-
我国红壤面积约为2.1×106 km2,约占全国耕地总面积的22%[1],水稻是红壤区的主要粮食作物。由于工业化快速发展、农药和化肥不合理利用,使土壤中有毒重金属不断积累,对农田土壤造成了污染[2]。目前,我国约有2×105 km2的耕地受到不同程度重金属污染,其中Cd污染的耕地面积约有1.3×105 km2[3],从而对食品安全构成威胁[4]。每年被重金属污染的粮食多达1.2×107 t[5]。红壤由于pH较低,重金属更容易被农作物吸收[1]。因此,降低水稻对镉、铅和铜等重金属的吸收,实现污染红壤的安全利用刻不容缓。
稳定化法(钝化)是一种十分有效的重金属污染农田安全利用方法,具有费用低、操作方便、见效快、可处理复合重金属污染等特点[4]。目前,实际生产中常用的钝化剂包括碱性物质[6]、硅酸盐[7]、黏土矿物[8]、生物炭[9]等。碱性物质主要通过提高土壤pH,使重金属离子形成碳酸盐或氢氧化物沉淀,以降低重金属在土壤中的生物可利用性[6]。韦小了等[10]通过向盆栽土中添加0.82 g·kg−1生石灰,使土壤中可交换态Cd的质量分数显著降低13.08%(p<0.05),稻米中Cd的质量分数显著降低32.33%(p<0.05)。硅酸盐类钝化剂通过与Cd形成硅酸盐络合物降低植物对镉的吸收[7]。沸石、海泡石等黏土矿物稳定性高、比表面积与离子交换量大,具有较强的极性和吸附性。郑荧辉等[11]和PEI等[12]指出沸石和海泡石施用量分别为11 250和15 000 kg·hm−2,使土壤中有效态Cd的质量分数分别降低17.46%和15.2%。有机钝化剂如腐殖酸含有大量的活性官能团,可与土壤中水溶态和可交换态的重金属离子发生络合反应。陆中桂等[13]指出,腐殖酸对Pb和Cd具有很好的吸附效果。DHIMAN等[14]指出,1%聚丙烯酰胺(PAM)可显著提高土壤对Cu、Cd、Zn和Fe的吸附率。然而,目前将PAM用于酸性稻田重金属安全利用的研究尚未见报道。此外,长期大量使用无机钝化药剂对土壤理化性质及微生物多样性和结构会产生不良影响[15]。例如,长期施用石灰会破坏土壤团粒结构,造成土壤板结,进而影响土壤中微生物的活性[8]。而索琳娜等[16]指出,腐殖酸钠和聚丙烯酰胺等高分子有机物料可改善土壤结构、养分和水分状况,起到修复土壤的作用。据此可提出假设:无机钝化剂复配有机物料可以提高重金属钝化效果[14, 17],同时降低无机钝化剂对土壤产生的负面影响。
化学提取可利用性重金属可作为作物对重金属实际吸收情况的重要参考[18]。本研究通过室内筛选实验,对比有机(腐殖酸钠、泥炭和PAM)与无机(海泡石、沸石、针铁矿、生石灰、氢氧化钙、硅酸钙、硅酸钠和硫化亚铁)钝化剂对红壤中Cd、Pb和Cu的钝化效果;并将筛选出的钝化剂复配用于大田实验,评估其在稻谷吸收重金属中发挥的作用及对稻田微生物的影响,以揭示复配药剂对红壤水稻土中Cd、Pb和Cu的主要钝化机理,为酸性红壤水稻田的安全生产提供参考。
复配钝化剂对稻田重金属有效性及其水稻吸收的影响
Effects of combined passivators on the availability of heavy metals in red paddy soil and their uptake by rice
-
摘要: 针对红壤稻米中重金属Cd超标的问题,通过筛选钝化剂并将其复配用于大田实验,以研究复配钝化剂对土壤有效态重金属(Cd、Pb和Cu)及水稻吸收重金属的影响及其作用机理。室内筛选实验表明,在11种无机和有机钝化剂中,海泡石、生石灰和聚丙烯酰胺对土壤重金属钝化效果较好,使有效态Cd、Pb和Cu分别降低了32.4% ~ 89.2%、19.5% ~ 99.1%和49.4% ~ 92.4%,并将它们确定为复配钝化剂的成分。大田实验结果表明,生石灰、聚丙烯酰胺和海泡石复配对土壤中重金属钝化效果最佳,使有效态Cd、Pb和Cu分别降低了28.6%、20.2%和23.5%(p<0.05),其钝化机制为离子交换和络合作用。而且,该复配钝化剂对土壤化学性质影响最小。复配钝化剂使稻米中Cd的质量分数降低了21.7% ~ 93.1%(p<0.05)。另外,复配钝化剂对土壤微生物丰度和多样性没有显著影响。考虑到土壤的安全性和稳定性,推荐将生石灰、聚丙烯酰胺和海泡石复配钝化剂用于降低红壤稻米对Cd的吸收以确保粮食安全生产。本研究结果可为重金属污染红壤稻田的安全利用提供参考。Abstract: To solve the problem of Cd in rice over the food-safe standard, the combined passivators were selected and used in field experiments to explore the effects of the combined passivators on the available heavy metals (Cd, Pb and Cu) in soil and their uptake by rice in red paddy soil. Sepiolite, quicklime and polyacrylamide were used as the components of the combined passivators in field experiment, because laboratory screening results showed that they decreased available Cd, Pb and Cu by 32.4%~89.2%, 19.5%~99.1% and 49.4%~92.4%, respectively. Field experiment results showed that the combination of quicklime, polyacrylamide and sepiolite had the best passivation effect on heavy metals in soil, decreasing the concentrations of available Cd, Pb and Cu by 28.6%, 20.2% and 23.5%, respectively (p<0.05). The passivation mechanism of this combined passivator was ion exchange and complexation. This combine passivator had less impact on soil chemical properties than other combined passivators. The combined passivators decreased the concentration of Cd in rice by 21.7%~93.1% as compared with the control (p<0.05). In addition, the combined passivators had no significant effect on the abundance and diversity of soil microorganisms. Considering the safety and stability of soil, the combination of quicklime, polyacrylamide and sepiolite was the primary recommendation to decrease Cd content of rice in red paddy soil. The research results can provide a basis for the safe utilization of heavy metals-contaminated red paddy soil.
-
Key words:
- red soil /
- rice /
- heavy metal /
- combined passivators
-
表 1 不同钝化剂对土壤中有效态重金属质量分数和土壤pH的影响
Table 1. Effects of different passivators on the concentrations of available heavy metals in soil and soil pH
钝化剂种类 处理组 钝化剂 CdSA /(mg·kg−1) PbSA /(mg·kg−1) CuSA /(mg·kg−1) pH pH变化率/% CK — 0.17 ± 0.02 ab 6.20 ± 0.07 b 5.73 ± 0.12 cd 5.58 — 无机钝化剂 5S 海泡石 0.12 ± 0.01 d 3.52 ± 0.33 d 5.88 ± 0.64 cd 7.25 29.98 5Z 沸石 0.16 ± 0.01 bc 3.98 ± 0.30 cd 6.33 ± 0.73 bc 7.55 35.40 5T 针铁矿 0.10 ± 0.01 de 3.32 ± 0.21 d 6.86 ± 0.16 b 7.03 25.90 5Q 生石灰 0.10 ± 0.01 de 4.99 ± 1.76 c 2.90 ± 0.19 f 11.00 97.21 5C 氢氧化钙 0.09 ± 0.01 e 5.97 ± 0.40 b 4.07 ± 0.77 e 10.56 89.32 5G 硅酸钙 0.15 ± 0.01 c 3.21 ± 0.27 d 6.05 ± 0.38 cd 7.12 27.66 5N 硅酸钠 0.17 ± 0.01 abc 6.97 ± 0.27 b 7.07 ± 0.47 b 9.72 74.25 5F 硫化亚铁 0.16 ± 0.02 bc 2.20 ± 0.14 e 3.36 ± 0.10 ef 4.81 −13.78 有机钝化剂 5H 腐殖酸钠 0.20 ± 0.01 a 8.23 ± 0.32 a 8.21 ± 0.29 a 7.30 30.80 5P 泥炭 0.16 ± 0.02 bc 4.05 ± 0.31 cd 5.50 ± 0.37 d 6.03 8.10 5A PAM 0.02 ± 0.01 f 0.05 ± 0.09 f 0.44 ± 0.17 g 5.28 −5.31 注: SA表示土壤有效态重金属的质量分数;同列不同小写字母表示处理间差异显著(P<0.05)。 表 2 复配钝化剂种类和用量对大田土壤化学性质的影响
Table 2. Effects of combined passivators and dosage on chemical properties of field soil
处理组 钝化剂 用量/
(kg·ha−1)pH TN /
(g·kg−1)TP /
(mg·kg−1)TK /
(g·kg−1)SOM /
(g·kg−1)CEC /
(cmol·kg−1)CK 无 0 4.58±0.08b 2.47±0.13a 462.67±18.5a 23.34±0.07a 27.25±1.34a 10.40±0.46a T1 生石灰 1 875 5.68±0.80a 2.17±0.07bc 441.67±48.95ab 23.33±0.20a 22.47±0.95bc 9.96±0.21ab T2 生石灰+PAM 1 500+375 5.29±0.22ab 1.96±0.18c 344.67±39.11c 23.88±0.69a 19.35±0.78c 10.07±0.57a T3 生石灰+海泡石 1 500+975 5.05±0.16ab 2.07±0.04bc 429.67±33.65ab 25.45±1.26a 21.07±0.59bc 8.72±0.68b T4 生石灰+PAM+海泡石 1 500+150+750 5.39±0.60ab 2.27±0.18ab 317.50±12.02c 24.28±1.51a 22.95±0.49ab 10.90±0.10a 注:同列不同小写字母表示处理间差异显著(p<0.05)。 表 3 土壤理化性质、有效态重金属与水稻重金属质量分数之间的相关性分析
Table 3. Correlation analysis among soil chemical properties, availability of heavy metals in soil, and heavy metals in rice
组别 TP TN SOM CEC TK pH CdSA PbSA CuSA CdRT PbRT CuRT TP 1.000 TN 0.394 1.000 SOM 0.519 0.986** 1.000 CEC −0.447 0.501 0.411 1.000 TK −0.191 −0.426 −0.458 −0.654 1.000 pH −0.421 −0.537 −0.607 0.079 −0.058 1.000 CdSA 0.914* 0.638 0.722 −0.093 −0.443 −0.294 1.000 PbSA 0.536 0.567 0.645 −0.156 0.070 −0.989** 0.407 1.000 CuSA 0.890* 0.596 0.693 −0.363 0.006 −0.735 0.798 0.826 1.000 CdRT 0.280 0.787 0.758 0.107 0.211 −0.706 0.350 0.734 0.658 1.000 PbRT 0.272 0.497 0.433 −0.112 0.361 −0.056 0.394 0.149 0.431 0.697 1.000 CuRT 0.161 0.288 0.211 −0.165 0.409 0.205 0.282 −0.109 0.234 0.483 0.962** 1.000 注:SA代表土壤有效态重金属的质量分数;RT代表稻米中重金属的质量分数;*表示p<0.05、**表示p<0.01。 表 4 土壤中细菌的α-多样性
Table 4. α-diversity of bacteria in soil
处理组 ACE Chao Shannon Simpson CK 5 345.80 ± 42.11 a 5 309.01 ± 128.82 a 6.73 ± 0.06 a 0.004 ± 0.000 a T1 5 196.84 ± 879.96 a 4 926.52 ± 425.03 a 6.70 ± 0.13 a 0.004 ± 0.000 a T2 4 968.82 ± 225.61 a 5 029.53 ± 218.62 a 6.80 ± 0.04 a 0.004 ± 0.000 a T3 5 349.96 ± 266.12 a 5 278.47 ± 215.06 a 6.82 ± 0.08 a 0.004 ± 0.000 a T4 5 693.74 ± 885.39 a 5 317.95 ± 315.03 a 6.77 ± 0.14 a 0.004 ± 0.001 a 注:同列相同小写字母表示不同处理间无显著差异(P> 0.05)。 -
[1] CHEN G, SHAH K J, SHI L, et al. Red soil amelioration and heavy metal immobilization by a multi-element mineral amendment: Performance and mechanisms[J]. Environmental Pollution, 2019, 254: 112964. doi: 10.1016/j.envpol.2019.112964 [2] GUO Y K, MAO K, CAO H R, et al. Exogenous selenium (cadmium) inhibits the absorption and transportation of cadmium (selenium) in rice[J]. Environmental Pollution, 2021, 268: 115829. doi: 10.1016/j.envpol.2020.115829 [3] XU Y, LIANG X F, XU Y M, et al. Remediation of heavy metal-polluted agricultural soils using clay minerals: A review[J]. Pedosphere, 2017, 27(2): 193-204. doi: 10.1016/S1002-0160(17)60310-2 [4] ZHAO H, HUANG X, LIU F, et al. A two-year field study of using a new material for remediation of cadmium contaminated paddy soil[J]. Environmental Pollution, 2020, 263: 114614. doi: 10.1016/j.envpol.2020.114614 [5] 何舞, 王富华, 杜应琼, 等. 东莞市土壤重金属污染现状、污染来源及防治措施[J]. 广东农业科学, 2010, 37(4): 211-–213 [6] 曾晓舵, 王向琴, 凃新红, 等. 农田土壤重金属污染阻控技术研究进展[J]. 生态环境学报, 2019, 28(9): 1900-1906. [7] ZHAO Y, LIU M, GUO L, et al. Influence of silicon on cadmium availability and cadmium uptake by rice in acid and alkaline paddy soils[J]. Journal of Soils and Sediments, 2020, 20(5): 2343-2353. doi: 10.1007/s11368-020-02597-0 [8] 鄢德梅, 郭朝晖, 黄凤莲, 等. 钙镁磷肥对石灰、海泡石组配修复镉污染稻田土壤的影响[J]. 环境科学, 2020, 41(3): 1491-1497. [9] 刘振刚, 夏宇, 孟芋含, 等. 生物质炭材料修复重金属污染土壤的研究进展: 修复机理及研究热点分析[J]. 环境工程学报, 2021, 15(4): 1140-1148. doi: 10.12030/j.cjee.202012051 [10] 韦小了, 牟力, 付天岭, 等. 不同钝化剂组合对水稻各部位吸收积累Cd及产量的影响[J]. 土壤学报, 2019, 56(4): 883-894. doi: 10.11766/trxb201810120516 [11] 郑荧辉, 熊仕娟, 徐卫红, 等. 纳米沸石对大白菜镉吸收及土壤有效镉含量的影响[J]. 农业环境科学学报, 2016, 35(12): 2353-2360. doi: 10.11654/jaes.2016-0717 [12] PEI P, SUN Y, WANG L, et al. In-situ stabilization of Cd by sepiolite co-applied with organic amendments in contaminated soils[J]. Ecotoxicology and Environmental Safety, 2021, 208: 111600. doi: 10.1016/j.ecoenv.2020.111600 [13] 陆中桂, 黄占斌, 李昂, 等. 腐植酸对重金属铅镉的吸附特征[J]. 环境科学学报, 2018, 38(9): 3721-3729. [14] DHIMAN J, PRASHER S O, ELSAYED E, et al. Heavy metal uptake by wastewater irrigated potato plants grown on contaminated soil treated with hydrogel based amendments[J]. Environmental Technology & Innovation, 2020, 19: 100952. [15] WANG F, ZHANG W W, MIAO L J, et al. The effects of vermicompost and shell powder addition on Cd bioavailability, enzyme activity and bacterial community in Cd-contaminated soil: a field study [J]. Ecotoxicology and Environmental Safety, 2021, 215: 112163 [16] 索琳娜, 马杰, 刘宝存, 等. 土壤调理剂应用现状及施用风险研究[J]. 农业环境科学学报, 2021, 40(6): 1141-1149. doi: 10.11654/jaes.2021-0364 [17] LIANG X, HAN J, XU Y, et al. In situ field-scale remediation of Cd polluted paddy soil using sepiolite and palygorskite[J]. Geoderma, 2014, 235: 9-18. [18] ZHANG G X, GUO X F, ZHAO Z H, et al. Effects of biochars on the availability of heavy metals to ryegrass in an alkaline contaminated soil[J]. Environmental Pollution, 2016, 218: 513-522. doi: 10.1016/j.envpol.2016.07.031 [19] 鲍士旦. 土壤农化分析[M]. 北京: 中国农业出版社, 2000 [20] 周嗣江, 刘针延, 熊双莲, 等. 同步钝化土壤Cd和As材料的筛选[J]. 环境科学, 2021, 42(7): 3527-3534. [21] ZHANG G X, HE L X, GUO X F, et al. Mechanism of biochar as a biostimulation strategy to remove polycyclic aromatic hydrocarbons from heavily contaminated soil in a coking plant[J]. Geoderma, 2020, 375: 114497. doi: 10.1016/j.geoderma.2020.114497 [22] HAMID Y, TANG L, HUSSAIN B, et al. Adsorption of Cd and Pb in contaminated gleysol by composite treatment of sepiolite, organic manure and lime in field and batch experiments[J]. Ecotoxicology and Environmental Safety, 2020, 196: 110539. doi: 10.1016/j.ecoenv.2020.110539 [23] SHI M Q, MIN X B, KE Y, et al. Recent progress in understanding the mechanism of heavy metals retention by iron (oxyhydr) oxides[J]. Science of The Total Environment, 2021, 752: 141930. doi: 10.1016/j.scitotenv.2020.141930 [24] 张迪, 吴晓霞, 丁爱芳, 等. 生物炭和熟石灰对土壤镉铅生物有效性和微生物活性的影响[J]. 环境化学, 2019, 38(11): 2526-2534. [25] 王俊伟, 杜俊逸, 桂梦瑶, 等. 氧化环境中FeS修复重金属的稳定性变化与机制[J]. 环境科学学报, 2020, 40(2): 562-573. [26] GONG H B, TAN Z X, HUANG K, et al. Mechanism of cadmium removal from soil by silicate composite biochar and its recycling[J]. Journal of Hazardous Materials, 2021, 409: 125022. doi: 10.1016/j.jhazmat.2020.125022 [27] MIAO J, GUO Z, WANG Y, et al. Application progress on adsorption of heavy metal ions using polyacrylamide composite materials[J]. Petrochemical Technology, 2017, 46(12): 1558-1565. [28] 陈月芳, 彭焕玲, 侯荣荣, 等. 改性泥炭对Pb(II)和Cd(II)的单一及竞争吸附研究[J]. 应用化工, 2019, 48(2): 243-247. doi: 10.3969/j.issn.1671-3206.2019.02.001 [29] YANG K, MIAO G F, WU W H, et al. Sorption of Cu2+ on humic acids sequentially extracted from a sediment[J]. Chemosphere, 2015, 138: 657-663. doi: 10.1016/j.chemosphere.2015.07.061 [30] YU Y, YUAN S, WAN Y, et al. Effect of humic acid-based amendments on exchangeable cadmium and its accumulation by rice seedlings[J]. Environmental Progress & Sustainable Energy, 2017, 36(5): 1308-1313. [31] 史磊, 郭朝晖, 彭驰, 等. 石灰组配土壤改良剂抑制污染农田水稻镉吸收[J]. 农业工程学报, 2018, 34(11): 209-216. doi: 10.11975/j.issn.1002-6819.2018.11.027 [32] WATSON C, SINGH Y, IQBAL T, et al. Short-term effects of polyacrylamide and dicyandiamide on C and N mineralization in a sandy loam soil[J]. Soil Use and Management, 2016, 32: 127-136. [33] CAO X Y, HU P J, TAN C Y, et al. Effects of a natural sepiolite bearing material and lime on the immobilization and persistence of cadmium in a contaminated acid agricultural soil[J]. Environmental Science and Pollution Research, 2018, 25(22): 22075-22084. doi: 10.1007/s11356-018-1988-0 [34] HAO X, CHO C M, RACZ G J, et al. Chemical retardation of phosphate diffusion in an acid soil as affected by liming[J]. Nutrient Cycling in Agroecosystems, 2002, 64(3): 213-224. doi: 10.1023/A:1021470824083 [35] MAMEDOV A I, TSUNEKAWA A, HAREGEWEYN N, et al. Soil Structure Stability under Different Land Uses in Association with Polyacrylamide Effects[J]. Sustainability, 2021, 13(3): 1407. doi: 10.3390/su13031407 [36] PARADELO R, VIRTO I, CHENU C. Net effect of liming on soil organic carbon stocks: A review[J]. Agriculture Ecosystems & Environment, 2015, 202: 98-107. [37] JIN S L, HU Z J, HUANG Y Z, et al. Evaluation of several phosphate amendments on rare earth element concentrations in rice plant and soil solution by X-ray diffraction[J]. Chemosphere, 2019, 236: 124322. doi: 10.1016/j.chemosphere.2019.07.053 [38] 中华人民共和国国家食品药品监督管理总局. 食品安全国家标准 食品中污染物限量: GB 2762–2017[S]. 北京: 中国标准出版社, 2017 [39] WU Y J, ZHOU H, ZOU Z J, et al. A three-year in-situ study on the persistence of a combined amendment (limestone plus sepiolite) for remedying paddy soil polluted with heavy metals[J]. Ecotoxicology and Environmental Safety, 2016, 130: 163-170. doi: 10.1016/j.ecoenv.2016.04.018 [40] HUANG Y, SHENG H, ZHOU P, et al. Remediation of Cd-contaminated acidic paddy fields with four-year consecutive liming[J]. Ecotoxicology and Environmental Safety, 2019, 188: 109903. [41] WEN T T, YANG L Y, DANG C Y, et al. Effect of basic oxygen furnace slag on succession of the bacterial community and immobilization of various metal ions in acidic contaminated mine soil[J]. Journal of Hazardous Materials, 2020, 388: 121784. doi: 10.1016/j.jhazmat.2019.121784 [42] AZARBAD H, NIKLINSKA M, LASKOWSKI R, et al. Microbial community composition and functions are resilient to metal pollution along two forest soil gradients[J]. Fems Microbiology Ecology, 2015, 91(1): 1-11. [43] ZHENG J F, CHEN J H, PAN G X, et al. Biochar decreased microbial metabolic quotient and shifted community composition four years after a single incorporation in a slightly acid rice paddy from southwest China[J]. Science of The Total Environment, 2016, 571: 206-217. doi: 10.1016/j.scitotenv.2016.07.135