-
硫化氢(H2S)特性为剧毒、高腐蚀性,易损害工业管路及设备,威胁相关从业人员生命安全。此外,硫化氢的嗅觉阈值极低(仅为0.012 mg·m−3),是污水处理厂、垃圾填埋场等相关单元不良气味的重要来源[1]。因此,硫化氢的去除在清洁能源制备、烟气达标排放及生活环境优化中十分重要。对于大规模高浓度硫化氢而言,Claus法为首选处理工艺。而对于较低浓度的含硫化氢气体来说,常见脱除方法可分为干法和湿法两大类 [2]。干法多为采用固体吸附剂或催化剂进行硫化氢的吸附/催化脱除;湿法工艺则以碱性或氧化性溶液为吸收剂,利用硫化氢的酸性或还原性来提升其脱硫性能。其中,醇胺溶液吸收法是用于硫化氢、二氧化碳等酸性气体脱除最常见的传统工艺之一[3]。铁基脱硫等氧化脱硫工艺则是利用溶液的强氧化能力,将硫化氢氧化为硫磺,以达到脱硫及硫资源回收的目的[4]。此外,新型非水溶剂(如离子液体、低共熔溶剂)在气态污染物脱除方面的应用也是当前研究热点之一[5]。
纳米流体是指将纳米尺度(小于100 nm)的微粒加入基础流体中获得的稳定、均匀悬浮液[6]。与普通流体相比,不同纳米流体体系可具备独特的热、光、应力-应变及磁特性[7]。因此,纳米流体的使用越来越受到关注。与传统基液相比,纳米流体在增强传热、传质方面具有显著优势。纳米颗粒的布朗运动可增强流体扰动、增大气液传质系数、提升传质通量。向液体中加入适当比例的纳米颗粒,可有效提升其传质特性[8-9]。在气体分离领域,迄今已有较多关于纳米流体在二氧化碳吸收方面的研究。纳米颗粒的加入可强化二氧化碳在吸收剂中的传质,进而显著提升了吸收剂的吸收、再生性能[10-11]。当前利用纳米流体吸收硫化氢气体的研究报道较少,SiC[12]、CuO/Cu[13]、氧化石墨烯[14-16]及其他纳米颗粒[17-19]的加入可有效增强水溶液、醇胺等液体的硫化氢吸收性能,但相关研究使用的基液及纳米颗粒种类仍较少。本团队前期对非水溶液(离子液体、低共熔溶剂)基纳米流体体系的脱硫性能进行了研究[20-21],发现合适的纳米流体构建对气液吸收性能具备显著的增强作用。但纳米流体体系在水溶液气液吸收中的作用研究仍较少,考虑到当前常见的液态脱硫剂仍以碱性或氧化性水溶液为主,对以此类水溶液为基液而形成的纳米流体体系的脱硫性能研究具有重要意义。
为初步探讨纳米流体体系在硫化氢动态吸收脱除中的作用,本研究分别以较为常见的碱性或氧化性水溶液为基液,加入4种常见易得的纳米颗粒,调控原料配比以形成不同种类的纳米流体体系。其中,碱性溶液选择N-甲基二乙醇胺溶液,氧化性水溶液则选取氯化铁溶液。通过系统考察不同体系纳米流体对硫化氢的吸收能力,确定其组成与脱硫性能的内在关系,分析纳米流体体系对水溶液脱硫性能的影响,从而探讨水溶液基纳米流体体系在脱硫方面的作用规律,以期为纳米流体体系在气体脱硫方面的应用提供参考。
以醇胺或氯化铁为基液构建纳米流体体系对硫化氢气体湿法脱除的影响
The effect of nanofluid systems based on alcohol amine or ferric choloride on removal of hydrogen sulfide by wet method
-
摘要: 分别单独以醇胺(MDEA)和氯化铁水溶液为基液,引入4种不同的纳米颗粒(纳米氧化铝、二氧化硅、碳纳米管及纳米铜颗粒),构建不同质量分数的纳米流体体系,并测定不同体系对硫化氢气体的动态脱除性能,以考察纳米流体体系的构建对碱性(MDEA)及氧化性(氯化铁)水溶液脱硫性能的影响。分别对4种纳米颗粒进行了扫描电镜和透射电镜分析,发现其尺寸均在纳米级别。气液吸收研究结果表明,在2种不同基液的纳米流体体系中,添加Al2O3和SiO2纳米颗粒形成的纳米流体体系对原水溶液的脱硫性能均未产生明显影响。而碳纳米管和纳米铜颗粒的添加对H2S气体的去除则有不同程度增强。对于碳纳米管型纳米流体而言,对MDEA和氯化铁水溶液的脱硫强化性能在纳米颗粒质量分数为0.05%时最高。而对纳米铜颗粒而言,在2种水溶液中最佳质量分数分别为0.05%和0.02%。本研究表明纳米铜颗粒的引入对碱性及氧化性水溶液脱硫性能的增强作用最为明显,可为新型纳米流体型脱硫剂的开发提供参考。Abstract: Four kinds of nanoparticles (nano alumina, silica, carbon nanotube and nano copper particles) were introduced into the aqueous solution of alcohol amine (MDEA) and ferric chloride to form nanofluid systems with different concentrations. The dynamic removal performances for H2S of different nanofluid systems were measured, and the effect of nanofluid system on desulfurization performance of alkaline (MDEA) and oxidizing (ferric chloride) aqueous solutions was investigated. The nanoparticles were analyzed by scanning electron microscope and transmission electron microscope, and were found to be in a size of nanometer scale. The experimental results showed that the addition of Al2O3 and SiO2 nanoparticles had no obvious effect on the desulfurization performance of the original aqueous solutions. However, the introduction of carbon nanotubes and copper nanoparticles could enhanced the removal of H2S to different degrees. For carbon nanotube based nanofluid, when the nanoparticle concentration was 0.05%, the enhancement effect on the desulfurization performance of aqueous solution of MDEA and ferric chloride was the highest. As for copper nanoparticles, the optimum concentrations in aqueous solutions of MDEA and ferric chloride was 0.05% and 0.02%, respectively. In general, the addition of copper nanoparticles had the most significant enhancement effect on the desulfurization performance of alkaline and oxidizing aqueous solutions, which can provide a reference for the development of new nano-flow type desulfurizers.
-
Key words:
- Nanofluid /
- H2S /
- MDEA /
- ferric chloride /
- desulfurization /
- enhancement
-
-
[1] WIHEEB A D, SHAMSUDIN I K, AHMAD M A, et al. Present technologies for hydrogen sulfide removal from gaseous mixtures[J]. Reviews in Chemical Engineering, 2013, 29: 449-470. [2] WANG R. Investigation on a new liquid redox method for H2S removal and sulfur recovery with heteropoly compound[J]. Separation and Purification Technology, 2003, 31: 111-121. doi: 10.1016/S1383-5866(02)00153-3 [3] LIU X, LI J, WANG R. Desulfurization and regeneration performance of heteropoly compound/ionic liquid solutions at high temperature[J]. Chemical Engineering Journal, 2017, 316: 171-178. doi: 10.1016/j.cej.2017.01.093 [4] WANG Y, WANG Z, LIU Y. Oxidation absorption of gaseous H2S using Fenton-like advanced oxidation systems[J]. Energy & Fuels, 2018, 32: 11289-11295. [5] LIU X, WANG B, WANG D, et al. Study on the desulfurization performance of metal-based low transition temperature mixtures: Removal of hydrogen sulfide and sulfur recovery[J]. Fuel Processing Technology, 2019, 193: 372-377. doi: 10.1016/j.fuproc.2019.05.029 [6] KUMAR D D, ARASU A V. A comprehensive review of preparation, characterization, properties and stability of hybrid nanofluids[J]. Renewable & Sustainable Energy Reviews, 2018, 81: 1669-1689. [7] 冯一民, 郭蒙, 李丹, 等. 双子表面活性剂修饰金纳米流体的制备及稳定性[J]. 高等学校化学学报, 2017, 38(10): 1829-1833. doi: 10.7503/cjcu20170150 [8] KOMATI S, SURESH A K. Anomalous enhancement of interphase transport rates by nanoparticles: Effect of magnetic iron oxide on gas−liquid mass transfer[J]. Industrial & Engineering Chemistry Research, 2010, 49: 390-405. [9] ZHANG Z, CAI J, CHEN F, et al. Progress in enhancement of CO2 absorption by nanofluids: A mini review of mechanisms and current status[J]. Renewable Energy, 2018, 118: 527-535. doi: 10.1016/j.renene.2017.11.031 [10] IRANI V, MALEKI A, TAVASOLI A. CO2 absorption enhancement in graphene-oxide/MDEA nanofluid[J]. Journal of Environmental Chemical Engineering, 2019, 7: 102782. doi: 10.1016/j.jece.2018.11.027 [11] REZAKAZEMI M, DARABI M, SOROUSH E, et al. CO2 absorption enhancement by water-based nanofluids of CNT and SiO2 using hollow-fiber membrane contactor[J]. Separation and Purification Technology, 2019, 210: 920-926. doi: 10.1016/j.seppur.2018.09.005 [12] MA M, ZOU C. Enhancement by SiC nanoparticles of the removal of hydrogen sulfide from natural gas by a traditional desulfurizer[J]. Energy & Fuels, 2017, 31: 8054-8060. [13] MA M, ZOU C. Effect of nanoparticles on the mass transfer process of removal of hydrogen sulfide in biogas by MDEA[J]. International Journal of Heat and Mass Transfer, 2018, 127: 385-392. doi: 10.1016/j.ijheatmasstransfer.2018.06.091 [14] FARAJ S H E, ESFAHANY M N, JAFARIASL M, et al. Hydrogen sulfide bubble absorption enhancement in water-based nanofluids[J]. Industrial & Engineering Chemistry Research, 2014, 53: 16851-16858. [15] ESMAEILIFARAJ S H, ESFAHANY M N. Absorption of hydrogen sulfide and carbon dioxide in water based nanofluids[J]. Industrial & Engineering Chemistry Research, 2016, 55: 4682-4690. [16] ESMAEILIFARAJ S H, ESFAHANY M N, DARVANJOOGHI M H K. Application of water based nanofluids in bioscrubber for improvement of biogas sweetening in a pilot scale[J]. Chemical Engineering and Processing, 2019, 143: 107603. doi: 10.1016/j.cep.2019.107603 [17] IRANI V, TAVASOLI A, VAHIDI M. Preparation of amine functionalized reduced graphene oxide/methyl diethanolamine nanofluid and its application for improving the CO2 and H2S absorption[J]. Journal of Colloid and Interface Science, 2018, 527: 57-67. doi: 10.1016/j.jcis.2018.05.018 [18] MALEKI A, IRANI V, TAVASOLI A. H2S solubility enhancement using ethylene diamine functionalized carbon nanotubes and the aqueous solution of N-methyldiethanolamine[J]. Journal of Natural Gas Science and Engineering, 2019, 71: 103004. doi: 10.1016/j.jngse.2019.103004 [19] TAHERI M, MOHEBBI A, HASHEMIPOUR H, et al. Simultaneous absorption of carbon dioxide (CO2) and hydrogen sulfide (H2S) from CO2–H2S–CH4 gas mixture using amine-based nanofluids in a wetted wall column[J]. Journal of Natural Gas Science and Engineering, 2016, 28: 410-417. doi: 10.1016/j.jngse.2015.12.014 [20] LIU X, WANG B, LV X, et al. Enhanced removal of hydrogen sulfide using novel nanofluid system composed of deep eutectic solvent and Cu nanoparticles[J]. Journal of Hazardous Materials, 2021, 405: 124271. doi: 10.1016/j.jhazmat.2020.124271 [21] LIU X, WANG B, DONG X, et al. Enhancement effect of nanofluids on the desulfurization and regeneration performance of ionic liquid-based system[J]. Journal of Hazardous Materials, 2021, 419: 126394. doi: 10.1016/j.jhazmat.2021.126394 [22] 吕雪, 牟玥, 缪逸文, 等. 三种硫化氢吸收剂吸收效率对比及碘酸钾体系吸收条件优化研究[J]. 化工学报, 2020, 71(10): 4696-4703. [23] 张俊丰, 童志权. Fe/Cu体系湿式催化氧化一步高效脱除 H2S 新方法研究[J]. 环境科学学报, 2005, 25(4): 497-501. doi: 10.3321/j.issn:0253-2468.2005.04.012