-
近年来,随着城市水环境综合治理需求的不断提升,作为城市水环境保护的末端屏障——污水处理厂的作用愈加凸显[1-3]。陕西省绝大多数污水处理厂执行《城镇污水处理厂污染物排放标准》(GB 18918-2002)中的一级A标准[4]。为切实提升区域水环境质量,实现地表水污染治理目标,陕西省生态环境厅于2019年1月15日颁布了《陕西省黄河流域污水综合排放标准》(DB 61/224-2018),要求设计规模大于2 000 m3·d−1的城镇污水处理厂出水水质达到地表准Ⅳ类标准。然而,大多污水处理厂由于建厂时间较早,处理能力已难以满足日趋增长的水质、水量需求,必须实施提标改造[5]。
现状污水处理厂通常已历经过多次改造,厂内管线复杂,预留用地十分有限[6]。为顺利实现污水处理厂的提标改造目标,须充分挖掘生化系统的处理能力,提高活性污泥脱氮除磷效能[7]。移动床生物膜工艺(MBBR)和膜生物反应器工艺(MBR)均可在不改变生化池容积的条件下,增加系统活性污泥浓度,优化系统微生物组成,因此,被广泛应用于我国城镇污水处理厂提标改造工程中[8-9]。
吴迪等[10]采用MBBR工艺将山西某污水处理厂出水水质提升至一级A标准。滕良方等[11]采用Bardenpho-MBBR工艺结合高效沉淀池及反硝化深床滤池对浙江省某污水处理厂进行提标改造,将出水水质由原一级B标准提升至地表准Ⅳ类水质标准。陈建平等[12]采用MBR工艺与A2/O-高效沉淀池-反硝化深床滤池工艺并行考虑,对宁波市污水处理厂进行提标改造,结果显示2种工艺出水均可稳定达到地表准Ⅳ类水质标准。综合上述各项研究,采用MBBR与MBR工艺都能够大幅增加生化池污泥浓度,降低污泥负荷,提高活性污泥系统的脱氮除磷效果与抗冲击负荷能力。但与MBR工艺相比,MBBR工艺需配套高效沉淀池、反硝化滤池等深度处理工艺,以保证系统出水满足准Ⅳ类水质标准,故新建构筑物相对较多。
陕西省北部地区污水处理厂普遍存在厂区预留用地有限问题,且运行过程中呈现明显的长期高寒低温、进水水质剧烈波动现象,故出水水质难以稳定达标。目前,关于陕北地区污水处理厂提标改造的相关研究报道较少。基于此,本文以延安市污水处理厂提标改造工程为例,在充分解析现状污水处理系统运行情况、核算污染物负荷的基础上,提出了以增大生化池池容、提高活性污泥浓度及重新构建生化池分区为核心的提标改造工艺方案,论述了改造后不同温度下处理系统的理论污染物去除效能及实际运行效果,并简要测算了工程投资及运行成本,以期为西北地区相近污水处理工程的提标改造设计提供参考。
-
延安市污水处理厂占地约77 000 m2,总处理能力70 000 m3·d−1,分两期建设,现状出水水质执行《城镇污水处理厂污染物排放标准》(GB 18918-2002)中的一级A标准。其中,一期工程于1998年筹建,2003年开始运营,2012年实施了提标改造,设计处理能力50 000 m3·d−1,处理工艺为“预处理+厌氧池+氧化沟+二沉池+中间水池+N/DN滤池+滤布滤池+消毒池”,生物反应池容积37 280 m3(好氧区23 278 m3,缺氧区11 194 m3,厌氧区2 808 m3),污泥浓度4 000 mg·L−1;二期工程于2015建设完成,设计处理能力20 000 m3·d−1,处理工艺为“预处理+A2/O+二沉池+中间水池+高密度沉淀池+纤维转盘滤池+消毒池”,生物反应池容积27 330 m3(好氧区14 750 m3,缺氧区11 080 m3,厌氧区1 500 m3),污泥浓度4 000 mg·L−1。
-
1) 进水水质结构失衡。进水BOD5/COD平均值为0.54,说明进水易生物降解有机物含量高,可生化性整体较好[13]。本工程进水平均BOD5/TN为3.68,略小于4,而对于A2/O或氧化沟等传统脱氮除磷工艺,当BOD5/TN大于4时才能够实现较好的总氮去除效果[14]。这表明,污水在反硝化脱氮过程中存在一定的碳源不足现象。韦启信等[14]的研究表明,SS/BOD5与反硝化速率呈负相关关系,SS/BOD5越高,生化系统的反硝化速率越低。当SS/BOD5为1.2时,生化池可实现较好的反硝化效果[14],但本研究中污水处理厂进水SS/BOD5平均值为1.44,且全年约40%的时间SS/BOD5大于1.5。过低的反硝化速率会导致水中有限碳源在缺氧段难以被反硝化细菌高效利用,系统脱氮能力降低[14]。
2) 进水温度低。2019年延安市污水处理厂进水温度范围为6.0~25.0 ℃,年平均值为15.4 ℃,各月份进水温度统计学分析如图1所示。由图1可知,1—4月及11、12月,进水月平均温度低于15.0 ℃,说明2019年全年,污水处理厂约有50%的时间在低温条件下运行,此时微生物活性及其硝化/反硝化作用将受到明显抑制[15-16],系统抗冲击负荷能力差,出水水质波动较大。而1—2月的平均水温低于10 ℃,在此期间活性污泥系统的硝化能力将急剧下降[17],系统只能通过降低进水量的方式延长水力停留时间,降低污泥负荷,从而在一定程度上保障出水水质。
3) 设计进水水质保证率低。延安市污水处理厂一期工程原设计进水水质及2019年实际进水水质统计学分析结果如表1所示。刘成军等[18]和马耀平等[19]的研究表明,应用统计学方法分析污水处理厂进水水质时,采用90%的保证率,可以有效指导污水处理厂的生产运营。由表1可知,一期工程原设计进水水质对于COD和SS的保证率均约为70%,对TP的保证率约为60%,对于
NH+4 -N仅为31.45%,表明原设计进水水质过低,已难以满足目前的污水处理需求。 -
目前,二期工程运行状况良好。在冬季进水温度过低,一期工程难以满负荷运行时,二期处理系统可超负荷运行,日处理量达24 000 m3。同时,根据运营月报数据显示,二期超负荷运行时,出水水质指标可满足《陕西省黄河流域污水综合排放标准》(DB 61/224-2018)中的A标准。
-
1) 厂区预留改造空间有限。污水处理厂位于宝塔区桥沟东十里铺,目前厂区周边已无可用地块。而厂区内部于2012年和2015年先后实施了提标改造和扩容工程,预留新建用地紧张,地下管线错综复杂。
2) 不停水改造。污水处理厂已满负荷运行,排水高峰期存在超负荷运行现象。在改造过程中,需保证厂区正常运行,处理水量不减少,且指标不降低,改造期间不外排污水。
-
1) 设计水量。通过工艺运行情况分析,明确了污水处理厂一期工程存在抗冲击负荷能力差,出水水质波动大等问题;而二期工程运行情况良好,出水水质可稳定达标。因此,本研究主要针对一期工程进行提标改造。根据《延安市城市总体规划》(2015—2030),延安市新建姚店污水厂已进入前期准备阶段,后期将逐步承担起城区的污水处理任务,因此,本次提标改造工程不考虑短期增长量,确定提标改造工程设计规模为50 000 m3·d−1,与原一期工程处理规模一致。
2) 设计进出水水质及处理程度。采用频率统计法,对延安市污水处理厂近一年的实际进水水质进行统计学分析,以90 %的保证率确定本次提标改造工程的设计进水水质。设计出水水质执行《陕西省黄河流域污水综合排放标准》(DB61/224-2018)中的A标准。主要指标及处理程度如表2所示。
-
一期、二期处理系统同时存在进水结构失衡、水温过低等问题。在冬季低温时,一期工程必须降负荷运行,而二期处理系统不仅可以确保出水稳定达标,甚至可超负荷20%运行。为明确同等条件下一、二期处理系统在污染物削减能力上存在的差异,揭示上述差异存在的原因,采用《室外排水设计规范》GB 50014-2006(2016年版)中的式6.6.18-1~6.6.18-6,对不同水温条件下一、二期处理系统的污染物去除效能进行了分析,并核算了2个系统的污泥负荷。核算时,生物反应池内混合液悬浮固体平均浓度X取4 g·L−1,20 ℃下的脱氮速率Kde(20)取0.06 d−1,MLSS中MLVSS所占比例y取0.7,污泥总产率系数Yt取1,生物反应池进、出水五日生化需氧量So和Se分别为210 mg·L−1和20 mg·L−1,安全系数F取2.5,生物反应池中氨氮浓度取46 mg·L−1,硝化作用中氮的半速率常数KN取1 mg·L−1。核算结果如图2所示。
由表2可知,污水处理系统进水BOD5和TN分别为210 mg·L−1和60 mg·L−1,当生化池出水BOD5和TN浓度低于20 mg·L−1和15 mg·L−1时,可满足出水水质要求。因此,生化池对于BOD5和TN的削减能力应分别达到190 mg·L−1和45 mg·L−1以上。由图2可知,对于一期处理系统而言,当进水温度在12 ℃以下时,随着脱氮速率Kde的不断下降,系统脱氮能力受到明显抑制;当进水温度为5 ℃时,一期处理系统的理论脱氮能力仅为32.9 mg·L−1,不足其处理需求的75%。而二期处理系统可始终保持较好脱氮效果,在进水温度为5 ℃时,其脱氮能力可达到57.8 mg·L−1。其原因如下:二期处理系统反硝化污泥负荷为(以每天单位MLSS的TN测定值计)0.020 kg·(kg·d)−1;而一期处理系统的反硝化污泥负荷高达0.050 kg·(kg·d)−1,是二期处理系统的2.5倍。较高的污泥负荷会导致一期处理系统难以有效适应温度及进水水质的大幅度波动[20]。
由图2(b)可知,一期处理系统同样存在冬季低温条件下的除碳能力不足问题。当温度低于9 ℃时,一期系统BOD5去除能力已不能满足要求;当温度下降至5 ℃,系统BOD5去除能力仅为128.2 mg·L−1,不足同等条件下二期系统的65%。一期和二期系统的BOD5污泥负荷(以每天单位MLSS的BOD5测定值计)分别为0.064和0.035 kg·(kg·d)−1。经对比分析可知,对于去除BOD5而言,一期处理系统仍存在因污泥负荷偏高而引起的出水水质波动问题。
-
通过对比一期、二期处理系统运行情况可知,目前一期处理系统存在的主要问题是污泥负荷偏高。对此,本研究提出增大生化池池容与提高污泥浓度相结合的改造技术方案,使一期污泥负荷降低至与二期相近的水平,同时对一期生化池进行重新分区,优化其处理效能,具体如下。
1) 增大生化池池容。低温条件下,微生物活性降低,脱氮效率随之下降。此时,适当增加水力停留时间,降低污泥负荷,是提高生化池处理能力的有效途径[21]。然而,延安市污水处理厂目前处于满负荷运行状态,处理构筑物已无预留调节池容。同时,经改造及扩建后,厂区内几乎已无可用地块,也无法新建生化池。对此,本研究提出加高原生化池池壁,提高有效水深,从而增大池容,延长水力停留时间的改造技术方案。
一期处理系统生化池包括厌氧池和氧化沟。原厌氧池尺寸为28.0 m×21.0 m×5.5 m (L×B×H),有效水深5.2 m,有效池容2 808 m3,水力停留时间1.35 h。原氧化沟共分4座,单座尺寸为60.0 m×40.0 m×5.15 m (L×B×H),有效水深4.3 m,超高0.85 m。则氧化沟总池容34 470 m3,总水力停留时间16.55 h。本研究将原有氧化沟池体整体加高0.5 m,相应有效水深升高至4.8 m,总池容增大至38 480 m3,水力停留时间延长至18.47 h。增大氧化沟池容后,系统反硝化污泥负荷降低至0.045 kg·(kg·d)−1,BOD5污泥负荷降低至0.058 kg·(kg·d)−1,但仍远高于二期处理系统。
2) 提高污泥浓度。增大生化池池容可以在一定程度上延长水力停留时间,但对于污泥负荷的降低作用十分有限。因此,本研究通过提高污泥浓度的方式,进一步降低一期生化系统污泥负荷。
在污水处理厂运行过程中,一般可以通过调整污泥回流比来增加系统活性污泥总量[15]。本研究中,由一期处理系统运营月报可知,氧化沟内污泥容积指数 (sludge volume index,SVI) 约为140 mg·L−1,则二沉池剩余污泥浓度约为7 100 mg·L−1。当进水BOD5为210 mg·L−1、出水BOD5为6 mg·L−1、处理量为50 000 m3·d−1时,要将一期生化池BOD5污泥负荷降至0.035 kg·(kg·d)−1,则生化池内污泥的质量浓度需升高至7 000 mg·L−1以上,与剩余污泥浓度基本一致。上述条件表明,仅通过提高污泥回流比,无法将生化池污泥浓度提高至目标值。
考虑到厂区内预留用地有限,提出在生化池后设置膜组件,与原有生化池形成MBR工艺,利用膜组件的高效固液分离作用实现泥水分离,从而在提高生化池污泥浓度的同时,进一步提升系统处理效能,确保出水稳定达标。膜池及设备间总设计流量50 000 m3·d−1,单组膜池设计流量12 500 m3·d−1,池容836.45 m3,有效水深3.8 m,水力停留时间1.6 h。膜池设计污泥浓度10 000 mg·L−1,膜池-好氧池、好氧池-缺氧池和缺氧池-厌氧池回流比分别为400%、300%和100%,好氧池、缺氧池及厌氧池的污泥浓度分别为8 000、6 000和3 000 mg·L−1,生物反应池平均污泥浓度约为7 050 mg·L−1。
3) 重新构建生化池分区。在传统A2/O工艺运行过程中,携带大量硝态氮的好氧池混合液回流至缺氧池,在缺氧池中通过反硝化作用实现脱氮,其脱氮效率受限于混合液回流比而难以进一步提高[22]。同时,好氧池出水中含有硝态氮,若进水总氮过高或运行不当,往往会导致出水总氮难以稳定达标。对此,可在氧化沟内沟好氧池中增设搅拌机及碳源投加装置。当冬季低温或进水总氮较高时,内沟以缺氧方式运行,与后续膜池组成AO工艺,使生化系统整体以AAOAO的方式运行。此时,在后缺氧区内通过反硝化作用进一步去除好氧池出水中的硝态氮,以提升系统脱氮能力;膜池作为后好氧区控制由后缺氧池投加碳源而引起的出水BOD5升高问题。为防止出水TP超标,在好氧池末端设置化学除磷装置。
综合上述改造技术方案,确定改造后的污水处理工艺流程如图3所示。
-
提标改造后,不同温度下一期处理系统脱氮和除碳能力如图4所示。在5 ℃条件下,污水处理系统的理论脱氮能力可达到44.3 mg·L−1,除碳能力可达到286.2 mg·L−1,表明改造后一期处理系统可满足低温条件下的污染物去除要求。随着进水温度的升高,系统对TN和BOD5的去除能力也逐渐升高。系统反硝化污泥负荷为0.030 kg·(kg·d)−1,降低至改造前的59.7%,略高于二期处理系统;BOD5污泥负荷降低至0.033 kg·(kg·d)−1,约为改造前的50%,与二期处理系统基本一致。
-
一期工程改造完成后,自2019年9月开始稳定运行。2020年1月至9月,不同温度下一期处理系统实际进出水平均TN的统计结果如图5(a)所示。冬季低温条件对硝化细菌的抑制作用导致出水TN整体呈现随进水温度的降低而升高的趋势。当进水温度为6.5 ℃时,出水TN达到峰值,为13.8 mg·L−1,低于出水水质标准中的15 mg·L−1。这表明,在一期处理系统的改造过程中,合理增大生化池池容以延长水力停留时间,采用膜分离技术大幅度提高生化池中的活性污泥浓度,降低污泥负荷,以及结合AAOAO的运行方式进一步削减出水中的硝酸盐氮含量,能够实现低温条件下出水TN的有效控制。
由图5(b)可知,不同温度条件下进水平均BOD5存在较大差异,在进水温度为20.0 ℃时,进水平均BOD5高达314.5 mg·L−1,约为设计进水BOD5的1.5倍,此时出水平均BOD5为3.8 mg·L−1,系统在该温度下的平均BOD5削减量达到310.7 mg·L−1。不同进水温度条件下,系统出水平均BOD5始终低于出水水质标准要求的6.0 mg·L−1,最低温度6.0 ℃时,系统出水平均BOD5仅为4.6 mg·L−1。这表明,降低生化系统BOD5污泥负荷的改造方式,明显提升了一期处理系统的抗冲击负荷及低温下的污染物削减能力。
2020年1月至9月,实际进出水水质及平均去除率如表3所示。1—2月,进水平均温度10.6 ℃,最低进水温度仅为6.0 ℃。3—4月,进水温度有所上升,但其平均值也仅为10.2 ℃。低温条件下,一期工程满负荷运行,在进水水质波动较大的情况下,实际出水水质仍能稳定达到《陕西省黄河流域污水综合排放标准》(DB 61/224-2018)中的A标准。
-
本次提标改造工程投资概算总额为13 667.78万元。运行成本主要包括膜组件更换费用、动力消耗费用以及药剂消耗费用,总计约1 269.68万元·a−1。一期工程年处理污水1 825×104 m3,单位水处理成本约0.696 元·m−3。
-
1) 延安市污水处理厂一期工程污泥负荷偏高,导致该污水处理厂在冬季进水温度偏低时,系统出水难以稳定达标。5 ℃时,其理论TN及BOD5去除能力仅为32.9和128.2 mg·L−1,远低于45和190 mg·L−1的污染物去除需求。
2) 通过加高池体,将原氧化沟扩容至38 480 m3,在一定程度上延长了生化池总水力停留时间,但系统污泥负荷仍然较高。通过增设膜组件,与原生化池形成MBR工艺,将生化池平均污泥浓度提高至7 050 mg·L−1,相应反硝化污泥负荷和BOD5污泥负荷 (以每天单位MLSS的TN/BOD5测定值计) 分别降低至0.030 和0.033 kg·(kg·d)−1。通过重新构建生化池分区,在冬季低温或进水总氮较高时,可使生化池按照AAOAO运行方式,确保出水总氮稳定达标。
3) 提标改造后,5 ℃条件下延安市污水处理厂一期工程生化系统理论TN及BOD5去除能力分别提升至44.32 和286.19 mg·L−1,达到了污染物去除需求。在冬季低温或进水水质大幅度波动的情况下,实际出水水质可稳定达到《陕西省黄河流域污水综合排放标准》(DB 61/224-2018)中的A标准。
延安市污水处理厂提标改造工程设计方案与实施效果
Design scheme and implementation effect of upgrading project for Yan'an sewage treatment plant
-
摘要: 延安市污水处理厂一期工程处理规模为5×104 m3·d−1,原采用以“厌氧池+氧化沟+二沉池”为核心的污水处理工艺。提标改造前,污水处理系统存在设计水质偏低而污泥负荷偏高等问题,导致冬季低温或进水水质波动较大时,出水水质难以稳定达标。对此,通过加高氧化沟池体的方式,将生化池总水力停留时间延长至19.82 h;结合MBR工艺,利用膜组件的高效固液分离能力实现泥水分离,将生化池平均污泥浓度提高至7 050 mg·L−1,并在内沟好氧池中增设搅拌机及碳源投加装置,使冬季低温或进水总氮较高时,生化系统整体以AAOAO的方式运行,从而进一步控制出水总氮含量。提标改造工程实施后,一期生化处理系统反硝化污泥负荷和BOD5污泥负荷(以每天单位MLSS的TN/BOD5测定值计)分别降低至0.030和0.033 kg·(kg·d)−1,5 ℃条件下污水处理系统的理论TN和BOD5去除能力分别提升至44.32和286.19 mg·L−1,达到了污染物去除需求。提标改造后污水处理系统运行良好,出水可稳定达到《陕西省黄河流域污水综合排放标准》(DB 61/224-2018)中的A标准,可为该地区同类型污水处理厂提标改造提供参考。Abstract: The scale of the first-phase project of the Yan’an Sewage Treatment Plant is 5×104 m3·d−1, and the core treatment process is “anaerobic tank+oxidation ditch+secondary sedimentation tank”. Before the upgrade, there were some issues of the sewage treatment system such as low design inlet water quality and high sludge load, which led to violation of effluent discharge standards under low water temperature in winter or great fluctuation in inlet water quality. In this regard, the total hydraulic residence time of biochemical pool was extended to 19.82 h by rising the height of the aeration unit. The membrane module and associated equipment were added after the original biochemical tank to achieve the high-efficiency separation of sludge and water. The average sludge concentration of the biochemical tank was increased to 7 050 mg ·L−1. In addition, a mixer and a carbon source feeding device were equipped to the inner ditch aerobic unit to make the biochemical pool operate in AAOAO mode when the temperature is low in winter or the total nitrogen of the inlet water is high, further controlling the total nitrogen content in the effluent. After the implementation of the project, the denitrifying sludge load and BOD5 sludge load (measured as TN/BOD5 of MLSS per day) of the first stage biochemical treatment system were reduced to 0.03 kg·(kg·d)−1 and 0.03 kg·(kg·d)−1 respectively. The theoretical TN and BOD5 removal capacity of the system were increased to 44.32 mg·L−1 and 286.19 mg·L−1 respectively at 5 ℃, meeting the pollutant removal requirements. After the upgrade, the sewage treatment operates stably meeting the Class A level in the “Integrated Wastewater Discharge Standard for the Yellow River Basin of Shaanxi Province” (DB 61/224-2018).
-
磷是地球生态构成的关键基础元素,过量输入时会导致水体富营养化等问题[1]。已有研究表明,人类活动与磷污染密切相关,其中,磷化工三废处置不当是重要驱动力[2-3]。作为磷酸工业的主要副产物,磷石膏因产量大、利用率低被大量堆存处置。在缺乏规范管理的长期堆放过程中,磷石膏中的毒性成分 (可溶性F、P2O5、Cr、Pb等) 可随雨水淋滤下渗,污染库区周边土壤及水体[4-6]。目前磷石膏堆场渗漏污染问题已相当严峻,为高效修复治理污染,需要准确判断出污染程度及范围。因此选取一种便捷的方式监控堆场渗滤液污染过程,圈定污染边界以便进行针对治理是关乎磷化工产业可持续发展的重要课题。
目前常用的渗滤液污染监测方法有地下水监测井法、示踪剂法、取样分析法、电阻率法等 [7-8]。对于地下水监测井法、取样分析法,其能直观反映出场地的污染物类别及污染程度,但观测缺乏连续性,且难以确定漏点及扩散范围大小。示踪剂法仅可定性判断渗漏方位,无法对优势渗流通道边界进行识别,使用不当易造成二次污染。基于渗漏体与周围介质的电学性质差异,电阻率法可以高效、无损地获取污染场地的电阻率信息,进而推测渗漏体空间分布[9-10]。目前已有学者开展了相关方面的研究,如BALBARINI等[11]在制药废渣填埋场开展了高密度电法 (Electrical Resistivity Tomography, ERT) 监测实验,并通过取样分析对比得出,在化学采样点不足的情况下,ERT结果相对更精准。CATERINA等[12]对地下柴油泄露修复场地进行3年的ERT监测实验,得出该方法更适用于长期监测污染羽流。潘玉英等[13]借助ERT监测模型箱内原油运移及重分布过程,结果表明电阻率反演图像可以反映原油受污染后的运移情况。吕美彤等[14]对固化重金属污染土电阻率进行研究,得出电阻率值与固化土碳化时间存在较好的一致性,随着碳化过程进行,污染土的电阻率值不断增加。李培华等[15]联合图像法与ERT对二维砂箱模型中重非水相液体 (DNAPL) 污染运移过程进行监测,所拍摄实际污染区域图像与电阻率反演结果吻合,证实了电阻率法的准确性。HELENE等[16]在垃圾填埋场开展了ERT监测试验,其二维反演图像清晰反映了电阻率随渗漏时间的变化过程,且渗滤液渗透区域与低阻剖面吻合度较高。以上研究分别从污染物电性特征、物理模拟、污染场地监测等方面进行深入分析,探讨了不同种类污染物的电阻率特性及电法污染监测的应用可能,有力推动了电阻率法在污染调查领域的发展应用。
然而,现阶段针对电阻率法在磷石膏堆场渗漏监测的系统研究相对较少,特别是结合表层单点渗漏与岩溶管道多点渗漏情况的深入研究。在西南喀斯特地区,碳酸盐岩广泛分布,但成土过程缓慢导致土层较薄,渗滤液极易溶穿碳酸盐岩地层进入岩溶管道,并在快速运移过程中污染地下水,造成更大范围的污染 [17-18]。基于此,本研究拟首先在改变浓度条件下对滤液及其污染土样进行电阻率测试,讨论稀释过程的电阻率变化规律。之后,针对喀斯特地区常见的2种污染模式依次开展渗滤液表层单点渗漏、内部管道多点渗漏物理模拟监测实验,通过分析电阻率剖面及切片,总结渗滤液在不同渗漏模式下的运移特征,并对比相同实验条件下岩溶水的渗漏过程。最终,利用场地实验,拟验证电阻率法在磷石膏堆场渗漏监测的应用效果。
1. 材料与方法
1.1 实验原理
电阻率法是一种以岩土体电性差异为基础,借助仪器测量地下介质导电性获取电阻率值,通过分析电阻率变化推测地下介质异常分布的方法[19]。在场地污染调查中,传统电阻率测量主要采用点测方式,其在圈定深部污染区域时难以确定电极布设方位与异常体是否达到最佳契合,因此常需要多点位测量以圈定渗漏区域,探测效果难以保障[20-21]。为简化流程,提高工作效率,高密度电法 (ERT) 步入大众视野,相较于传统方式的四电极阵列,ERT能够同时布设几十至上百根电极,通过一次测量即可获取区域内的连续性电阻率信息,提高数据采集密度的同时减少了电极重复设置带来的误差,在渗漏监测领域优势显著[22-23]。基于此,研究中电性实验采用对称四极法完成,模拟实验及场地实验部分采用ERT完成。均匀介质条件下ERT电阻率计算方法如式 (1) [24] 所示。
ρ=KΔUI (1) 式中:ρ为电阻率,Ω·m;K为装置系数,m,与AB和MN之间的距离有关,具体计算公式见式 (2) ;△U为电极MN之间的电压,V;I为电极AB之间的电流,A。
K=2π1AM−1AN−1BM+1BN (2) 1.2 实验材料
实验用磷石膏渗滤液分别取自贵州省福泉摆纪磷石膏堆场(107°32′22″, 26°38′45″)及贵州省息烽县磷石膏堆场 (106°49′49.25″, 27°15′23.09″) ,岩溶水取自贵州大学校内地下河露头。为模拟西南地区主要土层结构,实验选用红黏土作为多孔介质的代表,黏土取样地点位于贵州大学物探实验场(106°39", 30.11", 26°26", 38.31"),取土深度1~3 m,取样后过3 mm筛,按照《土工实验规程》测定土壤基本参数,结果见表1。
表 1 实验土样基本物性参数Table 1. Basic physical parameters of experimental soil samples塑性指数 液性指数 土样天然密度 土粒相对密度 土壤最大干密度 20.9 0.29 1.86 g∙cm-3 2.74 g∙cm-3 1.9 cm3 1.3 实验装置
磷石膏渗滤液及污染土的电性实验采用多功能激电仪 (WDJD-4,重庆奔腾数控技术研究所) 完成电阻率测量,选择自制四极装置作为电阻率测试装置,装置结构如图1 (a) 所示。为模拟渗滤液在土体表层的入渗过程,设计如图1 (b) 所示的点渗漏模型,装置采用200 cm×100 cm×100 cm的透明钢化玻璃制作,内部填有50 cm厚红黏土以模拟西南地区土层结构,渗漏源位于电极阵列中心,通过加装流速控制阀的7.5 L容积水箱进行渗滤液注入。为模拟渗滤液下渗进入岩溶管道后的渗漏过程,设计图1 (c) 所示的管道渗漏模型,该实验选择室外开拓尺寸200 cm×70 cm×60 cm的坑槽方式以避免玻璃边壁效应对反演结果造成影响,选用直径3 cm、长150 cm的PVC管模拟岩溶管道,管道中部65~85 cm范围预制多排细孔用于污染物渗漏,垂直测线走向将其埋至15 cm深处,通过两端的注入管将滤液注入管道内。模拟实验采用集中式高密度电法测量系统 (WGMD-4,重庆奔腾数控技术研究所) 完成电阻率数据采集,由4列平行分布的微型电极组成测量阵列,列间距10 cm,每列共30个电极,相邻电极间距5 cm,数据采集方式选择Wenner装置。
1.4 实验过程
电性实验采用纯净水对两种滤液进行梯度稀释,首先配置以10%浓度梯度递进的10%~100%浓度区间滤液20组,分别测试其电阻率值;随后进行土样电阻率测定,将采集土样按105 ℃预设温度烘干10 h,冷却后进行颗粒级配筛分,筛选出0.2、0.5、1.0 mm 3种粒径土各100 g组成混合土样。配置完成后将不同浓度滤液样品按30%土壤含水率喷洒至干土上,搅拌均匀后压入四极装置中,共配置不同浓度土壤样品20个。样品制作完成后静置5 min,待水气混合均匀后测量其电阻率值。
物理模拟实验方面,模型装置准备完成后需首先开展一次背景值电阻率扫描作为空白对照,之后开始注入滤液,在注入10、30、60、90、120 min,停止注入后静置60、120 min各进行1次电阻率扫描。岩溶水对照实验的过程与滤液模拟实验一致。
2. 结果与讨论
2.1 磷石膏渗滤液及其污染土体电性特征分析
渗滤液浓度是引起介质电阻率差异的主控因素[25]。图2 (a) 为本研究中2个采样点所采集的渗滤液在不同稀释浓度情况下电阻率随浓度的变化关系曲线。由图可见,尽管取样地点不同,但2种渗滤液在100%初始浓度下的电阻率曲线非常接近,说明不同堆场产生的渗滤液导电组分趋同。在提高浓度过程中,2种渗滤液的电阻率值均呈指数降低,且曲线拐点都在40%浓度附近,随着滤液浓度增加,在0~40%浓度区段,滤液电阻率对浓度的反映更灵敏,高于40%时电阻率曲线逐步趋缓。
图2 (b) 为渗滤液污染土电阻率随浓度变化的关系曲线。由图可见,随着渗滤液浓度提高,土体电阻率呈指数降低。低浓度区段电阻率降幅最大,由于离子浓度发生变化,此时滤液浓度小幅变化也可导致试样电阻率值大幅降低,当滤液浓度较高时,提高浓度对电阻率无明显影响,该现象可以借助土体双电层理论进行解释[26]。渗滤液污染土导电通路的形成是孔隙液、土颗粒共同作用的结果,土体被污染后,滤液充填土颗粒孔隙提高了孔隙液中的导电离子数量,由于离子载流导电作用导致电阻率出现降低。但由于黏土独特的双电层结构,当渗滤液浓度较低时导电阳离子会优先进入黏土表面的吸附层,增加土颗粒表面电荷数,导致黏土导电性明显提高,此阶段电阻率与浓度值之间的关联更为灵敏。伴随孔隙液浓度升高,渗滤液中导电离子浓度持续增加,进而加速导电离子扩散,此时孔隙传导占主体,导电离子进入扩散层。在此过程中,渗滤液与黏土颗粒发生理化反应,改变了土体结构及孔隙胶结状态,逐步形成孔隙大、接触面小的面-边絮状结构,增加了离子迁移阻力。因此,此阶段继续增加渗滤液浓度对土体电阻率影响较小,且渗滤液污染土电阻率会逐步趋于一个定值。
2.2 点渗漏模式下渗滤液运移过程分析
开展点渗漏模拟试验,选取靠近注入点的中心测线L2绘制二维电阻率剖面等值线图,如图3所示。0 min为注入滤液前的土壤背景值,该剖面电阻率成层性较好,底部出现的大面积高阻异常分析是由于玻璃箱边壁效应导致测量结果偏高。注入滤液10 min后,在横向距离(X)0.60~0.80 m,深度(Y)0~0.05 m处出现漏斗状低阻体,电阻率(ρs)由背景值的200 Ω·m降至40 Ω·m,且低阻体所处位置与注入点吻合,证实磷石膏渗滤液是以低阻形态赋存于多孔介质内。注入30、60 min阶段,低阻体面积出现横向拉伸,表明此时渗滤液主要进行以横向运移为主、垂向运移为辅的扩散,该现象一直维持到停止注入。分析是由于表层土壤密实、渗透性差,滤液在短时间内无法快速下渗到土壤内部,导致注入滤液沿土壤表层进行横向运移。注入90、120 min阶段,低阻体已达12 cm深度,并沿剖面横向运移25 cm。停止注入滤液,静置60 min后再次观测,可以看出低阻体仍保持漏斗形态,但面积出现变化,表现为低阻分层增多且注入点位置的低阻面积减小。随着静置时间延长,在静置120 min后,渗漏源位置仅存在极小范围低阻带,这一过程说明在停止注入后ERT也能描绘出渗滤液在土体内的再分布过程。
为直观展示渗滤液在空间上的运移规律,选择0、10、60 min、停止注入60 min的电阻率监测结果绘制三维电阻率切片 (图4) 。由图4 (a) 、图4 (b) 可见,注入滤液10 min后,2条中心测线L2、L3已出现明显低阻异常,说明注入初期被污染的范围较小,仅限于注入位置周边浅表层。边界测线L1出现的轻微低阻异常分析是由于L1处填土高度略低于中心位置,滤液在重力作用下加快了向L1线的运移过程。注入60 min后 (图4 (c) ) ,2条中心测线的电阻率变化更明显,且L1、L4也出现浅部低阻异常,验证了前述点渗漏模式下滤液主要沿土层表面发生横向运移的结论。停止注入60 min后 (图4 (d) ) ,4条测线均呈现漏斗型低阻特征,说明随着深度的增加,污染区范围也在不断减小,电阻率切片清晰展现出滤液由浅入深,由中心向四周扩散的过程。
由于含水体的存在同样会引起低阻异常,为对比具有相同含水率但并未受到渗滤液污染时同一剖面上电阻率的分布特征,我们将渗滤液替换为岩溶水开展了重复实验,结果如图5所示。由图可见,岩溶水在点渗漏模式下的渗漏形式与渗滤液一致,均以横向运移为主,但2者的低阻体面积及电阻率值存在显著差异,表现为相同时段内岩溶水的低阻面积更小,且电阻率更高。进一步提取注入120 min时段渗滤液及岩溶水在渗漏中心处的电阻率数据,绘制图6所示的电阻率曲线图,可以看出滤液污染区域的电阻率最低值为40 Ω·m,而注水剖面低阻区域的电阻率值高达185 Ω·m,说明在场地含水情况下电阻率反演结果仍能准确识别出渗滤液污染区域。
2.3 管道渗漏模式下渗滤液运移过程分析
由于地下岩溶发育的隐蔽性、随机性,致使岩溶区污染渗漏通道的识别更为复杂[27-28]。针对岩溶区堆场渗漏引发的环境风险问题,进一步开展了管道渗漏模拟实验,结果如图7所示。由图可见,0 min时段电阻率背景值出现条带状高阻异常,这是管道引发的高阻响应。与点渗漏相比,管道渗漏在注入10 min后剖面未出现低阻反映,仅电阻率出现小幅降低。分析是由于内部土壤密实度相对表层土较低导致土壤孔隙度高,滤液扩散速度较点渗漏更快,在注入初期难以汇聚成含水率高的滤液聚集区,故无法形成明显低阻异常反映。注入30 min后,横向距离0.74 m,深度0.12 m处出现小范围低阻体,且伴随滤液注入,低阻体面积向四周迅速增大,并于注入120 min到达剖面底部。注入过程中渗滤液的扩散形式与点渗漏模型存在明显差别,剖面上表现为低阻体以四周扩散方式为主,并非沿某一方向扩展。
进一步分析渗滤液管道多点渗漏模型的电阻率切片,如图8 (b) 所示,相较于点渗漏,管道渗漏在注入10 min后4条测线的电阻率值均出现不同程度的降低,这是由于滤液在渗漏过程中并非沿单点渗漏源运移,而是通过管道预制的若干细孔向四周扩散。由图8 (c) 、图8 (d) 可见,随着实验进行,4条测线展现的低阻体形态在空间分布上无显著规律,与点渗漏过程形成的漏斗状模型形成鲜明对比。分析是土体非均质性导致其内部渗透性并非完全一致,当四向扩散的渗滤液在流经某一处渗透性较好的介质时会加速渗滤液流动,并在该处产生1个细微扰动,该扰动会随渗滤液注入量增多而发育形成优先流渗漏通道,在剖面上以低阻体呈现。以上结果可以得出,管道多点渗漏模式下,渗滤液在土体内的空间分布呈现非均匀性,且ERT能够清晰、无损地捕捉到渗滤液在此过程的空间分布。
针对管道渗漏模型开展岩溶水对照实验,结果如图9所示。可以看出,管道渗漏模式下的岩溶水电阻率剖面低阻变化范围较小,在低阻分布上与岩溶水点渗漏过程趋同。结合图10所示的电阻率变化曲线讨论,管道位置处的低阻体电阻率为183.60 Ω·m,而相同位置下渗滤液的电阻率为48.29 Ω·m,2者仍存在明显差异。
2.4 堆场电阻率实测分析
为了进一步验证电阻率法在磷石膏堆场渗漏监测的应用效果,选取贵州省息烽县磷石膏堆场作为现场ERT测试对象,为直观反映堆场污染区与正常环境的电阻率差异,将测线前半段布设在堆场内,后半段布设在外界自然环境中。场地实验电极距设置为1.5 m,共布设电极60根,采用Wenner装置进行数据采集,测试完成后对数据进行反演成像,结果见图11。
图11反映了地表以下14 m深度内的土层电阻率差异,由图可见,测区电阻率分布跨度较大 (14~330 Ω·m) ,并呈现出两极分化的特点。在横向距离47~90 m和0~5 m深度处存在连续的高阻异常 (ρs≥180 Ω·m) ,这是由于该处区域位于堆场外部,且地表覆盖有碎砾石。低阻异常分布在横向距离0~27 m范围的堆场内,该区域表层被磷石膏覆盖,且未见明显干扰物。参照前述实验结果,将电阻率低于40 Ω·m的低阻异常界定为渗滤液污染区,并推测该处异常可能与磷石膏渗滤液侵入迁移有关。从深度角度分析,图中低阻区域已延伸至地下10 m处,依据低阻带深度,可以判断场地滤液污染深度约为10 m。
为确定ERT剖面上的低阻异常所对应的地下含水层实际污染情况,在监测实验结束后,对堆场内监测井及外界环境中河流、监测井等水体进行取样分析,其结果如表2所示,结合表2与图11可知,堆场低阻异常区域对应的污染物浓度更高,而外界高阻区域对应污染物浓度较低,取样分析结果与ERT结论一致。
表 2 堆场污染物浓度分析Table 2. Analysis of pollutant concentration in storage yard取样位置 堆场监测井1 堆场监测井2 堆场外充水落水洞 堆场外河流上游 总磷/ (mg∙L−1) 6.53 1.23 <0.02 <0.02 氟化物/ (mg∙L−1) 4.8 0.79 <0.1 <0.1 综上所述,场地实验证实了在土层情况不明确的情况下,ERT仍能有效揭示渗滤液的运移路径、受污染区域的深度分布。
3. 结论
1) 不同堆场采集渗滤液的电阻率测试结果一致。随着浓度增加,滤液及土样电阻率均出现先大幅下降,后逐步放缓的特点。
2) 渗滤液污染土体在电阻率图像上表现为低阻异常,点渗漏下渗滤液以横向运移为主,表现为漏斗型运移模式。管道渗漏下渗滤液向四周扩散趋势明显,且渗漏速率更快,但低阻体的空间分布较不均匀,ERT能够捕捉渗滤液在不同渗漏模式下的运移过程。
3) 由于岩溶水与渗滤液的电阻率数值相差较大,可以通过反演电阻率剖面划分相同含水条件下的污染区与未污染区,进而识别滤液在土层内的分布情况。
4) 场地实验反演结果中低阻体范围与堆场位置对应较好,且低阻体电阻率值与模拟实验结果一致,证实电阻率法能够识别磷石膏堆场渗滤液的渗漏范围。
-
表 1 一期工程设计进水水质及水质保证率
Table 1. Inlet water quality and water quality guarantee rate of the first phase project
水质指标 设计进水水质/(mg·L−1) 保证率 COD 400 69.11% BOD5 200 79.56% SS 300 73.45% -NNH+4 35 31.45% TP 6 60.45% 表 2 设计进出水水质与处理程度
Table 2. Designed quality and treatment rates of the influent and effluent
水质指标 设计进水水质/(mg·L−1) 设计出水水质/(mg·L−1) 处理程度 COD 450 ≤30 93.33% BOD5 210 ≤6 97.14% SS 450 ≤10 97.78% TN 60 ≤15 75% -NNH+4 46 ≤1.5(3) 96.74%(93.48%) TP 8 ≤0.3 96.25% 注:括号外数值为水温≥12 ℃时的控制指标,括号内数值为水温≤12 ℃时的控制指标。 表 3 提标改造后实际进出水水质
Table 3. Actual water quality of influent and effluent after the upgrade and reconstruction
统计值或去除率 COD/(mg·L−1) BOD5/(mg·L−1) SS/(mg·L−1) NH4+-N/(mg·L−1) TP/(mg·L−1) TN/(mg·L−1) 进水 出水 进水 出水 进水 出水 进水 出水 进水 出水 进水 出水 最大值 740.0 29.00 379.0 5.70 405.0 9.00 87.30 2.75 12.70 0.33 96.80 13.80 最小值 227.0 11.10 110.0 1.80 110.0 4.00 29.00 0.03 1.78 0.01 31.50 4.50 平均值 423.7 19.10 211.4 4.17 202.7 4.34 63.50 0.60 5.52 0.11 68.94 10.66 平均去除率 95.49% 98.03% 97.86% 99.06% 98.00% 84.54% -
[1] 丁一. 城市河道水环境综合整治工程实测[J]. 环境工程, 2018, 36(9): 30-35. [2] 刘杰, 徐桂淋, 阙添进, 等. 污水处理厂MBR生化段提标改造方案分析[J]. 中国给水排水, 2018, 34(10): 22-25. [3] 焦辉平. 生物活性砂过滤器应用于城镇污水处理厂出水提标改造[D]. 镇江: 江苏大学, 2010. [4] 郭会平. 我国城市污水处理现状及污水处理厂提标改造路径分析[D]. 沈阳: 辽宁大学, 2016. [5] 辛涛, 郑临奥, 夏超, 等. 广东省某污水厂提标改造工程设计[J]. 净水技术, 2019, 38(10): 34-38. [6] 王晓康, 杨欣, 边靖, 等. MBBR工艺在采用氧化沟工艺的污水厂提标改造中的应用[J]. 中国给水排水, 2020, 36(6): 55-59. [7] 刘科军. 太湖流域城镇污水厂提标改造工艺的比较和选择[J]. 净水技术, 2013, 32(1): 48-51. doi: 10.3969/j.issn.1009-0177.2013.01.011 [8] 栾志翔, 吴迪, 韩文杰, 等. 北方某污水厂MBBR工艺升级改造后的高效脱氮除磷效果[J]. 环境工程学报, 2020, 14(2): 333-341. doi: 10.12030/j.cjee.201903177 [9] 张鹤清, 朱帅, 吴振军, 等. 城镇污水处理厂“准Ⅳ类”标准提标改造技术简析[J]. 环境工程, 2019, 37(6): 26-30. [10] 吴迪, 周家中, 郑志佳, 等. MBBR用于山西某污水厂提标改造效果分析[J]. 中国给水排水, 2018, 34(15): 6-11. [11] 滕良方, 吴迪, 郑志佳, 等. 某污水厂Bardenpho-MBBR准Ⅳ类水提标改造分析[J]. 中国给水排水, 2019, 35(11): 33-39. [12] 陈建平, 毛云飞. 传统污水处理厂类Ⅳ类水提标改造工程实践[J]. 中国给水排水, 2017, 33(24): 87-91. [13] 郭泓利, 李鑫玮, 任钦毅, 等. 全国典型城市污水处理厂进水水质特征分析[J]. 给水排水, 2018, 54(6): 12-15. doi: 10.3969/j.issn.1002-8471.2018.06.003 [14] 韦启信, 郑兴灿. 影响污水生物脱氮能力的关键水质参数及空间分布特征研究[J]. 给水排水, 2013, 49(9): 127-131. doi: 10.3969/j.issn.1002-8471.2013.09.030 [15] 王阿华. 城镇污水处理厂提标改造的若干问题探讨[J]. 中国给水排水, 2010, 26(2): 19-22. [16] 何伶俊, 汪勇, 黄皓, 等. 江苏太湖流域污水处理厂一级A提标改造技术总结[J]. 中国给水排水, 2011, 27(10): 33-39. [17] 李磊, 王社平, 杨亚红, 等. 氧化沟中试装置低温条件下脱氮除磷效果分析[J]. 水处理技术, 2012, 38(11): 116-119. doi: 10.3969/j.issn.1000-3770.2012.11.026 [18] 刘成军, 孟涛. 城市污水处理厂进水水质分布类型判别及应用[J]. 环境工程, 2014, 32(S1): 87-90. [19] 马耀平, 朱海荣, 王社平, 等. 西安市第五污水处理厂设计进水水质水量的分析与确定[J]. 环境工程, 2010, 28(6): 24-27. [20] 李思敏, 郝同, 王若冰, 等. 改良型A2/O工艺在低温不同污泥负荷下的运行研究[J]. 中国给水排水, 2014, 30(13): 64-68. [21] 杜理智. 水解反硝化工艺对低碳氮比和低温城市污水的脱氮性能研究[D]. 武汉: 华中科技大学, 2013. [22] 吴悦颖, 王洪臣, 孙娟, 等. 我国城镇污水处理设施脱氮除磷能力现状分析及对策建议[J]. 给水排水, 2014, 50(S1): 118-122. -