-
近年来,我国污水处理出水标准不断提高,主要是针对氮、磷去除要求日趋严格。然而,我国市政污水普遍存在进水碳源不足以完成生物脱氮除磷的问题。为此,实践中大多通过外加碳源与化学药剂分别进行生物脱氮和化学除磷,这会导致资源消耗、能耗过高。为此,可借鉴荷兰已应用的一种厌氧上清液侧流磷回收强化主流脱氮除磷工艺BCFS[1]。其中,厌氧池相当于磷的“浓缩器”,将进水普遍较低的磷质量浓度(3~6 mg·L−1,以P计)以过量释磷方式提高至20~40 mg·L−1[2]。将厌氧池部分上清液引出,以侧流添加药剂实现磷沉淀并回收,可很容易去除约50%进水磷负荷;同时,这部分上清液再回流至后续主流缺氧、好氧单元,相当于为脱氮除磷所需碳源减负,使COD/N与COD/P比值提高,即与外加碳源作用异曲同工[3]。
此前的研究与应用已基本确定了侧流磷回收单元对主流脱氮除磷的强化作用,但需进一步解析该工艺的作用机理与最佳工况。为此,本研究通过实验验证方式探求了最佳侧流比及药剂投加量,考察了磷回收对主流脱氮除磷效果的影响,以期揭示侧流磷回收强化主流脱氮除磷的过程及机理。
侧流磷回收强化主流脱氮除磷微观现象评价
Evaluation of microcosmic phenomena on enhancing main-stream biological nutrient removal by side-stream phosphate recovery
-
摘要: 在低碳源污水脱氮除磷时外加碳源虽然明显有效,但这会增加运行费用,且增加间接碳排放量。为此,考虑侧流磷回收强化主流脱氮除磷工艺,以解决低碳源进水对脱氮除磷的限制。基于变型UCT工艺,建立侧流磷回收单元,仅以调节pH方式实现磷沉淀。结果表明,实验确定的最佳侧流比为15%,调节侧流上清液pH至9.5~10.5即可实现较高的磷回收效率。此外,分析了侧流磷回收强化主流脱氮除磷作用,并进一步评估污泥性状、微生物活性与丰度等微观变化。通过实验,详细剖析并总结了侧流磷回收强化主流脱氮除磷工艺引起的微观现象,重点对污泥沉淀性能、胞外聚合物(EPS)变化、微生物(硝化细菌、聚磷菌、反硝化除磷菌等)活性与丰度等进行了深入分析与评价。以上研究结果有助于侧流磷回收强化主流脱氮除磷工艺推广应用。Abstract: External carbon source is effective on improving the efficiency of biological nutrient removal (BNR) with low-concentration influent organic loads, but it must increase operational costs and CO2 emission. Under the circumstance, side-stream phosphate removal (P-removal) on enhancing main-stream BNR should become an alternative to solve the BNR limitation by low-concentration influent carbon source. A modified UCT process with the side-stream P-removal unit was applied for recovering phosphate only by adjusting pH in this study. The experimental results reveal that the optimal side-stream ratio was 15% and pH at 9.5~10.5 for side-stream supernatant could achieve the highest P-recovery efficiency. The experiment results also indicated that the side-stream P-removal could enhance the main-stream BNR, and then associated sludge characteristics, activities of related bacteria as well as the species and abundance of dominant bacteria were experimentally studied and evaluated. With the experiments, microcosmic phenomena on enhancing main-stream biological nutrient removal by side-stream phosphate recovery was analyzed, and the performance of sludge sedimentation, extracellular polymer substances (EPS), the activity and abundance of microbials (including nitrifiers, phosphorus-accumulating organisms (PAOs) and denitrifying phosphorus removing bacteria (DPB)) were mainly analyzed and evaluated. The conclusions would be useful for promoting the practical application of the side-stream P-removal on enhancing the main-stream BNR.
-
表 1 合成配水主要成分与污染物浓度
Table 1. Major compositions and concentrations in the synthetic wastewater
阶段 COD总量/
(mg·L−1) aTN/(mg·L−1) b TP/(mg·L−1) c Ⅰ~Ⅱ 250 50 5 Ⅲ 350 50 5 Ⅳ~Ⅶ 450 50 5 注:a表示进水耗氧有机物(以COD计)包括乙酸钠、葡萄糖与胰蛋白胨,在阶段Ⅰ~Ⅱ,三者分别为100、 100、50 mg·L−1 COD当量,在阶段Ⅲ,三者分别为150、150、50 mg·L−1COD当量,在阶段Ⅳ~Ⅶ,三者分别为200、200、50 mg·L−1 COD当量;b表示进水TN由NH4Cl和胰蛋白胨组成,其中胰蛋白胨贡献进水N当量6 mg·L−1;c表示进水TP由KH2PO4组成。 表 2 好氧池pH与出水
-N浓度${{{\bf{NH}}_4^{+} }}$ Table 2. pH and
-N concentrations${{{\rm{NH}}_4^{+}}} $ 阶段 出水 /(mg·L−1)${\rm{NH}}_4^{+} $ pH Ⅱ 0.0±0.1 6.93±0.4 Ⅲ 0.6±1.0 6.73±0.5 Ⅳ 2.9±3.7 6.38±0.2 Ⅴ 0.4±0.2 7.47±0.3 Ⅵ 1.0±0.8 7.50±0.4 Ⅶ 0.5±0.4 7.72±0.5 表 3 侧流磷回收前后不同细菌活性分析
Table 3. Analysis of the activities of different bacteria before and after the side-stream P-removal
阶段 工况 释磷
/(mg·(g·h)−1)VFAup
/(mg·(g·h)−1)吸磷
/(mg·(g·h)−1)硝化速率
/(mg·(g·h)−1)反硝化速率
/(mg·(g·h)−1)Ⅱ 450 mg·L−1 COD 9.5 15.1 11.3 14.7 9.6 Ⅳ 250 mg·L−1 COD 4.3 7.9 3.3 5.9 3.8 Ⅴ 15%侧流 7.0 9.6 5.7 9.8 7.4 Ⅶ 30%侧流 5.5 8.3 5.5 10.2 5.4 表 4 污泥性能参数汇总
Table 4. Summary of sludge characteristics
阶段 工况 SVI
/(mL·g−1)EPS
/(mg·g−1)结构性EPS
/(mg·g−1)胞外多糖
/(mg·g−1)胞外蛋白
/(mg·g−1)PN/PS Ⅱ 450 mg·L−1 COD 78 165.5±3.0 677.3±20.5 149.3±11.0 351.0±34.1 2.36 Ⅳ 250 mg·L−1 COD 70 137.8±13.2 687.1±9.6 125.4±3.3 430.0±14.2 3.43 Ⅴ 15%侧流 134 145.4±9.8 470.2±7.3 130.2±4.5 380.3±3.9 2.92 Ⅶ 30%侧流 162 150.3±2.3 435.2±1.6 141.7±7.4 410.4±5.6 2.91 表 5 不同阶段主要细菌属水平相对丰度
Table 5. Relative abundance of dominant microbial species at genus level
菌属 微生物 相对丰度/% Ⅱ Ⅳ Ⅶ 硝化菌属 Nitrosomonas 0.39 0.31 0.68 Nitrospira 0.45 0.20 0.66 反硝化菌属 Trichococcus 15.18 11.13 12.60 Dokdonella 1.59 0.53 0.52 Dechloromonas 1.37 0.17 0.35 Terrimonas 0.96 1.96 2.03 Comamonadaceae 0.93 1.09 1.32 Zoogloea 0.12 0.06 0.08 Thauera 0.29 0.16 0.27 反硝化除磷菌属 Caldilineaceae 3.31 5.29 6.85 Clostridium 0.01 0.44 0.69 聚磷菌 Candidatus_Accumulibacter 1.60 0.43 0.69 Tetrasphaera 0.62 0.76 0.87 Acinetobacter 1.86 0.02 0.13 Aeromonas 0.45 0.02 0.07 聚糖原菌 Candidatus Competibacter 11.51 10.21 9.88 -
[1] 郝晓地, 张璐平, 胡沅胜, 等. 侧流化学磷回收强化生物除磷的模拟预测与实验验证[J]. 环境科学学报, 2009, 29(11): 2274-2281. [2] ACEVEDO B, CAMIÑA C, CORONA J E, et al. The metabolic versatility of PAOs as an opportunity to obtain a highly P-enriched stream for further P-recovery[J]. Chemical Engineering Journal, 2015, 270: 459-467. doi: 10.1016/j.cej.2015.02.063 [3] 郝晓地, 方晓敏, 李天宇, 等. 污水处理厂升级改造中的认识误区[J]. 中国给水排水, 2018, 34(4): 10-15. [4] LI J, HAO X D, VAN LOOSDRECHT M C M, et al. Effect of humic acids on batch anaerobic digestion of excess sludge[J]. Water Research, 2019, 155: 431-443. doi: 10.1016/j.watres.2018.12.009 [5] VAN LOOSDRECHT M C M, NIELSEN P H, LOPEZ-VAZQUEZ C M, et al. Experimental Methods in Wastewater Treatment[M]. London: IWA Publishing, 2016. [6] LIN Y, DE KREUK M, VAN LOOSDRECHT M C M, et al. Characterization of alginate-like exopolysaccharides isolated from aerobic granular sludge in pilot-plant[J]. Water Research, 2010, 44: 3355-3364. doi: 10.1016/j.watres.2010.03.019 [7] DUBOIS M, GILLES K A, HAMILTON J K, et al. Colorimetric method for determination of sugars and related substances[J]. Analytical Chemistry, 1956, 28: 350-356. doi: 10.1021/ac60111a017 [8] LOWRY O H, ROSEBROUGH N J, FARR A L, et al. Protein measurement with the folin-phenol reagent[J]. Journal of Biological Chemistry, 1951, 193(1): 265-275. doi: 10.1016/S0021-9258(19)52451-6 [9] HAO X D, WANG C C, VAN LOOSDRECHT M C M, et al. Looking beyond struvite for P-recovery[J]. Environmental Science and Technology, 2013, 47(10): 4965-4966. doi: 10.1021/es401140s [10] XIA C W, MA Y J, ZHANG F, et al. A novel approach for phosphorus recovery and no wasted sludge in enhanced biological phosphorus removal process with external cod addition[J]. Applied Biochemistry and Biotechnology, 2014, 172(2): 820-828. doi: 10.1007/s12010-013-0575-6 [11] LV J H, YUAN L J, CHEN X, et al. Phosphorus metabolism and population dynamics in a biological phosphate-removal system with simultaneous anaerobic phosphate stripping[J]. Chemosphere, 2014, 117(1): 715-721. [12] 郝晓地, 朱景义, 曹秀芹. 污水强化除磷工艺的现状与未来[J]. 中国给水排水, 2005, 21(11): 37-40. doi: 10.3321/j.issn:1000-4602.2005.11.010 [13] SPONZA D T. Extracellular polymer substances and physicochemical properties of flocs in steady and unsteady-state activated sludge systems[J]. Process Biochemistry, 2002, 37(9): 983-998. doi: 10.1016/S0032-9592(01)00306-5 [14] DAI H, DAI Z, PENG L, et al. Metagenomic and metabolomic analysis reveals the effects of chemical phosphorus recovery on biological nutrient removal system[J]. Chemical Engineering Journal, 2017, 328: 1087-1097. doi: 10.1016/j.cej.2017.07.119 [15] YANG S S, PANG J W, GUO W Q, et al. Biological phosphorus removal in an extended ASM2 model: Roles of extracellular polymeric substances and kinetic modeling[J]. Bioresource Technology, 2017, 232: 412-416. doi: 10.1016/j.biortech.2017.01.048 [16] SEVIOUR T, LAMBERT L K, PIJUAN M, et al. a. Structural determination of a key exopolysaccharide in mixed culture aerobic sludge granules using NMR spectroscopy[J]. Environmental Science and Technology, 2010, 44: 8964-8970. doi: 10.1021/es102658s [17] ARTUR M, JOANNA R, WOJCIECH J, et al. Denitrification aided by waste beer in anaerobic sequencing batch biofilm reactor (AnSBBR)[J]. Ecological Engineering, 2016, 95: 384-389. [18] MCILROY S, ALBERTSEN M, ANDRESEN E, et al. ‘Candidatus Competibacter’-lineage genomes retrieved from metagenomes reveal functional metabolic diversity[J]. The ISME Journal, 2014, 8: 613-624. doi: 10.1038/ismej.2013.162 [19] ZHANG C, CHEN Y, RANDALL A A, et al. Anaerobic metabolic models for phosphorus- and glycogen-accumulating organisms with mixed acetic and propionic acids as carbon sources[J]. Water Research, 2008, 42: 3745-3756. doi: 10.1016/j.watres.2008.06.025