-
氮氧化物(NOx)和挥发性有机化合物(volatile organic compounds,VOCs)等污染物是造成灰霾和近地面臭氧等大气污染问题的重要前体物。活性较强的VOCs在一定条件下与NOx发生光化学反应,造成O3体积增加,形成光化学烟雾,从而在更大范围内产生污染,对空气质量和人群健康造成威胁[1-2]。因此,开发高效、环保的催化剂以协同控制NO和甲苯的技术受到广泛重视。
目前,NOx控制技术主要有选择性催化还原、NOx储存还原和选择性催化氧化等。其中,NO催化氧化是反应过程中的关键步骤[3],同时催化氧化也是一种高效的甲苯控制技术,可将甲苯氧化成H2O和CO2 [4]。因此,可采用催化氧化法协同控制氮氧化物(NOx)和甲苯。然而,单独催化氧化NOx和甲苯的工艺会导致占地面积大、成本高[5]。因此,开发一种协同催化氧化NO和甲苯的催化剂具有重要意义。
贵金属催化剂是催化氧化技术中常用的催化剂,但其高成本和反应易团聚的缺点严重制约了其大规模应用[6]。钙钛矿催化剂由于成本低、环境友好及优异的催化活性等优点被认为是贵金属催化剂的替代品。CHEN等[7] 发现LaMe(Me=Mn, Fe, Co)钙钛矿催化剂具有良好的催化活性。其中,LaFeO3具有较好的热稳定性和较低的相形成温度,可应用较高温度条件下,但仍存在比表面积低、较少孔结构及B位Fe离子对甲苯和NO的氧化还原性能不够理想等缺点[8]。此外,工业尾气常含有的SO2会导致催化剂产生SO2中毒失活,从而严重抑制了其催化活性[9]。一般来说,钙钛矿催化剂的催化活性主要取决于氧迁移率、过渡金属的氧化还原特性及钙钛矿结构[10]。A或B位被不同价态的阳离子取代时,B位阳离子的氧数量会发生变化,钙钛矿结构中出现缺陷,诱导形成的氧空位可促进表面活性氧离子的迁移,从而提高其氧化还原能力[11]。一些过渡金属离子(如 Ce、Cu、Mn和 Co)具有 经济性和价态可变等优点[12],已被引入钙钛矿催化体系中以提高催化剂活性。如SHI等[10]将Ce部分取代LaMnO3钙钛矿复合氧化物的A位离子以提高催化性能和抗硫性能。WU等[12]发现LaM0.5Mn0.5O3 (M = Cu、Co、Fe、Ni、Cr)钙钛矿催化剂表现出优异的抗硫性能,主要原因是金属元素的引入提高了氧化还原能力和氧缺陷密度。ZHENG等 [13]发现Mn改性的LaFeO3催化剂具有较大表面积,因而表现出良好的活性。此外,ZHAO等[8]发现多孔 LaFeO3 钙钛矿催化剂具有更高比表面积,能提供更多表面活性位点。以上研究表明可通过过渡金属氧化物A位掺杂改性钙钛矿催化剂以提高其活性和抗硫性能。然而,不同过渡金属(X=Cu, Ce, Mn, Co)元素A位掺杂改性的多孔LaFeO3催化剂协同催化氧化甲苯和NO的研究较少,且SO2对其的影响机制尚不明确。
本研究通过溶胶-凝胶法制备一系列不同过渡金属X (X=Cu, Ce, Mn, Co)元素 A位取代的La0.65X0.35FeO3 (X=Cu, Ce, Mn, Co)钙钛矿催化剂,基于BET、SEM、XRD、XPS等表征结果探讨不同过渡金属元素A掺杂对La0.65X0.35FeO3协同催化氧化甲苯和NO的影响,并讨论SO2 对协同催化氧化反应的影响机理,以期为此类催化剂工业应用中的活性保持与再生提供参考。
SO2对La0.65X0.35FeO3钙钛矿催化剂协同催化氧化NO和甲苯的影响
Effect of SO2 on the simultaneous oxidation of NO and toluene by La0.65X0.35FeO3(X= Cu,Ce,Mn,Co) perovskite catalysts
-
摘要: 采用KIT-6硬模板辅助溶胶凝胶法制备了不同过渡金属元素A位掺杂改性的La0.65X0.35FeO3(X=Cu、Ce、Mn、Co)钙钛矿催化剂,并利用XRD、BET、SEM、H2-TPR、热重(TGA)、SO2-TPD及XPS表征了SO2对La0.65X0.35FeO3钙钛矿催化剂协同催化氧化NO和甲苯的活性影响机制。结果表明,过渡金属的引入可提高催化剂催化性能,La0.65X0.35FeO3钙钛矿催化剂在温度为100~400 ℃时表现出比LaFeO3催化剂更高的活性。其中,La0.65Co0.35FeO3催化剂活性最佳,在300 ℃时其NO转化率为60%,甲苯的T90为330 ℃。另外,SO2对La0.65X0.35FeO3钙钛矿催化剂协同催化氧化NO和甲苯的活性均表现为抑制作用。这是由于SO2容易和催化剂的金属位点发生反应生成表面硫酸盐沉积物,导致活性位点失效并堵塞孔道结构,从而会抑制NO和甲苯的氧化反应。然而,过渡金属的A位掺杂可增大表面积、增强氧化还原性,以引起结构畸变而产生更多的氧空位,提供更多活性位点,从而减弱SO2的抑制作用。本研究可为开发高效协同催化氧化氮氧化物(NOx)和挥发性有机化合物(VOCs)的抗硫催化剂提供参考。Abstract: In this study, a series of A-site substituted La0.65X0.35FeO3 (X=Cu, Ce, Mn, Co) catalysts were synthesized via a sol-gel method using KIT-6 as the hard template. And the characterizations of XRD, BET, SEM, H2-TPR, thermogravimetry (TGA), SO2-TPD and XPS were used to investigate the effect mechanism of SO2 on the activity of simultaneous catalytic oxidation of NO and toluene. The results showed that the introduction of transition metals could improve the performance of the catalyst. The La0.65X0.35FeO3 perovskite catalyst exhibited higher activities than LaFeO3 catalyst in the temperature range of 100~400 ℃. The La0.65X0.35FeO3 catalyst performed the best activity. The NO conversion was 60% at 300 ℃, and the T90 of toluene was 330 ℃. Besides, SO2 had an inhibitory effect on the co-catalytic oxidation of NO and toluene by La0.65X0.35FeO3 (X=Cu, Ce, Mn, Co) catalysts, which was due to the fact that SO2 was easy to oxidize with the metal sites to form sulfates covering the surface of catalysts, resulting in the reduction of the active sites and blocking of the pore structure, thereby inhibiting the oxidation reaction of NO and toluene. However, the A-site doping of transition metals X (X=Cu, Ce, Mn, Co) could increase the surface area and enhance the redox property, thus causing structural distortion and generating more oxygen vacancies and providing more active sites, thereby weakening the inhibitory effect of SO2. This study can provide a reference for the development of sulfur-resistant catalysts for the efficient simultaneous catalytic oxidation of nitrogen oxides (NOx) and volatile organic compounds (VOCs).
-
Key words:
- simultaneous catalytic oxidation /
- perovskite catalyst /
- transition metal /
- NO oxidation /
- toluene oxidation /
- SO2
-
表 1 La0.65X0.35FeO3催化剂的XRD峰位、平均晶粒、晶格参数和活化能
Table 1. XRD peak position, crystal size, lattice parameter and apparent activation energies of La0.65X0.35FeO3 catalysts
催化剂种类 XRD峰位1)(o) 平均晶粒D2)/nm 晶格参数(Å)3) Ea-T/
(kJ·mol-1)Ea-NO/
(kJ·mol-1)hna b c LaFeO3 32.16 35.98 5.920 7.855 5.556 28.6 21.2 La0.65Ce0.35FeO3 32.21 16.39 8.600 5.500 5.027 28.2 20.7 La0.65Cu0.35FeO3 32.14 26.77 5.662 7.852 5.475 17.4 12.3 La0.65Mn0.35FeO3 32.18 22.49 5.306 9.414 5.902 28.6 11.6 La0.65Co0.35FeO3 32.31 17.12 5.539 7.833 5.523 16.2 7.4 S-LaCeFeO3 32.14 26.32 5.571 7.857 8.579 41.0 37.33 S-La0.65Ce0.35FeO3 32.15 11.37 6.193 7.810 5.526 41.2 28.6 S-La0.65Cu0.35FeO3 32.15 21.50 5.566 7.846 5.577 39.7 33.6 S-La0.65Mn0.35FeO3 32.11 25.77 5.626 7.781 5.652 37.3 28.6 S-La0.65Co0.35FeO3 32.25 16.74 5.548 7.835 5.557 32.2 29.9 注:1)表示 La0.65X0.35FeO3催化剂121晶面的XRD峰位;2)基于(101、121、220、202、123、242和204)半峰宽的谢乐公式计算所得;3) 根据La0.65X0.35FeO3催化剂121晶面的XRD峰值。 表 2 La0.65X0.35FeO3催化剂的BET比表面积、孔容和平均孔径
Table 2. BET surface areas, pore volume and average pore sizes of La0.65X0.35FeO3 catalysts
催化剂种类 比表面积 /(m2·g-1) 孔容/ (cm3·g-1) 平均孔径 /nm LaFeO3 63.9 0.11 6.875 La0.65Ce0.35FeO3 63.5 0.069 4.339 La0.65Cu0.35FeO3 32.9 0.111 13.55 La0.65Mn0.35FeO3 31 0.085 10.96 La0.65Co0.35FeO3 74.6 0.088 4.738 -
[1] ZHAO L, HUANG Y, ZHANG J, et al. Al2O3-modified CuO-CeO2 catalyst for simultaneous removal of NO and toluene at wide temperature range[J]. Chemical Engineering Journal, 2020, 397: 125-419. [2] LU P, YE L, YAN X, et al. Impact of toluene poisoning on MnCe/HZSM-5 SCR catalyst[J]. Chemical Engineering Journal, 2021, 414: 128-838. [3] LI Z, DAI S, MA L, et al. Synergistic interaction and mechanistic evaluation of NO oxidation catalysis on Pt/Fe2O3 cubes[J]. Chemical Engineering Journal, 2021, 413: 127-447. [4] WU M, CHEN S, XIANG W, et al. Oxygen vacancy induced performance enhancement of toluene catalytic oxidation using LaFeO3 perovskite oxides[J]. Chemical Engineering Journal, 2020, 387: 124-101. [5] YE L, LU P, CHEN X, et al. The deactivation mechanism of applied surface science on MnOx-CeO2 SCRcatalyst[J]. Applied Catalysis B:Environmental, 2020, 277: 119-257. [6] LI X, GAO H, Influence of Ce doping on catalytic oxidation of NO on LaCoO3 (011) surface: A DFT study[J]. Applied Surface Science, 2020, 499: 143-866. [7] CHEN J, SHEN M, WANG X, et al. Catalytic performance of NO oxidation over LaMeO3 (Me=Mn, Fe, Co) perovskite prepared by the sol–gel method[J]. Catalysis Communications, 2013, 37: 105-108. doi: 10.1016/j.catcom.2013.03.039 [8] ZHAO S, WANG L, WANG Y, et al. Hierarchically porous LaFeO3 perovskite prepared from the pomelo peel bio-template for catalytic oxidation of NO[J]. Journal of Physics and Chemistry of Solids, 2018, 116: 43-49. doi: 10.1016/j.jpcs.2017.12.057 [9] MARTINOVIC F, TRAN Q N, DEORSOLA F A, et al. SO2 deactivation mechanism of NO oxidation and regeneration of the LaCoO3 perovskite[J]. Catalysis Science & Technology, 2020, 10: 2193-2202. [10] SHI X, GUO J, SHEN T, et al. Improvement of NH3-SCR activity and resistance to SO2 and H2O by Ce modified La-Mn perovskite catalyst[J]. Journal of the Taiwan Institute of Chemical Engineers, 2021, 126: 102-111. doi: 10.1016/j.jtice.2021.06.056 [11] SHI X, GUO J, SHEN T, et al. Enhancement of Ce doped La–Mn oxides for the selective catalytic reduction of NOx with NH3 and SO2 and/or H2O resistance[J]. Chemical Engineering Journal, 2021, 421: 129-995. [12] WU Y, LIU H, LI G, et al. Tuning composition on B sites of LaM0.5Mn0.5O3 (M = Cu, Co, Fe, Ni, Cr) perovskite catalysts in NOx efficient reduction[J]. Applied Surface Science, 2020, 508: 145-158. [13] ZHENG S, HUA Q, GU W, et al. Catalytic oxidation of CO on LaMn1−xFexO3 perovskites solid solution[J]. Journal of Molecular Catalysis A:Chemical, 2014, 391: 7-11. doi: 10.1016/j.molcata.2014.04.001 [14] PIREZ C, CADERON J M, DACQUIN J P, et al. Tunable KIT-6 Mesoporous Sulfonic Acid Catalysts for Fatty Acid Esterification[J]. ACS Catalysis, 2012, 2(8): 1607-1614. doi: 10.1021/cs300161a [15] 裴文波, 张兴, 侯志全, 等. 多孔复合金属氧化物的制备及其在消除挥发性有机物中的应用[J]. 工业催化, 2020, 28(4): 39-51. doi: 10.3969/j.issn.1008-1143.2020.04.004 [16] 李悦, 姜宏, 蔡思翔. 钒改性对铁基脱硝催化剂活性及抗碱性能的影响[J]. 人工晶体学报, 2021, 50(8): 1511-1517. doi: 10.3969/j.issn.1000-985X.2021.08.017 [17] SHEN B, ZHU S, ZHANG X, et al. Simultaneous removal of NO and Hg0 using Fe and Co co-doped Mn-Ce/TiO2 catalysts[J]. Fuel, 2018, 224: 241-249. doi: 10.1016/j.fuel.2018.03.080 [18] GLISENTI A, PACELLA M, ACELLA M, et al. Largely Cu-doped LaCo1−xCuxO3 perovskites for TWC: Toward new PGM-free catalysts[J]. Applied Catalysis B:Environmental, 2016, 180: 94-105. doi: 10.1016/j.apcatb.2015.06.017 [19] 魏永林, 陈红萍, 侯欣辛, 等. Fe-Mn/TiO2低温NH3-SCR脱硝催化剂的SO2中毒机理[J]. 功能材料, 2021, 52(04): 4132-4139+4146. doi: 10.3969/j.issn.1001-9731.2021.04.020 [20] Y WANG Y, YI W, YU J, et al. Novel Methods for Assessing the SO2 Poisoning Effect and Thermal Regeneration Possibility of MOx-WO3/TiO2 (M = Fe, Mn, Cu, and V) Catalysts for NH3-SCR[J]. Environmental Science & Technology, 2020, 54: 12612-12620. [21] WANG F, SHEN B, ZHU S, et al. Promotion of Fe and Co doped Mn-Ce/TiO2 catalysts for low temperature NH3-SCR with SO2 tolerance[J]. Fuel, 2019, 249: 54-60. doi: 10.1016/j.fuel.2019.02.113 [22] FRANCE L J, YANG Q, LI W, et al. Ceria modified FeMnOx—Enhanced performance and sulphur resistance for low-temperature SCR of NOx[J]. Applied Catalysis B:Environmental, 2021, 206: 203-215. [23] GAO F, TANG X, YI H, et al. Promotional mechanisms of activity and SO2 tolerance of Co- or Ni-doped MnOx-CeO2 catalysts for SCR of NOx with NH3 at low temperature[J]. Chemical Engineering Journal, 2017, 317: 20-31. doi: 10.1016/j.cej.2017.02.042 [24] ZHAO M, DENG J, LIU J, et al. Roles of Surface-Active Oxygen Species on 3DOM cobalt-based spinel catalysts MxCo3–xO4 (M = Zn and Ni) for NOx-assisted soot oxidation[J]. ACS Catalysis, 2019, 9: 7548-7567. doi: 10.1021/acscatal.9b01995 [25] YI Y, LIU H, CHU B, et al. Catalytic removal NO by CO over LaNi0.5M0.5O3 (M = Co, Mn, Cu) perovskite oxide catalysts: Tune surface chemical composition to improve N2 selectivity[J]. Chemical Engineering Journal, 2019, 369: 511-521. doi: 10.1016/j.cej.2019.03.066 [26] WANG H, ZHNG C, MA Q, et al. The adsorption and oxidation of SO2 on MgO surface: experimental and DFT calculation studies[J]. Environmental Science:Nano, 2020, 7: 1092-1101. doi: 10.1039/C9EN01474H [27] KANG L, HAN L, HE J, et al. Improved NOx reduction in the presence of SO2 by using Fe2O3-promoted halloysite-supported CeO2-WO3 catalysts[J]. Environmental Science & Technology, 2019, 53: 938-945. [28] TANG X, SHI Y, GAO F, et al. Promotional Role of Mo on Ce0.3FeOx catalyst towards enhanced NH3-SCR catalytic performance and SO2 resistance[J]. Chemical Engineering Journal, 2020, 398: 125-619. [29] 房德仁, 李婉君, 刘中民, 等. Cu-Fe合成低碳醇催化剂性能研究[J]. 工业催化, 2013, 21(7): 39-44. doi: 10.3969/j.issn.1008-1143.2013.07.009 [30] ARANDIYAN H, DAI H, DENG J, et al. Three-dimensionally ordered macroporous La0.6Sr0.4MnO3 with high surface areas: Active catalysts for the combustion of methane[J]. Journal of Catalysis, 2013, 307: 327-339. doi: 10.1016/j.jcat.2013.07.013 [31] ZHU H, SONG X, HAN X, et al. Co3O4 Nanosheets preferentially growing (220) facet with a large amount of surface chemisorbed oxygen for efficient oxidation of elemental mercury from flue gas[J]. Environmental Science & Technology, 2020, 54: 8601-8611. [32] SMIRNOV M Y, KALINKIN A V, PASHIS A V, ea al. Interaction of Al2O3 and CeO2 Surfaces with SO2 and SO2 + O2 Studied by X-ray Photoelectron Spectroscopy[J]. The Journal of Physical Chemistry B, 2005, 109: 11712-11719. doi: 10.1021/jp0508249