-
氮及其化合物会污染地表水体,还会经微生物作用转化为硝酸盐氮积累在土壤中造成地下水污染[1],已成为水体污染治理中的重要污染物。因此,寻求高效、低耗的脱氮技术成为国内外水处理领域亟待解决的重要课题。相较于离子交换、膜分离、化学还原等物理化学手段,生物脱氮具有高效低耗、稳定运行等优点,并已被广泛应用于实际污水处理中[2]。由于反硝化过程中微生物所需碳源种类不同,可将反硝化过程分为异养反硝化和自养反硝化两大类[3]。常见的自养反硝化过程包括氢自养反硝化、硫自养反硝化[2]、铁自养反硝化[4]等。有研究表明,在厌氧条件下甲烷能直接作为碳源及电子供体发生反硝化脱氮[5],这一过程被称为厌氧甲烷氧化的反硝化(denitrifying anaerobic methane oxidation, DAMO)。与其他电子供体相比,甲烷获得途径广泛、无毒且经济便宜[6]。同时,甲烷是温室气体,所产生的温室效应是等质量二氧化碳的26倍,对全球变暖的贡献率约占20%[7]。因此,厌氧甲烷氧化与自养反硝化的耦合反应将人为产生的甲烷用于废水反硝化脱氮处理,可为低物耗废水处理和节能减排提供新思路。
由于DAMO微生物为自养型微生物,生长缓慢,富集培养比较困难,故基于此类微生物的生物膜反应器研究较少。因此本研究拟采用序批实验,利用人工模拟低氮负荷废水,比较不同环境因素对DAMO系统中间产物的积累与脱氮效果的影响,并通过高通量测序技术,探究不同pH作用下的污泥中微生物的生态分布、群落结构组成和演替变化规律,以揭示系统pH对DAMO功能微生物种群分布及变迁情况的影响,以期为甲烷厌氧氧化的自养反硝化系统的pH调控及条件优化提供参考。
不同环境因素对厌氧甲烷氧化型自养反硝化系统脱氮性能的影响及其微生物群落分析
Effects of different environmental factors on the denitrification performance and microbial community of an autotrophic denitrification system based on anaerobic methane oxidation
-
摘要: 采用序批实验研究了不同环境因素(甲烷供应、初始硝氮浓度和pH值)对厌氧甲烷氧化型反硝化系统脱氮性能的影响,并采用高通量测序对不同pH下反应器内微生物群落结构进行了分析。结果表明:当甲烷供给充足时,系统反硝化效果明显;随着初始硝氮浓度的升高,系统平均脱氮率呈现先升高后下降的趋势,表明适当增大硝氮质量浓度(<30 mg·L−1)可提高反硝化速率;在不同pH下(pH=6~9)系统均表现出较强的脱氮能力,在中性和弱碱性条件下的脱氮速率最高。基于高通量测序结果表明:pH为7和8时微生物丰度最高,多样性及均匀度适中;随着pH的升高,微生物多样性和均匀度也越高,说明碱性环境可以提高微生物的多样性和均匀度;不同pH下,Gammaproteobacteria,Deltaproteobacteria,Bacterodia,Ignavibacteria和Anaerolineae为优势菌纲;pH为8时,常见的甲烷氧化菌Methylocystis大量富集;pH为6时,甲烷氧化菌Methylotenera和Methylophilaceae得到富集;环境pH对微生物种群结构具有选择作用,不同pH环境中优势微生物亦不同。本研究可为厌氧甲烷氧化型自养反硝化系统的条件优化和性能提升提供参考。Abstract: Effects of different environmental factors (methane supply, initial nitrate concentration and pH value) on the denitrification performance of the anaerobic methane oxidized denitrification system were investigated through batch experiments, and the microbial community structure in the reactor at different pH values was analyzed by high-throughput sequencing. Results indicated that effective denitrification could be achieved with the sufficient supply of methane. With the increase of the initial nitrate concentration, the average denitrification rate of the system primarily increased and then decreased, indicating that denitrification rate could be improved by appropriately increasing the initial nitrate concentration (< 30 mg·L−1). The system exhibited good denitrification capability under different ambient pH (pH=6~9), with the highest denitrification rate achieved at neutral and slightly alkaline conditions. High-throughput sequencing found that the microbial abundance was the highest at pH=7 and pH=8, and the diversity and uniformity were moderate. With the increase of pH, the diversity and uniformity of microorganisms increased, indicating that the alkaline environment can improve microorganisms diversity and uniformity. Gammaproteobacteria, Deltaproteobacteria, Bacterodia, Ignavibacteria and Anaerolineae were the dominant classes at different pH values. When pH=8, methanotroph Methylocystis was abundantly enriched, and when pH=6, methanotroph Methylotenera and Methylophilaceae were enriched. Environmental pH had a selective effect on the microbial community structure, and the dominant microorganisms in different pH environments were different.
-
Key words:
- anaerobic methane oxidation /
- denitrification /
- pH value /
- high throughput sequencing
-
表 1 不同pH下微生物Alpha多样性指数表
Table 1. Microbial Alpha diversity index at different pH values
样品编号 Reads OTUs Ace Chao Shannon Simpson Shannoneven Simpsoneven Coverage P1 49 400 738 869 881 3.86 0.063 5 0.584 0 0.065 09 0.997 P2 48 248 952 1 077 1 082 4.50 0.060 7 0.656 4 0.044 79 0.996 P3 55 726 965 1 076 1 087 4.84 0.023 1 0.704 3 0.021 35 0.997 P4 46 796 880 1 017 1 016 4.90 0.017 5 0.723 4 0.017 30 0.996 -
[1] 董萌. 地下水硝酸盐污染的原位修复试验研究[D]. 邯郸: 河北工程大学, 2015. [2] GHAFARI S, HASAN M, AROUA M K. Bio-electrochemical removal of nitrate from water and wastewater:A review[J]. Bioresource Technology, 2008, 99(10): 3965-3974. doi: 10.1016/j.biortech.2007.05.026 [3] FENG S S, LIN X, TONG Y J, et al. Biodesulfurization of sulfide wastewater for elemental sulfur recovery by isolated Halothiobacillus neapolitanus in an internal airlift loop reactor[J]. Bioresource Technology, 2018, 264: 244-252. doi: 10.1016/j.biortech.2018.05.079 [4] ZHOU J, WANG H Y, YANG K, et al. Autotrophic denitrification by nitrate-dependent Fe(II) oxidation in a continuous up-flow biofilter[J]. Bioprocess and Biosystems Engineering, 2016, 39(2): 277-284. doi: 10.1007/s00449-015-1511-7 [5] 董文艺, 赵志军, 李继. 甲烷作为反硝化气体碳源的研究进展[J]. 安全与环境工程, 2011, 18(4): 64-69. doi: 10.3969/j.issn.1671-1556.2011.04.015 [6] 王劲松, 张召基, 王晓君, 等. 反硝化型甲烷厌氧氧化微生物人工富集与应用研究进展[J]. 水处理技术, 2017, 43(12): 8-13. [7] 楼菊青, 王析镭, 杨东叶, 等. 不同接种物对富集反硝化型甲烷厌氧氧化微生物的影响[J]. 环境科学学报, 2016, 36(11): 4087-4095. [8] 薛松, 张梦竹, 李琳, 等. 甲烷厌氧氧化协同硝酸盐还原菌群驯化及其群落特征[J]. 环境科学, 2018, 39(3): 1357-1364. [9] VASILIADOU I A, KARANASIOS K A, PAVLOU S, et al. Experimental and modelling study of drinking water hydrogenotrophic denitrification in packed-bed reactors[J]. Journal of Hazardous Materials, 2009, 165(1/2/3): 812-824. [10] HE Z F, GENG S, SHEN L D, et al. The short- and long-term effects of environmental conditions on anaerobic methane oxidation coupled to nitrite reduction[J]. Water Research, 2015, 68: 554-562. doi: 10.1016/j.watres.2014.09.055 [11] HUANG B, CHI G Y, CHEN X, et al. Removal of highly elevated nitrate from drinking water by pH-heterogenized heterotrophic denitrification facilitated with ferrous sulfide-based autotrophic denitrification[J]. Bioresource Technology, 2011, 102(21): 10154-10157. doi: 10.1016/j.biortech.2011.08.048 [12] 徐亚同. pH值、温度对反硝化的影响[J]. 中国环境科学, 1994, 14(4): 308-313. doi: 10.3321/j.issn:1000-6923.1994.04.010 [13] 钱祝胜, 付亮, 丁静, 等. 中空纤维膜生物反应器富集反硝化厌氧甲烷氧化菌群的研究[J]. 中国科学技术大学学报, 2014, 44(11): 887-892. doi: 10.3969/j.issn.0253-2778.2014.11.002 [14] CHEN D, WANG H Y, YANG K, et al. Performance and microbial communities in a combined bioelectrochemical and sulfur autotrophic denitrification system at low temperature[J]. Chemosphere, 2018, 193: 337-342. doi: 10.1016/j.chemosphere.2017.11.017 [15] LUO J H, CHEN H, YUAN Z G, et al. Methane-supported nitrate removal from groundwater in a membrane biofilm reactor[J]. Water Research, 2018, 132: 71-78. doi: 10.1016/j.watres.2017.12.064 [16] SHU D T, HE Y L, YUE H, et al. Microbial structures and community functions of anaerobic sludge in six full-scale wastewater treatment plants as revealed by 454 high-throughput pyrosequencing[J]. Bioresource Technology, 2015, 186: 163-172. doi: 10.1016/j.biortech.2015.03.072 [17] LU Y Z, CHEN G J, BAI Y N, et al. Chromium isotope fractionation during Cr(VI) reduction in a methane-based hollow-fiber membrane biofilm reactor[J]. Water Research, 2018, 130: 263-270. doi: 10.1016/j.watres.2017.11.045 [18] CAI C, HU S H, CHEN X M, et al. Effect of methane partial pressure on the performance of a membrane biofilm reactor coupling methane-dependent denitrification and anammox[J]. Science of the Total Environment, 2018, 639: 278-285. doi: 10.1016/j.scitotenv.2018.05.164 [19] LIAO R H, LI Y, YU X M, et al. Performance and microbial diversity of an expanded granular sludge bed reactor for high sulfate and nitrate waste brine treatment[J]. Journal of Environmental Sciences, 2014, 26(4): 717-725. doi: 10.1016/S1001-0742(13)60479-9 [20] CAO S B, DU R, ZHANG H Y, et al. Understanding the granulation of partial denitrification sludge for nitrite production[J]. Chemosphere, 2019, 236: 124389. doi: 10.1016/j.chemosphere.2019.124389 [21] ZHANG Z Q, CHEN H Z, MU X Y, et al. Nitrate application decreased microbial biodiversity but stimulated denitrifiers in epiphytic biofilms on Ceratophyllum demersum[J]. Journal of Environmental Management, 2020, 269: 110814. doi: 10.1016/j.jenvman.2020.110814 [22] HAN B, MO L Y, FANG Y T, et al. Rates and microbial communities of denitrification and anammox across coastal tidal flat lands and inland paddy soils in East China[J]. Applied Soil Ecology, 2021, 157: 103768. doi: 10.1016/j.apsoil.2020.103768 [23] XU X J, CHEN C, GUAN X, et al. Performance and microbial community analysis of a microaerophilic sulfate and nitrate co-reduction system[J]. Chemical Engineering Journal, 2017, 330: 63-70. doi: 10.1016/j.cej.2017.07.136 [24] NOBU M K, NARIHIRO T, RINKE C, et al. Microbial dark matter ecogenomics reveals complex synergistic networks in a methanogenic bioreactor[J]. The ISME Journal, 2015, 9(8): 1710-1722. doi: 10.1038/ismej.2014.256 [25] WAKI M, YASUDA T, YOKOYAMA H, et al. Nitrogen removal by co-occurring methane oxidation, denitrification, aerobic ammonium oxidation, and anammox[J]. Applied Microbiology and Biotechnology, 2009, 84(5): 977-985. doi: 10.1007/s00253-009-2112-7 [26] XIAO Y, ZHENG Y, WU S, et al. Bacterial community structure of autotrophic denitrification biocathode by 454 pyrosequencing of the 16S rRNA gene[J]. Microbial Ecology, 2015, 69(3): 492-499. doi: 10.1007/s00248-014-0492-4 [27] LAI C Y, LV P L, DONG Q Y, et al. Bromate and nitrate bioreduction coupled with poly-β-hydroxybutyrate production in a methane-based membrane biofilm reactor[J]. Environmental Science & Technology, 2018, 52(12): 7024-7031. [28] ALRASHED W, LEE J, PARK J, et al. Hypoxic methane oxidation coupled to denitrification in a membrane biofilm[J]. Chemical Engineering Journal, 2018, 348: 745-753. doi: 10.1016/j.cej.2018.04.202 [29] LONG M, ZHOU C, XIA S Q, et al. Concomitant Cr(VI) reduction and Cr(III) precipitation with nitrate in a methane/oxygen-based membrane biofilm reactor[J]. Chemical Engineering Journal, 2017, 315: 58-66. doi: 10.1016/j.cej.2017.01.018 [30] 关亮炯. 我国水污染现状及治理对策[J]. 科技情报开发与经济, 2004, 14(6): 80-81. [31] ZHANG M, YANG Q, ZHANG J H, et al. Enhancement of denitrifying phosphorus removal and microbial community of long-term operation in an anaerobic anoxic oxic-biological contact oxidation system[J]. Journal of Bioscience and Bioengineering, 2016, 122(4): 456-466. doi: 10.1016/j.jbiosc.2016.03.019