-
好氧颗粒污泥是微生物在一定条件下自凝聚形成的一种颗粒状活性污泥,具有沉降性能优良、微生物种类多样、生物量高、单级同步脱氮除磷等优点[1-2]。因此,好氧颗粒污泥在污水处理领域的应用日益成为研究热点。但是,储存过程中的好氧颗粒污泥易出现的颗粒解体和微生物失活等问题。可见,储存后的好氧颗粒污泥活性能否快速恢复到储存前水平是解决其技术发展的关键。
相关研究[3-4]表明,储存后的好氧颗粒污泥活性恢复时间受储存基质、储存时间、反应器运行条件以及储存前颗粒污泥特性等诸多因素影响。邹金特等[5]耗时11 d将在常温下使用清水储存60 d后的好氧颗粒污泥活性完全恢复。当好氧颗粒污泥储存在清水中并在−18 ℃环境下存放260 d,需要30 d才可恢复其高效的污染物降解能力[6]。GAO等[7]在室温下将好氧颗粒污泥储存在蒸馏水和400 mg·L−1葡萄糖溶液中8个月,储存后的好氧颗粒污泥经过10 d的活性恢复就可达到储存前的颗粒污泥特性。高景峰等[8]研究发现,在−20 ℃下将好氧颗粒污泥储存在蔗糖和海藻糖溶液中35 d,经过4 d的颗粒污泥再恢复即可达到储存前水平。好氧颗粒污泥储存在有毒溶液中,可使好氧颗粒污泥内部微生物处于存活但不可培养状态,从而有效维持其结构稳定性。然而,有关对有毒溶液储存后的好氧颗粒污泥活性恢复的研究鲜有报道。
因此,本研究在室温下,将储存于60 mg·L−1苯酚溶液中150 d 的好氧颗粒污泥接种至序批式反应器(sequencing batch reactor, SBR)中,采用增加进水有机物(以COD计)浓度、曝气量,通过减少污泥沉淀时间对储存后的好氧颗粒污泥进行活性恢复研究,考察了其理化特性及其对进水污染物的去除效果影响情况,以期为探索快速恢复好氧颗粒污泥活性方法提供参考。
存储于苯酚溶液后的好氧颗粒污泥的活性恢复效果
Activity recovery effect of aerobic granular sludge stored in phenol solution
-
摘要: 通过调控SBR的进水COD、曝气量和污泥沉淀时间,对储存于苯酚溶液后的好氧颗粒污泥进行了活性恢复研究,为好氧颗粒污泥活性恢复方法的选择提供参考。结果表明,室温下在60 mg·L−1苯酚溶液中储存150 d的好氧颗粒污泥,经过28 d的培养即可恢复其结构完整性和微生物活性。在活性恢复期间中,好氧颗粒污泥经历了破碎到重塑的演变过程。恢复后的好氧颗粒污泥具有良好的沉降性能,微生物量较大且活性较高,SVI30和SVI5分别为26.1 mL·g−1和27.6 mL·g−1,MLSS和MLVSS分别为16 903 mg·L−1和12 001 mg·L−1,MLVSS/MLSS为0.71,DHA为71.36 μg·(g·h)−1。好氧颗粒污泥的EPS组分在恢复期间不断发生改变,代表酪氨酸/色氨酸类蛋白和芳香族蛋白类物质的荧光强度随颗粒污泥的活性恢复逐渐增强。恢复后的好氧颗粒污泥对COD、TP和TN的去除率分别为97.34%、89.88%和64.37%。Abstract: In this study, the activity recovery of the stored aerobic granular sludge was conducted by regulating the influent COD, aeration and sludge settling time of the SBR, which will provide a reference for the selection of aerobic granular sludge activity recovery methods. The results showed that aerobic granular sludge stored in 60 mg·L−1 phenol solution for 150 d at room temperature could regain its structural integrity and microbial activity after 28 d of incubation. Aerobic granular sludge underwent an evolutionary process from fragmentation to reconstruction during activity recovery. The recovered aerobic granular sludge had a good settleability, high microbial load and activity, SVI30 and SVI5 were 26.1 mL·g−1 and 27.6 mL·g−1, respectively, MLSS and MLVSS were 16 903 and 12 001 mg·L−1, respectively, and MLVSS/MLSS was 0.71, and DHA was 71.36 μg·(g·h)−1. The EPS fraction of aerobic granular sludge changed continuously during the recovery period, representing a gradual increase in fluorescence intensity of tyrosine/tryptophan-like proteins and aromatic protein-like substances with the recovery of granular sludge activity. The recovered aerobic granular sludge showed 97.34%, 89.88% and 64.37% removal of COD, TP and TN, respectively.
-
Key words:
- aerobic granular sludge /
- activation recovery /
- storage /
- decontamination effect /
- phenol
-
表 1 SBR运行参数
Table 1. Operating parameters of SBR
恢复时间/d 各阶段时间/min 曝气量/(L·min−1) 总氮、总磷及COD/(mg·L−1) 进水 曝气 沉淀 排水 闲置 COD TN TP 1~4 4 343 10 1 2 1.5~2 600 60 6 5~8 4 345 8 1 2 3.5~4.0 800 80 8 9~12 4 339 14 1 2 4.5~5.5 800 80 8 13~18 4 342 11 1 2 6.0~7.0 1 100 110 11 19~23 4 346 7 1 2 7.5~8.6 1 100 110 11 24~28 4 350 3 1 2 9.0~9.7 1 500 150 15 -
[1] ZHANG Q G, HU J J, LEE D J. Aerobic granular processes: Current research trends[J]. Bioresource Technology, 2016, 210: 74-80. doi: 10.1016/j.biortech.2016.01.098 [2] ZOU J T, TAO Y Q, LI J, et al. Cultivating aerobic granular sludge in a developed continuous-flow reactor with two-zone sedimentation tank treating real and low-strength wastewater[J]. Bioresource Technology, 2018, 247: 776-783. doi: 10.1016/j.biortech.2017.09.088 [3] 赵珏, 宣鑫鹏, 程媛媛, 等. 好氧颗粒污泥的储存稳定性研究进展[J]. 工业水处理, 2018, 38(2): 1-5. doi: 10.11894/1005-829x.2018.38(2).001 [4] 袁京群, 康达, 毛伟华, 等. 温度和储存基质对储存后厌氧颗粒污泥特性的影响[J]. 环境科学学报, 2018, 38(7): 2622-2631. [5] 邹金特, 何航天, 潘继阳, 等. 低碳源废水培养的好氧颗粒污泥常温储存后活性恢复研究[J]. 中国环境科学, 2018, 38(12): 4530-4536. doi: 10.3969/j.issn.1000-6923.2018.12.017 [6] 王维红, 康增彦, 董星辽, 等. 番茄酱加工废水的好氧颗粒污泥活性恢复研究[J]. 应用化工, 2020, 49(11): 2743-2747. doi: 10.3969/j.issn.1671-3206.2020.11.015 [7] GAO D W, YUAN X J, LIANG H. Reactivation performance of aerobic granules under different storage strategies[J]. Water Research, 2012, 46(10): 3315-3322. doi: 10.1016/j.watres.2012.03.045 [8] 高景峰, 苏凯, 陈冉妮, 等. 不同储存方法对好氧颗粒污泥恢复的影响[J]. 应用基础与工程科学学报, 2011, 19(3): 408-415. doi: 10.3969/j.issn.1005-0930.2011.03.007 [9] 国家环境保护总局. 水和废水监测分析方法[M]. 4版. 北京: 中国环境科学出版社, 2002. [10] LAGUNG A, OUATTARA A, GONZALEZ R O, et al. A simple and low cost technique for determining the granulometry of up flow anaerobic sludge blanket reactor sludge[J]. Water Science and Technology, 1999, 40(8): 1-8. doi: 10.2166/wst.1999.0371 [11] 陈琳琳, 闪金华, 吕弈成, 等. 电镀废水物化处理工艺对各阶段出水水质及污泥脱氢酶活性的影响[J]. 净水技术, 2020, 39(5): 134-139. [12] 张云霞, 季民, 李超, 等. 好氧颗粒污泥胞外聚合物(EPS)的生化性研究[J]. 环境科学, 2008, 29(11): 3124-3127. [13] LIN Y M, DE KREUK M, VAN LOOSDRECHT M C M, et al. Characterization of alginate-like exopolysaccharides isolated from aerobic granular sludge in pilot-plant[J]. Water Research, 2010, 44(11): 3355-3364. doi: 10.1016/j.watres.2010.03.019 [14] JIANG B, LIU Y. Roles of ATP-dependent N-acylhomoserine lactones (AHLs) and extracellular polymeric substances (EPSs) in aerobic granulation[J]. Chemosphere, 2012, 88(9): 1058-1064. doi: 10.1016/j.chemosphere.2012.04.059 [15] OLIVEIRA A S, AMORIM C L, RAMOS M A, et al. Variability in the composition of extracellular polymeric substances from a full-scale aerobic granular sludge reactor treating urban wastewater[J]. Journal of Environmental Chemical Engineering, 2020, 8(5): 104-156. [16] WANG Y Y, ZHOU S, WANG H, et al. Comparison of endogenous metabolism during long-term anaerobic starvation of nitrite/nitrate cultivated denitrifying phosphorus removal sludges[J]. Water Research, 2015, 68(1): 374-386. [17] ZHANG Y, ZHAO X H. The effects of powdered activated carbon or ferric chloride on sludge characteristics and microorganisms in a membrane bioreactor[J]. Desalination and Water Treatment, 2014, 52(37/38/39): 6868-6877. [18] 朱大伟, 武道吉, 孙翠珍, 等. 三维荧光光谱(3D-EEM)技术在溶解性有机质(DOM)分析中的应用[J]. 净水技术, 2015, 34(1): 14-17. doi: 10.3969/j.issn.1009-0177.2015.01.003 [19] 支丽玲, 马鑫欣, 刘奇欣, 等. 好氧颗粒污泥形成过程中群感效应的作用研究[J]. 中国环境科学, 2020, 40(5): 2148-2156. doi: 10.3969/j.issn.1000-6923.2020.05.035 [20] 邵尤炼. 胞外多聚物在厌氧污泥颗粒化及应用过程中的作用研究[D]. 无锡: 江南大学, 2014. [21] ZHU L, QI H Y, LV M L, et al. Component analysis of extracellular polymeric substances (EPS) during aerobic sludge granulation using FTIR and 3D-EEM technologies[J]. Bioresource Technology, 2012, 124: 455-459. doi: 10.1016/j.biortech.2012.08.059 [22] SWIETLIK J, DABROWSKA A, RACZYKSTANISAWIAK U, et al. Reactivity of natural organic matter fractions with chlorine dioxide and ozone[J]. Water Research, 2004, 38(3): 547-558. doi: 10.1016/j.watres.2003.10.034 [23] 郝晓地, 周鹏, 曹亚莉. 污水处理中腐殖质的来源及其演变过程[J]. 环境工程学报, 2017, 11(1): 1-11. doi: 10.12030/j.cjee.201606072