-
移动床生物膜反应器(MBBR)根据微生物附着形态,主要分为泥膜复合MBBR工艺和纯膜MBBR工艺两种形式。泥膜复合MBBR系统中,微生物既包含悬浮态活性污泥,也包含附着态生物膜,实际工程中活性污泥为主体,生物膜作为其补充,主要特征仍与活性污泥法相近;在纯膜MBBR系统中,微生物主要以附着态生物膜形式存在,系统不富集活性污泥,不设置污泥回流,属于不需要反冲洗的连续流生物膜法。在国内污水处理厂提标改造的大环境下,泥膜复合MBBR形式由于可以将悬浮载体系统生化段原池镶嵌,且改造灵活、处理效果稳定,故发展迅速,该工艺自2008年在无锡芦村成功应用以来,目前应用规模已超过2 000 万t·d−1。相对而言,纯膜MBBR形式近5 a才在国内逐步得到推广应用,主要用于微污染水[1]、工业水处理中[2]。MBBR工艺诞生之初,即是纯膜MBBR工艺形式,在20世纪90年代,在北欧地区得到广泛应用。挪威利勒哈默尔市的Lillehammer污水处理厂,采用多级AO纯膜MBBR工艺处理市政污水,可实现出水TN<3 mg·L−1,HRT仅为3.2 h;挪威奥斯陆机场的Gardermoen污水处理厂采用多级AO纯膜MBBR工艺,在冬季水温为6~7 ℃条件下,出水NH4+-N和TN分别仅为0.26 mg·L−1和2.16 mg·L−1;菲律宾Petroleum Borger污水处理厂采用纯膜MBBR进行升级改造,改造后出水TN由1~9 mg·L−1降至稳定低于1 mg·L−1[3]。相比泥膜复合MBBR工艺,纯膜MBBR工艺处理负荷更高,系统具有更低的水力停留时间和出水污染物浓度,在节省占地和处理效果上更具有优势。随着污水处理厂新改扩建对于缩减占地的诉求越来越高,紧凑型污水处理工艺的应用前景愈发广阔。目前市场上应用较多的紧凑型污水处理工艺虽能实现污水处理缩减占地的需求,但也存在较大缺陷,如MBR工艺运行能耗过高,且定期换膜也增加了运维成本;BAF工艺对进水SS要求过高,但严格的预处理导致的碳源损失也增加了其脱氮所需外投碳源量,提高了工艺运行成本。纯膜MBBR工艺是解决紧凑型污水处理工艺能耗、药耗高的可能途径之一。2020年,以纯膜MBBR工艺为核心的市政污水处理项目在广东肇庆实现了落地。该项目采用基于纯膜MBBR与改良磁加载沉淀的BFM技术。其中纯膜MBBR段主要去除氮素及有机物,出水进入改良磁加载沉淀工艺段,进行SS、TP和剩余有机物的去除,且磁加载沉淀针对脱落生物膜的理化特性进行工艺改良,泥水分离效率更高。实际运行结果显示,BFM工艺在实现污水的集约化处理的同时,也降低了运行能耗[4]。我国南北方污水水质差异较大,北方水质浓度可达南方的数倍以上,BFM工艺在南方实现了工程应用并取得了良好效果,但对于北方污染物浓度偏高的市政污水水质的应用,目前尚未有报道。本研究以北方某污水厂基于纯膜MBBR的BFM中试为依托,考察了BFM工艺对北方中高浓度市政污水的处理效果;对比了BFM中试和泥膜复合MBBR工艺污水处理厂的处理效果以及BFM工艺的节地效果;为完善工艺设计标准,研究了BFM中试中污染物转化关系;为确定其处理效果的内在机理,进行了生物膜厚度及微生物群落组成研究,以期为污水厂纯膜MBBR及BFM技术的应用提供基础数据。
基于纯膜MBBR的紧凑型污水处理BFM中试基质转化特性
Pilot test on the treatment of medium-concentration domestic sewage in northern China by BFM process based on pure MBBR
-
摘要: 为研究纯膜MBBR工艺用于国内北方市政污水的处理效果,采用基于两级AO纯膜MBBR耦合改良磁加载沉淀的BFM中试系统处理北方某污水厂进水,同步对比污水处理厂活性污泥系统处理效果。同时,为了完善工艺设计标准,研究了BFM工艺基质转化关系,并通过微生物高通量测序的方式分析了系统菌群组成及功能菌相对丰度,从微观层面解释了宏观运行效果。结果表明,从处理效果上看,BFM中试在出水稳定达到《城镇污水处理厂污染物排放标准》(GB 18918-2002)一级A标准的基础上,系统HRT为7.76 h,仅为相同进水条件下污水处理厂活性污泥系统HRT的30%,节地优势明显;在进水重金属冲击下,BFM中试系统受到的影响更小,恢复时间更短,体现出较强的抗冲击特性;从基质转化关系上看,BFM系统生化段通过同化除磷可去除19.61%的STP,其余TP通过M段化学除磷去除,核算除磷所需Al/P为2.12,较污水处理厂二沉池化学除磷所需Al/P(4.35)明显降低,除磷效率高,药剂投加量省;从微观层面上看,成熟后的BFM系统前好氧区生物膜厚度为(345.78±74.81) μm,高于污水处理厂活性污泥系统好氧区生物膜厚度(228.83±66.27) μm,显示出纯膜MBBR生物膜生物量更大;高通量测序结果表明,纯膜MBBR极大的强化了对于功能菌的富集效率,Nitrospira在好氧生物膜中相对丰度达到15.62%~22.30%,核算硝化菌生物量达到(1.13±0.21) g·L−1,显著高于对比的活性污泥系统。上述研究结果表明,BFM工艺在保证稳定处理效果的基础上,节地效果突出,且化学除磷效率高,运行成本相比传统工艺无明显增加,该工艺可用于紧凑型污水处理厂建设。Abstract: In order to study the treatment effect of pure MBBR Process on municipal wastewater in northern China, BFM pilot system based on two-stage AO pure MBBR coupling improved magnetic loading sedimentation was used to treat the influent of a WWTP in northern China, and its treatment effect was simultaneously compared with that of activated sludge system in WWTP. At the same time, in order to improve the process design standard, the matrix transformation relationship in BFM process was also studied. The composition of the system flora and the relative abundance of functional bacteria were analyzed by microbial high-throughput sequencing, and the operation effect at a macro-level was explained at a micro level. The results showed that in terms of treatment effect, the HRT of BFM pilot system was 7.76 h with the stable effluent quality of Class-I-A Standard of Discharge Standard of Pollutants for Municipal Wastewater Treatment Plant (GB 18918-2002), which was only 30% of the HRT of activated sludge system in WWTP under the same influent conditions, which had a significant land-saving advantage; Under the impact of influent heavy metals, the pilot BFM system was less affected and the recovery time was shorter than conventional activated sludge system, reflecting a strong impact resistance; In terms of matrix transformation relationship, 19.61% of STP could be removed by assimilation phosphorus removal in the biochemical section of BFM system, and the rest TP could be removed by chemical phosphorus removal in section M. The Al/P ratio required for phosphorus removal was calculated to be 2.12, which was significantly lower than the Al/P ratio of 4.35 required for chemical phosphorus removal in the secondary sedimentation tank of WWTP, so both high phosphorus removal efficiency and reagent dosage-saving occurred; From the micro level, the biofilm thickness in the aerobic zone before the mature BFM system was (345.78±74.81) μm. It was higher than (228.83±66.27) μm of the aerobic area in WWTP, it showed that the biomass of pure MBBR biofilm was greater; High throughput sequencing results showed that pure MBBR greatly enhanced the enrichment efficiency of functional bacteria. The relative abundance of Nitrospira in aerobic biofilm reached 15.62%~22.30%, and the calculated biomass of nitrifying bacteria reached (1.13±0.21) g·L−1, which was significantly higher than that of the comparative activated sludge system. The results showed that on the basis of ensuring the stable treatment effect, BFM process had an outstanding land saving effect, high chemical phosphorus removal efficiency and insignificant increase in operation cost compared with the traditional process. It can be used in the construction of compact WWTP.
-
表 1 BFM中试装置设计参数
Table 1. Design parameters of BFM pilot
功能区 池容/m3 HRT/h BFM-B前A 8.20 2.69 BFM-B前O 8.20 2.69 BFM-B后A 4.10 1.35 BFM-B后O 1.00 0.34 BFM-M混合区 0.05 0.05 BFM-M絮凝区 0.05 0.05 BFM-M磁种区 0.05 0.05 BFM-M混凝区 0.05 0.05 BFM-M沉淀区 0.49 0.49 表 2 BFM中试各实验阶段运行参数
Table 2. Operation parameters at each experimental stage of BFM pilot
运行阶段 时间/d HRT/h 温度/℃ 进水COD/(mg·L−1) 进水NH4+-N/(mg·L−1) 进水TN/(mg·L−1) 启动 16 107.52~7.07 19.4~22.0 416.35±15.37 36.74±4.88 44.66±3.87 稳定运行阶段(阶段I) 175 7.07 22.0~17.6 401.29±52.51 37.93±6.98 44.80±6.32 重金属冲击 16 7.07~8.9 17.0~14.7 408.28±10.31 41.28±9.57 51.89±9.60 第2次稳定运行阶段(阶段Ⅱ) 76 7.07 14.7~14.6 371.94±15.20 49.28±10.38 54.07±10.38 表 3 进水重金属含量及对硝化菌的抑制浓度
Table 3. Heavy metal content in influent and its inhibitory concentration on nitrifying bacteria
表 4 BFM-B段基质转化情况
Table 4. Matrix transformation of BFM-B section
mg·L−1 样品 SS VSS FSS TCOD SCOD 进水 161.36 86.77 74.59 387.50 266.94 出水 222.38 127.71 94.38 218.22 38.31 表 5 污水厂及BFM-B段好氧区硝化菌组成
Table 5. Composition of nitrifying bacteria in aerobic area of WWTP and BFM-B section
日期 生物相形式 Nitrosomonas相对丰度 /% Nitrospira 相对丰度/% 生物量/(g·L−1) VSS/(g·L−1) 硝化菌含量/(g·L−1) 2020-06-06 BFM-B段-生物膜 0.42 15.62 7.86 5.42 0.87 污水厂-生物膜 0.15 7.96 2.98 2.09 0.17 污水厂-活性污泥 0.03 0.58 4.31 2.33 0.01 2020-08-31 BFM-B段-生物膜 0.65 21.11 7.62 5.18 1.13 污水厂-生物膜 0.34 8.79 3.33 2.26 0.21 污水厂-活性污泥 0.04 0.49 4.41 2.47 0.01 2020-11-15 BFM-B段-生物膜 0.87 20.72 7.43 5.35 1.16 污水厂-生物膜 0.40 10.91 3.37 2.36 0.27 污水厂-活性污泥 0.6 0.20 4.22 2.24 0.02 2020-12-29 BFM-B段-生物膜 0.77 22.30 8.05 5.96 1.37 污水厂-生物膜 0.73 5.27 3.68 2.54 0.15 污水厂-活性污泥 0.05 0.28 5.49 3.13 0.01 -
[1] 周正兴, 孙晓阳, 吴迪, 等. MBBR处理某水厂微污染水硝化性能研究[J]. 水处理技术, 2020, 46(8): 121-125. [2] 周家中, 吴迪, 郑临奥. 纯膜MBBR工艺在国内外的工程应用[J]. 中国给水排水, 2020, 36(22): 37-47. [3] JOHNSON C H, PAGE M W, BLAHA L. Full scale moving bed biofilm reactor results from refinery and slaughter house treatment facilities[J]. Water Science Technology, 2000, 41(4/5): 401-407. [4] 彭明, 周家中, 韩文杰, 等. 基于纯膜MBBR的BioFIMag®工艺用于新建污水处理厂[J]. 中国给水排水, 2021, 37(6): 71-75. [5] 韩文杰, 吴迪, 周家中, 等. 长三角地区MBBR泥膜复合污水厂低温季节微生物多样性分析[J]. 环境科学, 2020, 41(11): 5037-5049. [6] 卢立念, 韩文杰, 吴迪, 等. 基于磁加载沉淀的超效分离工艺的应用[J]. 市政技术, 2019, 37(6): 209-213. [7] 吴海珍, 韦聪, 于哲, 等. 废水好氧生物处理工艺中氧的传质与强化的理论与实践[J]. 化工进展, 2018, 37(10): 4033-4043. [8] 曹勇. 生物膜及活性污泥胞外聚合物的提取及其对重金属离子的吸附研究[D]. 合肥: 安徽大学, 2013. [9] 侯昭牧. 重金属对污水生物脱氮反应动力学的影响研究[D]. 泰安: 山东农业大学, 2013. [10] YOU S J, TSAI Y P, HUANG R Y. Effect of heavy metals on nitrification performance in different activated sludge processes[J]. Journal of Hazardous Materials, 2009, 165(1/2/3): 987-994. [11] STASINAKIS A S, THOMAIDIS N S, MAMAIS D, et al. Effects of chromium(VI) addition on activated sludge process[J]. Water Research, 2003, 37(9): 2140-2148. doi: 10.1016/S0043-1354(02)00623-1 [12] SONG J S, CHA D K, ALLEN H E, et al. Effect of copper on nitrifying and heterotrophic populations in activated sludge[J]. Proceedings of the Water Environment Federation, 2002, 13: 357-366. doi: 10.2175/193864702784162813 [13] 李娟英, 赵庆祥, 王静, 等. 重金属对活性污泥微生物毒性的比较研究[J]. 环境污染与防治, 2009, 31(11): 17-20. [14] DAIMS H, LEBEDEVA E V, PJEVAC P, et al. Complete nitrification by Nitrospira bacteria[J]. Nature, 2015, 528(7583): 504-509. doi: 10.1038/nature16461 [15] KESSEL M V, SPETH D R, ALBERTSEN M, et al. Complete nitrification by a single microorganism[J]. Nature, 2015, 528(7583): 555-559. doi: 10.1038/nature16459 [16] CHEN W M, WANG F, ZENG L, et al. et al. Bioremediation of petroleum-contaminated soil by semi-aerobic aged refuse biofilter: Optimization and mechanism[J]. Journal of Cleaner Production, 2021, 294(15): 125354. [17] 端正花, 潘留明, 陈晓欧, 等. 低温行活性污泥膨胀的微生物群落结构研究[J]. 环境科学, 2016, 37(3): 1070-1074. [18] TRINIDAD M B, BUITRON G. Hydrogen and methane production from microalgal biomass hydrolyzed in a discontinuous reactor inoculated with ruminal microorganisms[J]. Biomass and Bioenergy, 2020, 143(12): 105825. [19] SANGAVAI C, CHELLAPANDI P. Growth-associated catabolic potential of Acetoanaerobium sticklandii DSM 519 on gelatin and amino acids[J]. Journal of Basic Microbiology, 2020, 60(10): 882-893. doi: 10.1002/jobm.202000292 [20] WANG Z, YIN Q, GU M, et al. Enhanced azo dye reactive red 2 degradation in anaerobic reactors by dosing conductive material of ferroferric oxide[J]. Journal of Hazardous Materials, 2018, 357(17): 226-234. [21] GERRITSEN J, UMANETS A, STANEVA I, et al. Romboutsia hominis sp. nov. the first human gut-derived representative of the genus Romboutsia, isolated from ileostoma effluent[J]. International Journal of Systematic and Evolutionary Microbiology, 2018, 68(11): 3479-3486. doi: 10.1099/ijsem.0.003012