-
氨氮作为水体中的主要污染物之一,容易使水体富营养化,导致“水华”和“赤潮”发生,严重威胁生态环境[1]。硝化和反硝化作用是生物脱氮的两个重要步骤。硝化作用是在好氧条件下氨氧化细菌(ammonia-oxidizing bacteria,AOB)和亚硝酸盐氧化细菌(nitrite-oxidizing bacteria,NOB)将氨氮转化为亚硝酸盐和硝酸盐的过程,反硝化作用是通过反硝化细菌将硝酸盐和亚硝酸盐还原成气态氮的过程。生物脱氮因经济高效、易于操作和绿色无二次污染等优点成为研究热点。但是,由于硝化细菌生长缓慢、同化效率低和环境敏感性高,并且高氨氮废水中存在大量的游离氨会对传统生物脱氮法中的微生物活性产生抑制作用,因此,保持细菌的活性,维持生物量是影响脱氮效率的关键因素[2]。
群体感应(quorum sensing,QS)是指微生物能自发合成并释放信号分子来感知周围细菌密度,当信号分子的浓度到达一定阈值后被细胞感知并调控相关基因的表达,从而调节微生物的一些行为,如生物膜的形成、生物发光和胞外多糖产生等[3-4]。已知的信号分子根据其化学种类的不同分为三大类:革兰氏阴性菌分泌的酰基高丝氨酸内酯(N-acyl-homoserine-lactones,AHLs)、革兰氏阳性菌分泌的寡肽(autoinducter peptide,AIP)和能同时调控革兰氏阴性菌和阳性菌实现细菌种间交流的呋喃硼酸二酯(AI-2)。酰基高丝氨酸内酯环是AHLs信号分子的共同特征,酰基侧链的长度、碳链骨架饱和度和取代基的不同导致了AHLs的多样性和特异性[5]。硝化功能细菌属于革兰氏阴性菌,种内产生的信号分子为AHLs,因此,本实验主要研究AHLs类信号分子对硝化细菌的影响。
1997年BATCHELOR等[6]首次发现Nitrosomonas europaea存在群体感应现象,其中高细胞密度培养比低细胞密度培养会产生和积累更多AHLs,并且外源添加3-oxo-C6-HSL信号分子有利于饥饿状态下的N. europaea恢复生长。最近的研究表明,硝化细菌可以通过QS调节自身的行为,例如提高细菌的活性、促进生物膜的生长以及调节胞外聚合物(extracellular polymeric substances,EPS)的合成,从而更好地聚集,占用更多资源和空间,保持环境中的种群优势[6-8]。在硝化反应器的混合培养中,投加不同种类的AHLs可发现,AHLs通过改变EPS的组成防止生长缓慢的硝化细菌流失,并且3-oxo-C6-HSL和C6-HSL有利于促进细菌的附着并提高脱氮效率[7]。同样,将硝化颗粒污泥中含有AHL的细胞提取物添加到硝化活性污泥中,处理30 d后,提高了细胞的粘附和聚集性,提高了微生物的活性,最大氨氮去除率提高了83.3%[8]。前期调研发现,C7-HSL是少见的酰基侧链C原子为奇数的信号分子且在污水处理中研究较少,而C8-HSL和3-oxo-C10-HSL是脱氮过程中的典型信号分子。因此,本研究添加C7-HSL、C8-HSL和3-oxo-C10-HSL到硝化系统中,通过观察污泥生长特性、硝化性能的变化以及EPS成分的改变,研究信号分子对处理高氨氮负荷污水的影响。
AHLs群体感应信号分子对活性污泥反应器处理高氨氮废水的影响
Effect of N-acyl-homoserine-lactones mediated quorum sensing on the treatment of high ammonia nitrogen wastewater by activated sludge reactor
-
摘要: 硝化细菌生长缓慢、同化效率低、环境敏感性高,并且高氨氮废水中存在大量的游离氨会对硝化细菌活性产生抑制作用。本实验采用序批式反应器,研究添加C7-HSL、C8-HSL和3-oxo-C10-HSL对活性污泥处理高氨氮废水的影响。结果表明,信号分子可以显著促进微生物的生长,有效提高亚硝酸盐氧化菌(nitrite-oxidizing bacteria,NOB)的活性,同时可促进胞外聚合物(extracellular polymeric substance,EPS)的形成,改变EPS的组成,从而有效缓解高
${{\rm{NO}}_2^{-}} $ -N对系统的抑制,说明信号分子有利于微生物对抗不利的环境条件,缩短系统达到稳定的时间。其中C7-HSL效果最显著,污泥平均生长速率提升35.20%,降解效率提高17.52%,同时EPS增长了35.45%,蛋白质/多糖显著提升,并促进了色氨酸类氨基酸和腐殖酸的形成。以上研究结果可为处理高氨氮废水提供一种新的调控策略。Abstract: Nitrifying bacteria have slow growth, low assimilation efficiency and high environmental sensitivity, and the presence of a large amount of free ammonia in the wastewater with high ammonia nitrogen can inhibit the activity of nitrifying bacteria. In this experiment, a sequencing batch reactor was used to study the effect of adding C7-HSL, C8-HSL and 3-oxo-C10-HSL on the treatment of high ammonia nitrogen wastewater by activated sludge. The results showed that the signaling molecules could significantly promote the growth of microorganisms, effectively enhance the activity of nitrite-oxidizing bacteria (NOB), and promote the formation of extracellular polymeric substance (EPS), thus effectively alleviating the inhibition of high${\rm{NO}}_2^{-} $ -N on the system, indicating that the signal molecules were conducive to microorganisms against adverse environmental conditions, then and the time for system approaching to stability was reduced. C7-HSL showed the most significant effect among these signal molecules. The average growth rate, degradation efficiency and EPS content of sludge increased by 35.20%, 17.52% and 35.45%, respectively. Simultaneously, protein/polysaccharide significantly increased, which promoted the formation of tryptophan proteins and humic acids. This study provides a new regulatory strategy for the treatment of high ammonia nitrogen wastewater.-
Key words:
- quorum sensing /
- signal molecules /
- high ammonia /
- extracellular polymeric substances
-
表 1 人工合成污水营养元素配方
Table 1. Formula of nutrient elements in synthetic wastewater
营养元素 质量浓度/
(mg·L−1)营养元素 质量浓度/
(mg·L−1)(NH4)2SO4 141~1 885 FeCl2·4H2O 1.988 NaCl 585 MnCl2·2H2O 0.081 KH2PO4 54 NiCl2·6H2O 0.024 KCl 75 CoCl2·6H2O 0.024 CaCl2·2H2O 74 CuCl2·6H2O 0.017 MgSO4·7H2O 49 ZnCl2 0.068 Na2EDTA 4.292 Na2MoO4· 2H2O 0.024 注:(NH4)2SO4为反应器唯一 -N来源,在硝化污泥驯化富集阶段${\rm{NH}}_4^{+} $ -N的质量浓度由30 mg·L−1逐步提高到200 mg·L−1,在将硝化污泥接种到小型SBR的生长特性实验阶段,${\rm{NH}}_4^{+} $ -N的质量浓度由200 mg·L−1逐步提高到400 mg·L−1。${\rm{NH}}_4^{+} $ 表 2 SBR硝化污泥生长状况
Table 2. Growth of nitrifying sludge in SBR
组别 种泥
MLSS/(g·L−1)运行40 d后
MLSS/(g·L−1)运行40 d后
MLVSS/(g·L−1)MLVSS/
MLSS平均
ESS/(g·(L·d)−1)平均生长速率/
(g·(L·d)−1)空白 2.52±0.07 2.78±0.06 1.56±0.07 0.561 0.035 0.125±0.013 C7-HSL 2.52±0.07 3.76±0.15 2.87±0.22 0.764 0.025 0.169±0.022 C8-HSL 2.52±0.07 3.05±0.23 2.06±0.27 0.675 0.032 0.137±0.030 3-oxo-C10-HSL 2.52±0.07 3.15±0.37 2.10±0.18 0.667 0.028 0.138±0.044 表 3 FA与FNA浓度
Table 3. Concentrations of FA and FNA
mg·L−1 组别 第15天进水 第15天出水 第17天进水 第17天出水 FA FNA FA FNA FA FNA FA FNA 空白组 13.054* 0.000 0.485* 0.021 16.970* 0.044* 0.347* 0.047* C7-HSL组 13.054* 0.000 0.159* 0.003 13.902* 0.004 0.022* 0.007 C8-HSL组 13.054* 0.000 0.348* 0.014 15.338* 0.029 0.141* 0.037* 3-oxo-C10-HSL组 13.054* 0.000 0.278* 0.013 14.946* 0.027 0.127* 0.033* 注:*表示NOB活性被抑制。FA>0.1~1mg·L−1时,NOB开始被抑制,NOB的活性随着FA浓度的升高而降低;FNA>0.03 mg·L−1时,NOB开始被抑制,FNA>0.2 mg·L−1时,NOB被完全抑制[15−16]。 表 4 运行40 d后样品TB-EPS的峰值的荧光特性
Table 4. Fluorescence characteristics of peak value of TB-EPS after 40 days operation
组别 A峰 B峰 C峰 D峰 (Ex/Em)/nm 强度 (Ex/Em)/nm 强度 (Ex/Em)/nm 强度 (Ex/Em)/nm 强度 种泥 280/350 2 365.554 230/305 573.562 230/345 565.843 355/445 288.842 空白组 285/350 2 733.813 220/305 934.161 230/340 887.892 355/445 262.043 C7-HSL组 285/350 3 466.555 230/305 744.254 230/345 748.513 355/445 491.738 C8-HSL组 285/350 3 368.555 230/310 639.237 230/345 650.533 355/445 493.638 3-oxo-C10-HSL组 285/350 3 178.554 230/310 854.892 230/345 843.012 355/455 343.223 -
[1] 杨成荫, 陈杨, 欧阳坤, 等. 氨氮废水处理技术的研究现状及展望[J]. 工业水处理, 2018, 38(3): 1-5. doi: 10.11894/1005-829x.2018.38(3).001 [2] HOLMES D E, DANG Y, SMITH J A. Nitrogen cycling during wastewater treatment[J]. Advances in Applied Microbiology, 2019, 106: 113-192. [3] PAPENFORT K, BASSLER B L. Quorum sensing signal-response systems in Gram-negative bacteria[J]. Nature Reviews Microbiology, 2016, 14(9): 576-588. doi: 10.1038/nrmicro.2016.89 [4] YANG J, WU D, LI A, et al. The addition of N-hexanoyl-homoserine lactone to improve the microbial flocculant production of agrobacterium tumefaciens strain F2, an exopolysaccharide bioflocculant-producing bacterium[J]. Applied Biochemistry and Biotechnology, 2016, 179(5): 728-739. doi: 10.1007/s12010-016-2027-6 [5] DECHO A W, FREY R L, FERRY J L. Chemical challenges to bacterial AHL signaling in the environment[J]. Chemical Reviews, 2011, 111(1): 86-99. doi: 10.1021/cr100311q [6] BATCHELOR S E, COOPER M, CHHABRA S R, et al. Cell density-regulated recovery of starved biofilm populations of ammonia-oxidizing bacteria[J]. Applied and Environmental Microbiology, 1997, 63(6): 2281-2286. doi: 10.1128/aem.63.6.2281-2286.1997 [7] LI A J, HOU B L, LI M X. Cell adhesion, ammonia removal and granulation of autotrophic nitrifying sludge facilitated by N-acyl-homoserine lactones[J]. Bioresource Technology, 2015, 196: 550-558. doi: 10.1016/j.biortech.2015.08.022 [8] WU L J, LI A J, HOU B L, et al. Exogenous addition of cellular extract N-acyl-homoserine-lactones accelerated the granulation of autotrophic nitrifying sludge[J]. International Biodeterioration & Biodegradation, 2017, 118: 119-125. [9] SMOLDERS G, VAN DER MEIJ J, VAN LOOSDRECHT M, et al. Stoichiometric model of the aerobic metabolism of the biological phosphorus removal process[J]. Biotechnology and Bioengineering, 1994, 44(7): 837-848. doi: 10.1002/bit.260440709 [10] 国家环境保护总局. 水和废水监测分析方法[M]. 4版. 北京: 中国环境科学出版社, 2002. [11] LIU H, FANG H H. Extraction of extracellular polymeric substances (EPS) of sludges[J]. Journal of Biotechnology, 2002, 95(3): 249-256. doi: 10.1016/S0168-1656(02)00025-1 [12] DUBOIS M, GILLES K A, HAMILTON J K, et al. Colorimetric method for determination of sugars and related substances[J]. Analytical Chemistry, 1956, 28(3): 350-356. doi: 10.1021/ac60111a017 [13] LI X, FEKETE A, ENGLMANN M, et al. Development and application of a method for the analysis of N-acylhomoserine lactones by solid-phase extraction and ultra high pressure liquid chromatography[J]. Journal of Chromatography A, 2006, 1134(1/2): 186-193. [14] 胡惠秩. 常/低温下AHLs类群体感应信号分子对SBBR系统影响的研究[D]. 哈尔滨: 哈尔滨工业大学, 2017. [15] 张宇坤, 王淑莹, 董怡君, 等. 游离氨和游离亚硝酸对亚硝态氮氧化菌活性的影响[J]. 中国环境科学, 2014, 34(5): 1242-1247. [16] ANTHONISEN A C, LOEHR R C, PRAKASAM T B, et al. Inhibition of nitrification by ammonia and nitrous acid[J]. Journal - Water Pollution Control Federation, 1976, 48(5): 835-852. [17] 侯保连, 李安婕, 孙趣. AHLs群体感应信号分子对硝化污泥附着生长及硝化效果的影响[J]. 环境科学学报, 2015, 35(9): 2773-2779. [18] LIU Y Q, LIU Y, TAY J H. The effects of extracellular polymeric substances on the formation and stability of biogranules[J]. Applied Microbiology and Biotechnology, 2004, 65(2): 143-148. [19] LIANG Z, LI W, YANG S, et al. Extraction and structural characteristics of extracellular polymeric substances (EPS), pellets in autotrophic nitrifying biofilm and activated sludge[J]. Chemosphere, 2010, 81(5): 626-632. doi: 10.1016/j.chemosphere.2010.03.043 [20] MENG L, XI J, YEUNG M. Degradation of extracellular polymeric substances (EPS) extracted from activated sludge by low-concentration ozonation[J]. Chemosphere, 2016, 147: 248-255. doi: 10.1016/j.chemosphere.2015.12.060 [21] YEON K M, CHEONG W S, OH H S, et al. Quorum sensing: A new biofouling control paradigm in a membrane bioreactor for advanced wastewater treatment[J]. Environmental Science & Technology, 2009, 43(2): 380-385. [22] ZHAO R, ZHANG H, ZOU X, et al. Effects of inhibiting acylated homoserine lactones (AHLs) on anammox activity and stability of granules'[J]. Current Microbiology, 2016, 73(1): 108-114. doi: 10.1007/s00284-016-1031-y [23] TANG X, GUO Y, WU S, et al. Metabolomics uncovers the regulatory pathway of acyl-homoserine lactones based quorum sensing in anammox consortia[J]. Environmental Science & Technology, 2018, 52(4): 2206-2216. [24] 陈宇航. 活性污泥聚集过程中胞外聚合物的构成及功能分析[D]. 重庆: 重庆大学, 2019. [25] FENG Q, TAI X, SUN Y, et al. Influence of turbulent mixing on the composition of extracellular polymeric substances (EPS) and aggregate size of aerated activated sludge[J]. Chemical Engineering Journal, 2019: 378. [26] YAN X, ZHENG S, HUO Z, et al. Effects of exogenous N-acyl-homoserine lactones on nutrient removal, sludge properties and microbial community structures during activated sludge process[J]. Chemosphere, 2020: 255:126945. [27] HOU X L, LIU S T, ZHANG Z T. Role of extracellular polymeric substance in determining the high aggregation ability of anammox sludge[J]. Water Research, 2015, 75: 7551-7562. [28] 宋悦, 魏亮亮, 赵庆良, 等. 活性污泥胞外聚合物的组成与结构特点及环境行为[J]. 环境保护科学, 2017, 43(2): 35-40. [29] LV J, WANG Y, ZHONG C, et al. The effect of quorum sensing and extracellular proteins on the microbial attachment of aerobic granular activated sludge[J]. Bioresource Technology, 2014, 152: 53-58. [30] TAN C H, KOH K S, XIE C, et al. The role of quorum sensing signalling in EPS production and the assembly of a sludge community into aerobic granules[J]. The ISME Journal, 2014, 8(6): 1186-1197. doi: 10.1038/ismej.2013.240 [31] CHEN J, LEBOEUF E J, DAI S, et al. Fluorescence spectroscopic studies of natural organic matter fractions[J]. Chemosphere, 2003, 50(5): 639-647. doi: 10.1016/S0045-6535(02)00616-1 [32] DONG H, ZHANG K, HAN X, et al. Achievement, performance and characteristics of microbial products in a partial nitrification sequencing batch reactor as a pretreatment for anaerobic ammonium oxidation[J]. Chemosphere, 2017, 183: 212-218. doi: 10.1016/j.chemosphere.2017.05.119 [33] DONG J, ZHANG Z, YU Z, et al. Evolution and functional analysis of extracellular polymeric substances during the granulation of aerobic sludge used to treat p-chloroaniline wastewater[J]. Chemical Engineering Journal, 2017, 330: 596-604. doi: 10.1016/j.cej.2017.07.174 [34] 刘前进, 刘立凡. 胞外聚合物中蛋白质对好氧污泥颗粒化的影响[J]. 环境工程学报, 2021, 15(3): 929-938. doi: 10.12030/j.cjee.202008172 [35] SHI Y H, HUANG J H, ZENG G M, et al. Exploiting extracellular polymeric substances (EPS) controlling strategies for performance enhancement of biological wastewater treatments: An overview[J]. Chemosphere, 2017, 180: 396-411. doi: 10.1016/j.chemosphere.2017.04.042 [36] WANG X J, WANG W Q, LI Y, et al. Biofilm activity, ammonia removal and cell growth of the heterotrophic nitrifier, Acinetobacter sp. , facilitated by exogenous N-acyl-homoserine lactones[J]. RSC Advances, 2018, 8(54): 30783-30793. [37] HU H, HE J, LIU J, et al. Biofilm activity and sludge characteristics affected by exogenous N-acyl homoserine lactones in biofilm reactors[J]. Bioresource Technology, 2016, 211: 339-347. [38] LI C, LI W, LI H, et al. The effect of quorum sensing on performance of salt-tolerance aerobic granular sludge: Linking extracellular polymeric substances and microbial community[J]. Biodegradation, 2019, 30(5): 447-456. [39] 申秋璇. 硝化细菌群体感应信号分子及其产生效应的研究[D]. 北京:中国科学院大学, 2017.