浓度增加而显著增加。进水中分别添加0.3 mg·L−1和3.0 mg·L−1 Ag+的活性污泥EPS含量分别为(22.09±6.89) mg·g−和(27.43±3.17) mg·g−1,与CK组及1-nAg组没有显著性差异(P>0.05),但进水中添加3.0 mg·L−1 Ag+的活性污泥EPS含量显著低于10-nAg组(P<0.05)。在外界毒性物质刺激下,活性污泥的EPS可在微生物细胞外形成保护性缓冲层,减缓细胞与外界基质的接触,从而减轻毒性物质对微生物的影响[40],进水中添加高浓度nAg(10 mg·L−1),其对活性污泥微生物刺激作用大于其释放出的Ag+(3 mg·L−1)。
4)活性污泥絮体粒径及Zeta电位。SBRs运行至第50 天时,各组反应器中活性污泥絮体粒径和Zeta电位如表2所示。与CK组相比,进水中分别添加1 mg·L−1 、10 mg·L−1 nAg和0.3 mg·L−1、3.0 mg·L−1Ag+对活性污泥絮体粒径无显著影响;与CK组及1-nAg组、10-nAg组、0.3-Ag+ 组相比,进水中添加3.0 mg·L−1 Ag+导致污泥絮体的Zeta电位显著上升(P<0.05)。污泥絮体的Zeta电位与絮体的分散稳定性和絮凝效率有关[41],Zeta电位上升代表絮凝体稳定性降低,团聚性增强[35]。进水中添加3.0 mg·L−1 Ag+直接增加了污水中阳离子浓度,可能发挥电中和及压缩双电层作用导致活性污泥絮体的Zeta电位上升。而进水中添加10 mg·L−1 nAg,尽管其在纯水中释放出3.0 mg·L−1 Ag+,但在污水系统中nAg释放Ag+会受到环境中溶解氧、温度及天然有机物等多重因素的影响[42-43],且较易与污水中的阴离子形成化合物,例如CHOI等[44]发现nAg释放的Ag+会与Cl−、SO42−、PO43−等反应生成络合物,从而导致其对污泥絮体Zeta电位的影响与其他各组处理间无显著性差异。
表 2 nAg 和 Ag+处理下SBRs运行至第50 天时活性污泥的粒径及Zeta电位Table 2. The floc size and Zeta potential of activated sludge in SBRs with addition of different nAg and Ag+ concentrations in influent after 50 days running处理 污泥粒径(10%)>μm 污泥粒径(90%)>μm Zeta电位/mV CK 80.02±4.84a 12.34±0.69a −13.57±0.83a 1-nAg 105.01±21.28a 15.26±3.15a −11.90±1.15a 10-nAg 92.80±4.47a 13.98±1.19a −11.32±1.93ab 0.3-Ag+ 90.41±8.10a 13.31±0.90a −10.97±0.65ab 3.0-Ag+ 99.70±30.01a 12.06±0.84a −8.35±1.32b 注: 10%和90%表示SBRs中体积分数为10%和90%以上的活性污泥粒径;每列中不同小写字母代表差异显著(P<0.05)。 2.2 Ag在污泥、污泥EPS和反应器出水中的含量
在50 d的运行期内,不同处理组中SBRs出水、活性污泥以及污泥EPS中Ag含量的动态变化如图3所示。由于nAg和Ag+在污水处理系统中易发生形态转变[45],测定时难以区分Ag的真实存在形态,因此,测定反应器各部分的总Ag含量表征进水中nAg和Ag+在SBR中的含量分布。
1)出水中Ag含量。如图4(a)所示,SBRs运行至50 d时,0.3-Ag+和3.0-Ag+组中出水Ag质量浓度分别为(3.18±1.46) μg·L−1和(7.72±0.90) μg·L−1;1-nAg组出水中Ag质量浓度为(13.50±2.55) μg·L−1,10-nAg组出水中Ag质量浓度达(3.96±0.16) mg·L−1。0.3-Ag+、3.0-Ag+组和1-nAg组反应器出水中Ag质量浓度均显著低于10-nAg组。YUAN等[46]连续37 d在SBRs进水中分别添加1 mg·L−1和5 mg·L−1 nAg,出水中总Ag含量分别为(26.0±3.0) μg·L−1和(1.88±0.06) mg·L−1,相差约70倍,与本研究结果相一致。
2)活性污泥中Ag含量。如图4(b)所示,1-nAg、10-nAg和3.0-Ag+组中活性污泥Ag质量浓度在SBRs运行至28 d后趋于稳定,约为3.20~4.30 mg·L−1,运行结束时,这3组反应器中活性污泥Ag质量浓度在3.28~3.67 mg·L−1。以上结果表明反应器运行28 d后活性污泥对Ag的吸附、积累达到稳定值,10-nAg组污泥中Ag的积累达到饱和后,导致出水中Ag含量逐渐升高(图4(a))。进水中添加0.3 mg·L−1 Ag+的SBRs活性污泥中Ag含量随着运行时间延长,持续升高,运行至第 50 天时,污泥中Ag质量浓度为2.38±0.19 mg·L−1。这可能因为进水中Ag含量较低,污泥中Ag含量未达到吸附最大值。SHENG等[38]也发现污泥中Ag积累存在阈值,当污泥中Ag积累达到阈值后,出水中总Ag含量升高。
3)污泥EPS中Ag含量。如图4(c)所示,0.3-Ag+组和3.0-Ag+组的活性污泥EPS中Ag含量与CK组无显著性差异;而1-nAg和10-nAg组的活性污泥EPS中Ag质量浓度明显高于CK和Ag+处理下的活性污泥(P<0.05),分别为(34.79±6.19) μg·L−1和(714.50±37.45) μg·L−1。这表明污泥EPS对污水中nAg具有较强的吸附性。已有研究表明,活性污泥EPS能够捕获污水中nAg并阻止其扩散,有助于消耗纳米微粒诱导产生的活性氧,从而保护微生物细胞膜结构不受到损害[47-48]。
2.3 活性污泥中Ag的形态
进水中分别添加1 mg·L−1和10 mg·L−1 nAg及0.3 mg·L−1和3 mg·L−1Ag+,SBRs连续运行至第50 天时采用XRD和XPS分析污泥中Ag的形态。XRD表征结果表明,1-nAg组及0.3-Ag+组活性污泥中均未检测到Ag及含Ag化合物,其可能原因是污泥中Ag含量低于所用XRD的检出限(5%)。因此,为了避免仪器的检出下限限制,采用与本文前述相同的反应器运行条件,增设2组反应器,将进水中的nAg和Ag+质量浓度分别增加至20 mg·L−1 nAg和6 mg·L−1 Ag+,在保证采用XRD可以检出污泥中Ag的前提下,进行Ag的形态分析。李金璞等[49-50]的研究表明,进水中分别添加20 mg·L−1 nAg和6 mg·L−1 Ag+对活性污泥理化性状的影响趋势、Ag在SBRs污泥和出水中的分布特征等与进水中分别添加10 mg·L−1 nAg和3 mg·L−1 Ag+的结果较一致,并未影响2.1与2.2中的结论。
1) XRD分析结果。图5为进水中分别添加10 mg·L−1 、20 mg·L−1 nAg和3 mg·L−1 、6 mg·L−1 Ag+以及CK组活性污泥的XRD图谱。进水中添加6 mg·L−1 Ag+处理的活性污泥中存在Ag2O3(PDF40-0909);进水中添加10 mg·L−1 nAg处理的活性污泥中存在Ag0(PDF04-0783)和Ag2O3;进水中添加20 mg·L−1 nAg处理的活性污泥中存在Ag0,Ag2O3和Ag2S(PDF14-0072)。GORHAM等[51]发现在光照下,nAg悬浮液中有氧化银类物质和Ag+存在,而nAg释放的Ag+可被污水中Cl−、S2−等络合沉淀,形成溶度积较小的AgCl和Ag2S沉淀(Ksp[AgCl]=1.8×10−10;Ksp[Ag2S]=6.3×10−50);在活性污泥系统的缺氧池内,nAg也可在2 h内被转化为Ag2S[52]。
本研究SBRs中泥水混合液DO为0.2~8.0 mg·L−1,存在厌氧/缺氧/好氧生境,nAg进入活性污泥系统后可能被氧化为Ag2O3,可能发生硫化形成Ag2S,也有可能未发生形态转化以Ag0的形式存在于污泥中。PVP包被的nAg等电点为3,在pH=6~9的污水中会发生表面羟基化(式(1)),与活性污泥中的R-NH2官能团结合,从而被吸附去除,同时nAg自身形态也会发生变化[53]。CHEN等[54]也发现,进水中添加0.1 mg·L−1 nAg反应4 h后,活性污泥中nAg被转化为Ag2S、Ag0和Ag+等多种形态。
Ag−OH=Ag−O−+H+ (1) 2) XPS分析结果。由图6(a)可知,进水中分别添加10 mg·L−1、20 mg·L−1 nAg和3 mg·L−1、6 mg·L−1 Ag+的活性污泥中富含O、Na、P、Mg、Ca、N等元素,C、O元素原子百分比均高于40%(表3),各活性污泥样品中均检测出Ag,Ag元素原子百分比分别为1.3%、1.9%和0.3%、0.5%,随进水中Ag浓度的上升而上升。图6(b)为进水中添加不同浓度nAg和Ag+处理下活性污泥中Ag元素的XPS能谱图。图6(b)中左峰和右峰数值分别对应Ag原子在3d5/2和3d3/2轨道上的结合能,2峰之间的结合能之差为6.00 eV,各组活性污泥Ag元素在3d5/2轨道上的结合能为367.1~367.4 eV,而XPS能谱分析手册中AgO在3d5/2轨道上的结合能为367.4 eV[55],与本研究Ag元素3d5/2轨道上的结合能最为接近,因此,该结合能下Ag的存在形式可能为氧化物。当污水处理系统中DO充足时,nAg的团聚速率比缺氧状态时快3~8倍[56],活性污泥对nAg的吸附率也更高[54],因此,污水中的nAg可能吸附在污泥中并部分以银的氧化物形式存在。
表 3 nAg 和 Ag+处理下活性污泥中6种元素原子百分比含量Table 3. Distribution proportion of six elementsin activated sludge in SBRs with addition of different nAg and Ag+ concentrations in influent after 50 days running处理组 原子百分比/% C1s N1s O1s P2p S2p Ag3d CK 40.98 3.81 48.84 5.82 0.56 10 mg·L−1 nAg 47.42 4.83 41.45 4.25 0.77 1.28 20 mg·L−1 nAg 45.65 5.62 41.74 4.32 0.82 1.85 3 mg·L−1 Ag+ 43.35 4.00 46.37 5.67 0.33 0.3 6 mg·L−1 Ag+ 42.01 3.71 47.28 5.86 0.65 0.49 由以上结果可知,进水中含有nAg和Ag+对污水处理系统中污泥形态、形貌、粒径及Zeta电位均存在影响,且进水中Ag含量越高,其影响越显著,其中nAg对污泥性状的影响大于其溶解释放的Ag+。CHOI等发现在相同条件下,nAg对硝化细菌的抑制率是Ag+的2倍[57];相同浓度的nAg和Ag+对小球藻的毒性作用也并不相同[58]。因此,nAg对污泥生物活性的抑制作用不仅仅来自于溶解的Ag+,与nAg本身的空间结构也有关联,纳米尺度的nAg微粒由于比表面积大,能够吸附在细胞表面,破坏细胞膜导致微生物细胞膜损伤[4],并影响细胞内遗传物质的复制促使细胞凋亡[59]。
进入活性污泥污水处理系统中的nAg,约有2.5%~5.0%的Ag随出水排出,其余部分被活性污泥吸附[60-61],10~30 ℃条件下活性污泥对nAg的最大吸附量为12~30 mg·g−1[54]。在pH、DO及其污水中共存离子等环境因素影响下,污泥中nAg可能被转化为银的氧化物和Ag2S,未转化部分以Ag0的形式存在。有研究表明,银的氧化物和Ag0依然有较强的生物毒性。SHEN等发现金黄色葡萄球菌和大肠杆菌暴露于质量分数为8.5% AgO的复合抗菌材料上20 min后,致死率均达99.99%[62]。暴露1 mg·L−1 Ag0会导致芦苇人工湿地中植物根系活性显著降低[63]。而Ag2S溶解性低,具有很强的环境稳定性,能够有效降低nAg和Ag+ 的毒性。但LI等[64]发现含Ag2S的污水经次氯酸消毒45 min后会溶解出22.3%的Ag+,对后续污水生物处理系统或受纳污水的地表水生态系统产生影响。因此,对于进水中含Ag的活性污泥需要选择恰当的污泥处理方式,如生物法、热处理法和稳定化法等[65],以防止污泥中含银化合物发生形态转化,转化为环境风险更高的银形态。
3. 结论
1)进水中分别添加1 mg·L−1、10 mg·L−1 nAg及0.3 mg·L−1 Ag+、3.0 mg·L−1 Ag+ 的SBRs连续运行50 d,与CK相比,进水中投加nAg 和Ag+对活性污泥颜色、形态及污泥EPS数量均有影响,nAg 或Ag+浓度越高,其影响越显著。
2)进水中投加的nAg或Ag+主要吸附、积累在活性污泥中。1-nAg、10-nAg和3.0-Ag+组反应器运行28 d后污泥对Ag的吸附达到稳定值,10-nAg组污泥中Ag积累量达到饱和后,出水中Ag含量逐渐升高,0.3-Ag+组活性污泥Ag含量随着运行时间持续升高,但未达到吸附饱和值。
3) SBRs连续运行50 d,随进水进入反应器的nAg及Ag+受活性污泥系统pH、DO及污水中共存离子等因素影响,部分nAg转化为银的氧化物和Ag2S等,其余以Ag0形态存在;Ag+被转化为银的氧化物和Ag2S等。
-
表 1 动力学参数
Table 1. Kinetic parameters
体系 温度/℃ k/min−1 R2 Ea/(kJ·mol−1) nZVI/PS 20 0.003 2 0.992 8 64.22 30 0.012 2 0.988 0 63.04 40 0.016 9 0.990 8 62.27 nZVI/PS/EDTA 20 0.003 8 0.990 6 57.24 30 0.015 0 0.963 3 54.13 40 0.018 6 0.992 1 53.64 -
[1] DOHERTY R E. A history of the production and use of carbon tetrachloride, tetrachloroethylene, trichloroethylene and 1, 1, 1-trichloroethane in the United States: part 1: historical background; carbon tetrachloride and tetrachloroethylene[J]. Environmental Forensics, 2000, 1(2): 69-81. doi: 10.1006/enfo.2000.0010 [2] HUANG B, CHAO L, WEI C, et al. Chlorinated volatile organic compounds (Cl-VOCs) in environment-sources, potential human health impacts, and current remediation technologies[J]. Environment International, 2014, 71(10): 118-138. [3] 孟宪荣, 葛松, 许伟, 等. 原位电阻热脱附修复氯代烃污染土壤[J]. 环境工程学报, 2021, 15(2): 669-676. doi: 10.12030/j.cjee.202009077 [4] 张明, 赵怡阳, 徐辰. 气相抽提与氧化压裂技术结合在有机污染土壤修复工程中的应用[J]. 环境与发展, 2020, 32(6): 88-90. [5] UNGTAE K, PARKER, BORDEN. Stochastic cost-optimization and risk assessment of in situ chemical oxidation for dense non-aqueous phase liquid (DNAPL) source remediation[J]. Stochastic Environmental Research and Risk Assessment, 2019, 33(1): 73-89. doi: 10.1007/s00477-018-1633-y [6] 蒋梦迪, 季跃飞, 陆隽鹤. 碳酸盐活化过硫酸盐降解对乙酰氨基酚的研究//清华大学持久性有机污染物研究中心[J]. 持久性有机污染物论坛2017暨第十二届持久性有机污染物学术研讨会论文集. 武汉, 2017: 223-225. [7] NETA P, MADHAVAN V, ZEME H, et al. Rate constants and mechanism of reaction of SO4·- with aromatic compounds[J]. Chemischer Informationsdienst, 1977, 8(14): 163-164. [8] YANG X, DING X, ZHOU L, et al. Oxygen dependent oxidation of trimethoprim by sulfate radical: kinetic and mechanistic investigations[J]. Chinese Chemical Letters, 2021, 32(10): 3164-3168. doi: 10.1016/j.cclet.2021.02.062 [9] USHANI U, LU X, WANG J, et al. Sulfate radicals-based advanced oxidation technology in various environmental remediation: a state-of-the-art review[J]. Chemical Engineering Journal, 2020, 402: 126232. doi: 10.1016/j.cej.2020.126232 [10] WANG W, CHEN M, WANG D, et al. Different activation methods in sulfate radical-based oxidation for organic pollutants degradation: catalytic mechanism and toxicity assessment of degradation intermediates[J]. Science of the Total Environment, 2021, 772: 145522. doi: 10.1016/j.scitotenv.2021.145522 [11] 郝慧茹, 张倩, 李孟, 等. 改性生物炭负载纳米零价铁活化过硫酸盐降解活性蓝19的机理及老化研究[J]. 环境科学学报, 2021, 41(2): 477-485. [12] WANG R, LI C, LV N, et al. Deeper insights into effect of activated carbon and nano-zero-valent iron addition on acidogenesis and whole anaerobic digestion[J]. Bioresource Technology, 2021, 324: 124671. doi: 10.1016/j.biortech.2021.124671 [13] XU H, LIU Y, YANG B, et al. Inhibitory effect of released phosphate on the ability of nano zero-valent iron to boost anaerobic digestion of waste-activated sludge and the remediation method[J]. Chemical Engineering Journal, 2020, 405: 126506. [14] KIM C, AHN J Y, KIM T Y, et al. Activation of persulfate by nanosized zero-valent iron (nZVI): mechanisms and transformation products of nZVI[J]. Environmental Science & Technology, 2018, 52(6): 3625-3633. [15] LIANG C J, LIANG C P, CHEN C C. pH dependence of persulfate activation by EDTA/Fe(III) for degradation of trichloroethylene[J]. Journal of Contaminant Hydrology, 2009, 106(3/4): 173-182. [16] LIANG C J, BRUELL C J, MARLEY M C, et al. Persulfate oxidation for in situ remediatin of TCE. II activated by chelated ferrous ion[J]. Chemosphere, 2004, 55(9): 1225-1233. doi: 10.1016/j.chemosphere.2004.01.030 [17] WU X L, GU X G, LU S G, et al. Degradation of trichloroethylene in aqueous solution by persulfate activated with citric acid chelated ferrous ion[J]. Chemical Engineering Journal, 2014, 255: 585-592. doi: 10.1016/j.cej.2014.06.085 [18] YPABC D, MZBC D, QI W, et al. EDTA, oxalate, and phosphate ions enhanced reactive oxygen species generation and sulfamethazine removal by zero-valent iron-sciencedirect[J]. Journal of Hazardous Materials, 2020, 391: 12200. [19] DONG H, HE Q, ZENG G, et al. Degradation of trichloroethene by nanoscale zero-valent iron (nZVI) and nZVI activated persulfate in the absence and presence of EDTA[J]. Chemical Engineering Journal, 2017, 316(Complete): 410-418. [20] 李明, 孙勇, 顾梦斌, 等. 柠檬酸强化纳米零价铁活化过硫酸钠体系降解水溶液中的三氯乙烯[J]. 环境工程学报, 2020, 14(3): 569-578. doi: 10.12030/j.cjee.201905182 [21] ZHANG K J, ZHOU X Y, ZHANG T Q, et al. Degradation of the earthy and musty odorant 2, 4, 6-tricholoroanisole by persulfate activated with iron of different valences[J]. Environmental Science and Pollution Research, 2018, 25(4): 3435-3445. doi: 10.1007/s11356-017-0452-x [22] 余文杰. 亚铁离子活化过硫酸盐氧化降解普施安蓝MX-R的过程强化研究[D]. 重庆: 重庆大学, 2019. [23] 钟燕清, 张永清, 陈宪方, 等. 不同螯合剂对零价铁活化过硫酸盐降解对氯苯胺的影响[J]. 环境化学, 2015, 34(4): 685-691. doi: 10.7524/j.issn.0254-6108.2015.04.2014101302 [24] 王薇. 包覆型纳米铁的制备及用于地下水污染修复的实验研究[D]. 天津: 南开大学, 2008. [25] 王胜军. 零价金属强化氧化工艺去除水中邻苯二甲酸二丁酯的研究[D].哈尔滨: 哈尔滨工业大学, 2010. [26] 张良波, 许春红, 祝慧娜, 等. Fe2+/过硫酸钠体系降解盐酸四环素的研究[J]. 环境污染与防治, 2017, 39(7): 776-779. [27] 陈希. 基于过硫酸盐高级氧化法的精对苯二甲酸生产废水处理及机理研究[D]. 天津: 河北工业大学, 2019. [28] 金晓英, 李任超, 陈祖亮. 纳米零价铁活化过硫酸钠降解2, 4-二氯苯酚[J]. 环境化学, 2014, 33(5): 812-818. doi: 10.7524/j.issn.0254-6108.2014.05.007 [29] HE J, YANG X, MEN B, et al. EDTA enhanced heterogeneous Fenton oxidation of dimethyl phthalate catalyzed by Fe: kinetics and interface mechanism[J]. Journal of Molecular Catalysis A-Chemical, 2015, 408: 179-188. doi: 10.1016/j.molcata.2015.07.030 [30] MUSHTAQUE A, TEEL A L, OLHA S, et al. Oxidative and reductive pathways in iron-ethylenediaminetetraacetic acid-activated persulfate systems[J]. Journal of Environmental Engineering, 2012, 138(4): 411-418. doi: 10.1061/(ASCE)EE.1943-7870.0000496 [31] GDS A, EOM A LLB B, et al. Contrasting the performance of photo-fenton at neutral pH in the presence of different organic iron-complexes using hydrogen peroxide or persulfate as oxidants for naproxen degradation and removal of antimicrobial activity[J]. Process Safety and Environmental Protection, 2021, 147: 798-807. doi: 10.1016/j.psep.2021.01.005 [32] HUSSAIN I, ZHANG Y, HUANG S, et al. Degradation of p-chloroaniline by persulfate activated with zero-valent iron[J]. Chemical Engineering Journal, 2012, 203(5): 269-276. [33] LIANG C, SU H W. Identification of sulfate and hydroxyl radicals in thermally activated persulfate[J]. Industrial & Engineering Chemistry Research, 2009, 48(11): 5558-5562. [34] BUXTON G V, GREENSTOCK C L, HELMAN W P, et al. Critical review of rate constants for reactions of hydrated electrons, hydrogen atoms and hydroxyl radicals (OH/O) in aqueous solution[J]. Journal of Physical and Chemical Reference Data, 1988, 17(2): 513-886. doi: 10.1063/1.555805 [35] NETA P, HUIERE, ROSS A B. Rate constants for reactions of inorganic radicals in aqueous solution[J]. National Bureau of Stan, 1979, 17(3): 1027-1284. [36] 董书玉. 零价铁活化过硫酸盐降解水中萘普生的研究[D]. 吉林: 东北电力大学, 2020. [37] 张珍. 纳米级双金属体系对水中氯苯和多氯联苯的催化还原脱氯研究[D]. 杭州: 浙江大学, 2013. -