-
厌氧氨氧化作为新型脱氮工艺,因其具有污泥产量少[1]、能耗低[2]以及不需要额外投加碳源[3]等优点,受到广泛关注。但厌氧氨氧化菌(anaerobic ammonium oxidation bacteria,AnAOB)生长缓慢,对环境因素的变化异常敏感[4]。温度下降(≤15 ℃)[5]、pH的变化[6]、COD值均会对其产生不利影响[7]。这些因素导致厌氧氨氧化污泥难以富集培养,限制了该技术的大规模应用[8]。如何快速有效地富集AnAOB是推动该工艺大规模应用的关键,而接种污泥的选择被认为是影响Anammox反应器启动的重要因素之一[9]。
目前Anammox反应器的启动多采用厌氧颗粒污泥[10]、厌氧消化污泥[11]以及反硝化污泥[12]作为接种污泥。有大量研究表明,AnAOB广泛存在于江河湖海的底泥中[13-15]。赵折红等[16]在三峡库区香溪河不同季节的沉积物中均发现了AnAOB的存在,且在0~10 cm内AnAOB丰度随着沉积物深度的增长呈现先增加后减少的趋势。秦红益[17]在富营养湖泊太湖的不同断面的沉积物中也都发现了AnAOB的存在,并发现0~5 cm处的沉积物是AnAOB集中分布的区域,且氮素水平会强烈影响沉积物中AnAOB的丰度和垂直分布。沈李东[18]在各种类型的淡水湿地的表层沉积物中均监测到AnAOB的存在,并说明Candidatus Brocadia和Candidatus Kuenenia属是淡水湿地系统中的优势AnAOB。虽然湿地系统广泛存在AnAOB,但截至目前,采用湿地底泥作为接种污泥启动Anammox工艺的研究鲜有报道。
基于上述研究结果,本研究采用UASB反应器,通过接种厌氧颗粒污泥、湿地底泥以及二者的混合物启动Anammox工艺,对各反应器在启动过程中的脱氮性能进行了监控,并利用高通量测序对污泥的微生物群落结构进行了分析,探讨了以湿地底泥为接种物启动Anammox反应器的可行性,以期为Anammox工艺的应用提供参考。
接种湿地底泥的Anammox反应器启动特性
Start up characteristics of Anammox reactor inoculated with wetland sediment
-
摘要: 在3台UASB反应器中分别以厌氧颗粒污泥、湿地底泥以及二者的混合物(污泥浓度比为1∶1)为接种污泥启动厌氧氨氧化(Anaerobic ammonium oxidation,Anammox)反应器,考察了以湿地底泥为接种物启动Anammox反应器的可行性。结果表明,接种厌氧颗粒污泥的反应器经过183 d启动运行,仍未出现明显厌氧氨氧化反应特性,接种混合污泥的反应器于第125天开始出现明显厌氧氨氧化反应特性,短于接种湿地底泥的155 d。Anammox反应器启动并稳定运行后,在进水总氮质量浓度为275 mg·L−1、负荷为0.275 kg·(m3·d)−1条件下,出水总氮质量浓度可降至90 mg·L−1以下,其中接种湿地底泥和混合污泥的Anammox反应器的TN去除率分别达到74.49%和67.12%。高通量结果表明,在接种湿地底泥和混合污泥的反应器中的厌氧氨氧化菌属为Candidatus Brocadia,其丰度分别达到9.82%和10.70%。Abstract: Anaerobic granular sludge, wetland sediment and their mixture (SS ratio of 1∶1) were used as inoculated sludge to start the Anammox reactor in three UASB tanks, and the feasibility of starting Anammox reactor with wetland sediment as inoculum was investigated. The results showed that the USAB inoculated with anaerobic granular sludge didn’t present the obvious Anammox reaction characteristics after 183 days of start-up operation. The USAB inoculated with mixed sludge began to show obvious Anammox reaction characteristics on day 125, which was shorter than USAB inoculated with wetland sediment on day 155. After the start-up and stable operation of the Anammox reactor, the total nitrogen concentration in the effluent could be reduced to less than 90 mg·L−1 under the conditions of the total nitrogen concentration in the influent of 275 mg·L−1 and the load of 0.275 kg·(m3·d)−1. The TN removal rates of the Anammox reactor inoculated with wetland sediments and mixed sludge reached 74.49% and 67.12%, respectively. The high-throughput results showed that the Anammox bacteria in the two reactors were Candidatus Brocadia, and their abundances reached 9.82% and 10.70%, respectively.
-
Key words:
- Anammox /
- wetland sediment /
- start process /
- microbial community
-
表 1 反应器运行策略
Table 1. Operation strategy in the reactors
反应器名称 运行阶段 时间/d 进水NH4+-N/(mg·L−1) 进水NO2−-N/(mg·L−1) HRT/h 有无回流 R1 Ⅰ 1~71 40 50 24 无 Ⅱ 72~111 60 80 24 无 Ⅲ 112~183 60 80 24 有 R2 Ⅰ 1~71 40 50 24 无 Ⅱ 72~111 60 80 24 无 Ⅲ 112~157 60 80 24 有 Ⅳ 158~221 80~120 100~150 24 有 R3 Ⅰ 1~71 40 50 24 无 Ⅱ 72~111 60 80 24 无 Ⅲ 112~221 80~120 100~150 24 有 -
[1] KARTAL B, KUENEN J G, LOOSDRECHT M C M V. Sewage treatment with anammox[J]. Science, 2010, 328(5979): 702-703. doi: 10.1126/science.1185941 [2] LI B J, WANG Y, WANG W H, et al. High-rate nitrogen removal in a continuous biofilter anammox reactor for treating low-concentration nitrogen wastewater at moderate temperature[J]. Bioresource Technology, 2021, 337: 125496. doi: 10.1016/j.biortech.2021.125496 [3] LIU Y X, LIU W, LI Y Y, et al. Layered inoculation of anaerobic digestion and anammox granular sludges for fast start-up of an anammox reactor[J]. Bioresource Technology, 2021, 339: 125573. doi: 10.1016/j.biortech.2021.125573 [4] KANG D, LI Y Y, XU D D, et al. Deciphering correlation between chromaticity and activity of anammox sludge[J]. Water Research, 2020, 185: 116184. doi: 10.1016/j.watres.2020.116184 [5] KWAK W, ROUT P R, LEE E, et al. Influence of hydraulic retention time and temperature on the performance of an anaerobic ammonium oxidation fluidized bed membrane bioreactor for low-strength ammonia wastewater treatment[J]. Chemical Engineering Journal, 2020, 386: 123992. doi: 10.1016/j.cej.2019.123992 [6] MARIUSZ T, GRZEGORZ C, ALEKSANDRA Z B. Influence of temperature and pH on the anammox process: A review and meta-analysis[J]. Chemosphere, 2017, 182: 203-214. doi: 10.1016/j.chemosphere.2017.05.003 [7] 汪瑶琪. 有机物对厌氧氨氧化反应的影响及其微生物研究[D]. 苏州: 苏州科技大学, 2018. [8] MA W J, LI G F, HUANG B C, et al. Advances and challenges of mainstream nitrogen removal from municipal wastewater with anammox-based processes[J]. Water Environment Research, 2020, 92(11): 1899-1909. doi: 10.1002/wer.1342 [9] 陈文静, 陈圣东, 梁佳茵, 等. Anammox脱氮工艺启动研究进展[J]. 环境科学与技术, 2019, 42(11): 130-140. [10] 程荟瑜. Anammox-EGSB反应器启动及回流比对脱氮性能影响研究[D]. 成都: 成都理工大学, 2020. [11] 朱晓桐, 于冰洁, 林久淑, 等. Anammox-UASB反应器启动特性[J]. 环境科学与技术, 2020, 43(12): 143-150. [12] 唐崇俭, 郑平, 陈建伟, 等. 不同接种物启动Anammox反应器的性能研究[J]. 中国环境科学, 2008, 28(8): 683-688. doi: 10.3321/j.issn:1000-6923.2008.08.003 [13] 姜晓芬. 河口近岸厌氧氨氧化菌群结构、丰度及活性对盐度变化的响应[D]. 上海: 华东师范大学, 2017. [14] ZHENG Y L, HOU L J, LIU M, et al. Dynamics and environmental importance of anaerobic ammonium oxidation (anammox) bacteria in urban river networks[J]. Environmental Pollution, 2019, 254(PtA): 112998. [15] FU L L, CHEN Y Y, LI S Q, et al. Shifts in the anammox bacterial community structure and abundance in sediments from the Changjiang Estuary and its adjacentarea[J]. Systematic and Applied Microbiology, 2019, 42(3): 383-396. doi: 10.1016/j.syapm.2018.12.008 [16] 赵折红, 李月秋, 皮海廷, 等. 三峡库区香溪河沉积物厌氧氨氧化菌的时空分布[J]. 生物学杂志, 2021, 38(2): 70-74. [17] 秦红益. 太湖沉积物厌氧氨氧化细菌分布、多样性及其活性研究[D]. 南京: 南京师范大学, 2017. [18] 沈李东. 湿地亚硝酸盐型厌氧氨氧化和厌氧甲烷氧化微生物生态学研究[D]. 杭州: 浙江大学, 2014. [19] ANTHONISEN A C, LOEHR R C, PRAKASAM T B S, et al. Inhibition of nitrification by ammonia and nitrous acid[J]. Journal - Water Pollution Control Federation, 1976, 48(5): 835-852. [20] LIU G Q, WANG J M. Long-term low DO enriches and shifts nitrifier community in activated sludge[J]. Environmental Science & Technology, 2013, 47(10): 5109-5117. [21] 李祥, 黄勇, 周呈, 等. 增设回流提高厌氧氨氧化反应器脱氮效能[J]. 农业工程学报, 2013, 29(9): 178-183. [22] 付昆明, 苏雪莹, 王会芳, 等. 内回流对厌氧氨氧化UASB反应器脱氮性能的影响[J]. 中国环境科学, 2016, 36(12): 3560-3566. doi: 10.3969/j.issn.1000-6923.2016.12.005 [23] CHAMCHOI N, NITISORAVUTS S, SCHMIDT J E. Inactivation of anammox communities under concurrent operation of anaerobic ammonium oxidation (anammox) and denitrification[J]. Bioresource Technology, 2008, 99(9): 3331-3336. doi: 10.1016/j.biortech.2007.08.029 [24] ZHU G B, WANG S Y, WANG W, et al. Hotspots of anaerobic ammonium oxidation at land-freshwater interfaces[J]. Nature Geoscience, 2013, 6(2): 103-107. doi: 10.1038/ngeo1683 [25] 张泽文, 李冬, 张杰, 等. 接种单一/混合污泥对厌氧氨氧化反应器快速启动的影响[J]. 环境科学, 2017, 38(12): 5215-5221. [26] 于德爽, 赵丹, 李津, 等. 接种不同污泥源条件下厌氧氨氧化菌的特性[J]. 环境工程学报, 2013, 7(11): 4339-4345. [27] 明大成. Anammox反应器的快速启动及有机物影响脱氮性能的研究[D]. 湘潭: 湘潭大学, 2018. [28] 郑林雪, 李军, 胡家玮, 等. 同步硝化反硝化系统中反硝化细菌多样性研究[J]. 中国环境科学, 2015, 35(1): 116-121. [29] SPEIRS LACHLAN B M, RICE DANIEL T F, PETROVSKI S, et al. The phylogeny, biodiversity, and ecology of the chloroflexi in activated sludge[J]. Frontiers in Microbiology, 2019, 10: 2015. doi: 10.3389/fmicb.2019.02015 [30] TOMONORI K, SHOTA Y, NORIATSU O, et al. Ecophysiological role and function of uncultured chloroflexi in an anammox reactor[J]. Water Science and Technology, 2012, 66(12): 2256-2561. [31] BEATRIZ F G, MICHAEL R, MARGARETE S, et al. Ecology of marine bacteroidetes: A comparative genomics approach[J]. The ISME Journal, 2013, 7(5): 1026-1037. doi: 10.1038/ismej.2012.169 [32] SUN H M, ZHOU Q, ZHAO L, et al. Enhanced simultaneous removal of nitrate and phosphate using novel solid carbon source/zero-valent iron composite[J]. Journal of Cleaner Production, 2021, 289: 125757. doi: 10.1016/j.jclepro.2020.125757 [33] CHEN C, GUO W S, NGO H H, et al. Evaluation of a sponge assisted-granular anaerobic membrane bioreactor (SG-AnMBR) for municipal wastewater treatment[J]. Renewable Energy, 2017, 111: 620-627. doi: 10.1016/j.renene.2017.04.055 [34] WANG C, LIU S, XU X, et al. Achieving mainstream nitrogen removal through simultaneous partial nitrification, anammox and denitrification process in an integrated fixed film activated sludge reactor[J]. Chemosphere, 2018, 203: 457-466. doi: 10.1016/j.chemosphere.2018.04.016 [35] DU R, CAO S B, LI B K, et al. Performance and microbial community analysis of a novel DEAMOX based on partial-denitrification and anammox treating ammonia and nitrate wastewaters[J]. Water Research, 2017, 108: 46-56. doi: 10.1016/j.watres.2016.10.051 [36] ZHAO L, FU G P, WU J F, et al. Bioaugmented constructed wetlands for efficient saline wastewater treatment with multiple denitrification pathways[J]. Bioresource Technology, 2021, 335: 125236. doi: 10.1016/j.biortech.2021.125236 [37] 王晓曈, 杨宏, 苏杨, 等. 生物滤池快速启动ANAMMOX运行策略及菌群特征[J]. 环境科学, 2020, 41(7): 3345-3355. [38] 吴珊, 王淑雅, 王芬, 等. 温度对ANAMMOX生物膜工艺的脱氮影响与菌群结构分析[J/OL]. 环境科学, 2021: 1-11[2021-09-01]. https://doi.org/10.13227/j.hjkx.202105280. [39] ZHANG X J, ZHANG N, CHEN C, et al. Long-term impact of sulfate on an autotrophic nitrogen removal system integrated partial nitrification, anammox and endogenous denitrification (PAED)[J]. Chemosphere, 2019, 235: 336-343. doi: 10.1016/j.chemosphere.2019.06.175 [40] 陈方敏, 高佳琦, 黄勇, 等. 基质暴露水平对ANAMMOX微生物活性及生物量的影响[J]. 环境科学, 2019, 40(11): 5066-5072. [41] 汪倩, 宋家俊, 郭之晗, 等. 低基质浓度下生物膜亚硝化工艺的快速启动及其运行效能[J]. 环境工程学报, 2021, 15(7): 2512-2521. doi: 10.12030/j.cjee.202102098