-
现阶段我国大部分污水处理厂尾水已达到《城镇污水处理厂污染物排放标准》(GB 18918-2002)一级A的出水标准,但其作为生态补给水直接排入受纳水体,仍会导致地表水体水质恶化,甚至产生富营养化等一系列水环境问题[1-2]。因此,探索经济可行的尾水深度处理技术对于保护水环境具有重要意义。
目前针对污水处理厂尾水的深度处理,常用的方法有凝聚沉淀法[3-4]、臭氧化法[5-6]、反渗透法[7-8]、生物脱氮法[9-10]、人工湿地法[11-13]等。深度处理的基建费与运行费用大多均较高,使得以常规建设为主的深度处理技术应用受到一定限制。而人工湿地作为污水处理厂尾水深度处理工艺,不仅价格低廉、运维成本低,还可以兼具景观价值,故有关人工湿地在污水处理厂尾水深度处理的研究及相关应用推广研究已成为热点[14-19]。例如,王琳娜等[20]利用传统的水平潜流湿地处理不同浓度的污水处理厂尾水,出水均能达到景观回用水水质要求。虽然传统潜流湿地对有机物和悬浮物去除效果较好,但其对氮、磷的去除能力有限。为提升人工湿地尾水净化效果,复合式人工湿地得到广泛应用[21]。杨立君等[22]将垂直流人工湿地与强化型前处理系统相结合,对污水处理厂尾水COD、BOD5、
NH+4 -N、TP的去除效果较好,而且大大降低了运营维护的难度,同时也大幅节省了投资。杨长明等[23]研究了组合人工湿地对无锡城北污水处理厂尾水处理效果,出水基本可以达到《地表水环境质量标准》(GB 3838-2002)Ⅲ或Ⅳ类水标准。然而,湿地系统低温期净化效果难以保障、处理负荷低、占地面积大、基质堵塞等问题仍是人工湿地技术应用的难点。王翔等[24]采用组合式人工湿地对清潩河沿岸污水处理厂尾水进行了深度处理,出水水质稳定达到《地表水环境质量标准》(GB 3838-2002)Ⅳ类水标准,但其水力负荷仅达到0.43 m3·(m2·d)−1。孙亚平等[19]研究了水力负荷对改良型垂直流人工湿地降解污水处理厂尾水效果的影响,发现水力负荷在0.25~0.5 m3·(m2·d)−1时运行效果最佳。高奇英等[25]研究了高水力负荷下人工湿地对污水处理厂尾水净化效果的影响,发现在水力负荷0.5 m3·(m2·d)−1时对污染物的去除效果最优。目前研究尾水人工湿地系统的最佳水力负荷普遍未突破传统尾水人工湿地水力负荷范围,这使得湿地系统在土地资源紧张的经济发达地区应用存在困难。因此,高负荷复合式人工湿地推广应用需进一步探索。基于上述情况, 本研究选择江心洲污水处理厂建设的高负荷复合式人工湿地系统开展实验研究。该系统由浅池单元、双向横流过滤单元、折流式潜流单元、水平潜流单元和表流湿地单元构成,处理规模为1 200 m3·d−1,水力负荷约为0.67 m3·(m2·d)−1。通过对该系统在污水处理厂低温期净化效果的研究,旨在分析和研究低温条件下仍能保障净化效果的新型湿地系统,并提出一种利用湿地高负荷优势降低治理综合成本的新模式。
-
本项目位于南京市江心洲污水处理厂内,人工湿地处理规模为1 200 m3·d−1,占地面积约1 800 m2,水力负荷约为0.67 m3·(m2·d)−1,HRT为23 h。系统原水为江心洲污水处理厂尾水,出水水质近《地表水环境质量标准》(GB 3838-2002)Ⅳ类水标准,如表1所示。
-
建设的人工湿地系统的工艺流程如图1所示。尾水经过1次提升后采用重力流进行系统配水。首先,尾水运输至浅池单元进行高位配水,初步调节水质水量;出水自流进入7座并联的双向横流过滤单元(A-H),实现有机物和悬浮物的高效去除,并进行氮、磷的初级去除;后依次经过折流式潜流湿地单元和水平潜流湿地单元,进行悬浮物和有机物的强化去除且进行氮、磷的深度去除;出水进入表流湿地单元,从而进一步降低水体浊度,保障出水水质,最终出水进入中水回用系统。其中,双向横流过滤单元、折流式潜流单元、水平潜流单元剖面图如图2所示。
-
复合式人工湿地系统由浅池单元、双向横流过滤单元、折流式潜流单元、水平潜流单元和表流湿地单元5部分组成,各单元具体设计参数见表2。
-
图3中红色标记为湿地系统的6个采样点,分别为各单元进出水口,其中编号a~f依次代表进出水口在系统中上下游的相对位置。取得水样500 mL分装于聚乙烯瓶,立即于实验室进行水质指标检测,或于4 ℃低温冷藏保存,在48 h内测定水质指标。
-
水质指标测定方法参照《水和废水监测分析方法(第4版)》。COD采用重铬酸钾法测定;TN采用过硫酸钾-紫外分光光度法测定;NH4+-N采用纳氏试剂分光光度法测定;TP采用过硫酸钾消解-钼酸铵分光光度法测定。
-
复合式人工湿地系统对COD的去除效果如图4所示。由图4(a)可知,进水耗氧有机污染物质量浓度(以COD计)为18.00~29.00 mg·L−1,平均出水质量浓度为16.60 mg·L−1,且在湿地沿程方向,COD值总体呈下降趋势。从人工湿地各个单元的处理效果来看,双向横流过滤单元处理效果最为显著,COD去除率达13%。该处理单元前段好氧有利于有机物分解,后段缺氧有利于反硝化脱氮的进行,且倒换水流方向,位于池体后段生物膜为反硝化提供内生碳源,表明其特殊的功能结构营造了较好的物化和生化反应条件,可实现对COD的有效去除。由图4(b)可看出,系统在进水COD较低的情况下,COD平均去除率可达到25%。12月中下旬,COD去除率有所下降。这与水平潜流湿地单元植物未及时收割,有机质腐烂并释放进入水体,使水中有机物含量升高有关。直到1月份植物收割后,COD去除率才回升。
总体来说,COD的去除率较低是由于尾水中碳源含量较低,可生化性较差[26],湿地对有机物的生化降解能力相对减弱,COD去除主要是依靠植物根系吸收和基质吸附作用[27]。并且冬季低温条件下,植物凋零、休眠,造成植物根系泌氧能力下降,微生物活性较差。湿地系统对COD去除率的降低是植物、微生物、溶解氧等易受环境温度影响的多种因素共同作用的结果。
-
复合式人工湿地系统对TN的去除效果如图5所示。由图5(a)可知,进水TN质量浓度6.82~11.90 mg·L−1,平均出水质量浓度为7.17 mg·L−1,湿地沿程方向TN质量浓度总体呈下降趋势。从人工湿地各个单元的处理效果来看,折流式潜流单元对TN的去除效果最佳,最高去除率可达26%,其次为双向横流过滤单元及浅池单元。折流式潜流单元通过竖向折流进水方式使污水与填料之间充分接触,其布水方式有助于单元均匀配水,而饱和流有助于营造缺氧环境,实现反硝化脱氮。此外,该单元丰富的植物群落能直接吸收污水中氮、磷类污染物,从而提高净化效果。由图5(b)可看出,TN平均去除率为24%,从11月中下旬起,TN去除率有所下降。这与冬季气温降低,周围环境温度低于反硝化菌的适温范围(20~35 ℃),硝化菌的正常生长繁殖受限有关。同时,湿地系统碳源不足在一定程度上制约了微生物反硝化作用,TN去除效果也受到一定影响[27]。此外,植物未及时收割,造成一部分氮、磷的释放进入水体。自1月初起,TN去除率先降低后升高,直到逐步稳定,这可能与进水水质波动有较大关系。例如,何媛媛等[28]的研究表明,当进水TN小于60 mg·L−1时,TN去除率随进水浓度增加而增大。
-
复合式人工湿地系统对
NH+4 -N的去除效果如图6所示。由图6(a)可知,进水NH+4 -N质量浓度0.60~1.80 mg·L−1,平均出水质量浓度为0.52 mg·L−1,虽然进水水质波动较大,但出水较为平稳,明显优于《地表水环境质量标准》中的Ⅳ类水质标准。湿地沿程方向,NH+4 -N质量浓度总体呈下降趋势。从人工湿地各个单元处理效果来看,对其去除起主要作用的是浅池单元和双向横流过滤单元。浅池单元高位配水和两级跌水充氧为好氧硝化菌提供有利环境条件,利于硝化反应进行。而双向横流过滤单元前端氧气充足以硝化反应为主,好氧硝化菌将NH+4 -N转化为NO−3 -N,并沿水流方向DO浓度逐渐降低,其后段缺氧环境有助于反硝化脱氮反应进行。如图6(b)所示,NH+4 -N平均去除率可达到44%,尽管进水波动较大,但出水质量浓度均可以维持在0.30~0.70 mg·L−1,且去除率随进水质量浓度增大而增大,表明该系统耐冲击负荷能力强,对NH+4 -N去除效果佳。 -
复合式人工湿地系统对TP的去除效果如图7所示。由图7(a)可知,进水TP质量浓度0.03~0.06 mg·L−1,平均出水质量浓度为0.03 mg·L−1,沿水流方向,TP质量浓度总体呈下降趋势。由图7(b)可看出,TP平均去除率达到34%,表明系统在冬季低温不利条件下仍保持较高的TP去除率。湿地中磷去除主要通过基质物理吸附和化学沉降实现,其次为水生植物根系对溶解性磷的吸收及微生物的作用。但在冬季低温低碳源条件下,微生物活性弱,植物生长缓慢,对磷的去除主要是依靠自然沉降、填料吸附等作用,导致湿地除磷效果较差[27]。
-
1)微生物群落结构丰富度和多样性。复合式人工湿地中双向横流过滤湿地单元(A)、折流式潜流湿地单元(B)、水平潜流湿地单元(C)微生物群落结构丰富度和多样性结果如表3所示。样品覆盖率为92%,测序结果较为稳定。
由表3可知,样品的覆盖率最低为98%,说明此次测序的结果能够准确完整的反应微生物样品的真实状况。3个微生物样品中ACE指数和Chao指数以折流式潜流湿地单元最高,Shannon 指数以双向横流过滤单元最高,但水平潜流湿地单元中ACE指数、Chao指数和Shannon 指数为较高,说明该湿地单元微生物的物种总数、菌落丰富度和多样性程度相对较高。
2)微生物群落结构组成。图8是微生物在门分类水平下的群落组成。由图8可知,不同样品在门分类水平上具有较高的多样性。系统中的优势菌门主要包括变形菌门(Proteobacteria)、蓝藻菌门(Cyanobacteria)、拟杆菌门(Bacteroidetes)、酸杆菌门(Acidobacteria)、浮霉菌门(Planctomycetes)、绿弯菌门(Chloroflexi)、放线菌门(Actinobacteria)、疣微菌门(Verrucomicrobia)、硝化螺旋菌门(Nitrospirae)、厚壁菌门(Firmicutes)等,并以变形菌门(Proteobacteria)、蓝藻菌门(Cyanobacteria)、拟杆菌门(Bacteroidetes)、酸杆菌门(Acidobacteria)、硝化螺旋菌门(Nitrospirae)为主,五者的总和约占总测序序列的75%~85%。有研究[29]表明,人工湿地基质优势菌种以变形菌门、酸杆菌门和绿弯菌门为主,所占比例为高于80%,这与本实验的结果相似。
人工湿地中含氮污染物的去除机理主要有硝化作用、反硝化作用以及氨氧化作用等[30],与之相关的微生物主要有氨氧化真菌/细菌、硝化细菌(Nitrifying bacteria)和反硝化细菌(Denitrifying bacteria)[31]。有研究者指出,变形菌门(Proteobacteria) 在生物脱氮除磷等其他污染物降解中具有核心作用[32]。由图8可知,变形菌门(Proteobacteria)在3个样品中分别占总测序序列的47%、51%和57%,因此,说明该复合式人工湿地在低温期仍具有较好的脱氮除磷效果,这与2.2~2.4节水质分析结果一致。拟杆菌门(Bacteroidetes)在3个样品中占总测序序列的15%左右,能够代谢碳水化合物,降解有机物,与放线菌门(Actinobacteria)共同担负污染物的有效去除[33]。硝化螺旋菌门(Nitrospirae)在双向横流过滤单元(A)中所占比例最高,由于双向横流过滤单元可实现正反向进水,前端氧气充足,故有利于硝化细菌生长,因此,该单元对总氮和氨氮去除效果较优。
-
为适应长期的水渍环境,会在湿地植物体内部形成强大的通气组织,为气体交换和储存提供内部通道,将光合作用产生的氧气输送到根际基质中,从而增强根际周围微生物活性,进而加强有机物好氧降解和硝化作用[34],最终提高污水净化效果。双向横流过滤单元为复合式人工湿地的核心单元,对冬季低温期湿地稳定运行起主要作用。表4为双向横流过滤单元湿地植物的生长状况、根系特征和泌氧速率。由表4可知,冬季植物进入衰亡期,1月份植株干枯,地上部分生物量较12月份有所下降。这与冬季植物叶片脱落腐败,以及营养元素向根部转移有关,亦与刘臣[35]的研究结果相似。与此同时,随冬季气温骤降,植物根系也逐渐进入冬眠状态,湿地植物的根孔隙度随之降低。然而,植物内部通气组织性能的减弱,导致第2年1月份再力花根系泌氧速率极低,而3种植物中根孔隙度最大的芦竹根系泌氧速率也仅达到5.14 μmol·(d·g)−1。总而言之,在冬季低温条件下,由于植物凋零、休眠、腐败造成植物泌氧能力下降,故微生物活性较差,从而影响了湿地的处理效果。因此,及时对湿地植物进行收割,做好维护管理也是保证其稳定运行的重要条件。
-
1)本研究中的复合式人工湿地系统水力负荷可高达0.67 m3·(m2·d)−1,较我国大多数尾水人工湿地提升了30%以上,极大提高了湿地处理能力,缩小了湿地的建设面积。
2)该湿地系统在低温条件下仍能保证一定的净化效果,对COD、TN、
NH+4 -N、TP的平均去除率分别为25%、24%、44%、34%,日均去除负荷量分别为3 688.88、1 509.47、272.38、10.30 mg·(m2·d)−1, 出水水质可稳定达到《地表水环境质量标准》(GB 3838-2002)近Ⅳ类水质标准。3)3个不同湿地单元的填料样品优势菌门分别以变形菌门、拟杆菌门、酸杆菌门和硝化螺旋菌门为主,其中变形菌门在各样品中均占较大的丰度比例,平均丰度比例高达50%。
4)在12月中下旬时,湿地各项污染物指标的去除率均有所下降。这主要是由于植物在入冬时活性较低甚至发生腐烂,这一现象在植物收割后有明显缓解。
高负荷复合式人工湿地对污水处理厂尾水低温期的净化效果
Performance of a high loading hybrid constructed wetland on wastewater treatment plant effluent purification in low temperature period
-
摘要: 选择江心洲污水处理厂规模为1 200 m3·d−1的“浅池单元+双向横流过滤单元+折流式潜流单元+水平潜流单元+表流湿地单元”高负荷复合式人工湿地系统,考察了其对污水处理厂尾水低温期的净化效果。结果表明:在秋冬低温条件下,该湿地系统对COD、TN、
NH+4 -N、TP的平均去除率分别可达25%、24%、44%、34%。出水水质稳定达到《地表水环境质量标准》(GB 3838-2002)近Ⅳ类水质标准。进一步结合微生物群落和湿地植物泌氧作用结果,分析了低温期湿地效果保障机制。以上结果表明,该人工湿地系统在低温期对污水处理厂尾水具有较好的净化效果,可为大型尾水湿地的建设提供参考。-
关键词:
- 高负荷复合式人工湿地 /
- 城市污水处理厂尾水 /
- 低温期 /
- 微生物群落
Abstract: A 1200 m3·d−1 hybrid constructed wetland (HCW) in Jiangxinzhou Wastewater Treatment Plant (WWTP), being composed with shallow pond, bidirectional cross flow filter, baffled subsurface flow CW, horizontal subsurface flow CW and free surface flow CW, was used to purify WWTP effluent in low temperature period, and its performance was studied. The results showed the average removal rates of COD, TN,NH+4 -N, and TP under low temperature conditions in autumn and winter were 25%, 24%, 44%, and 34%, respectively. The water quality of HCW effluent could stably meet with Class IV of the Surface Water Environmental Quality Standard (GB 3838-2002) of China. Furthermore, microbial community and plants oxygen release analysis were also used to demonstrate the effect guarantee mechanism of wetland in low temperature. Overall, the HCW had a good performance on purification of wastewater treatment plant effluent. The findings provide technical support for the full scale HCW construction. -
城市范围内的河流、湖泊及其他景观水体,担负着提供水资源、发挥生态效应、承载城市生活等多种功能[1-2]。2015年,国务院正式出台《水污染防治行动计划》(简称“水十条”),将城市黑臭水体整治作为重要内容,全面控制污染物排放,并提出明确要求:加大黑臭水体治理力度,于2020年底前完成地级及以上城市建成区黑臭水体均控制在10%以内的治理目标[3-5]。
城市河流黑臭水体是呈现令人不悦或散发不适气味水体的统称,是河流水体受污染的一种极端现象[6-8]。尤其对于南方城市河流,河流类型多为中小型河流,环境容量小,容易受到污染,且呈现以城市为中心的污染特点。污水主要来源为生活污水,以有机污染物质和细菌污染为主,可生化性较好,重金属及其他难降解的有毒有害污染质一般不超标。河流污水主要污染物指标BOD5、COD、SS值比北方城市河流污水稍低,其原因在于南北方居民生活习惯的差异[9-10]。针对黑臭水体治理,目前普遍采用控源截污、清淤疏浚和生态修复等治理手段,治理成效显著,黑臭水体数量大幅度减少,河流水质明显改善。
本研究以南方城市深圳市的观澜河流域(龙华区段)为研究对象,通过对观澜河龙华区段干支流河流年际水质变化进行监测分析,结合该河段的治理工程措施,评估黑臭水体治理成效,总结工程治理措施及实施成效,以期为城市河流水质改善和水环境提升提供参考。
1. 区域概况
1.1 研究区域概况
观澜河流域位于深圳市中北部,发源于龙华区民治街道大脑壳山(见图1),自南向北贯穿整个龙华区。河流部分支流分布于龙岗区西南部,光明区东南角,干流在观澜企坪以北汇入东莞市境内石马河,属东江水系一级支流石马河的上游段。观澜河流域(龙华区段)面积为175.58 km2,流域内积雨面积1.0 km2及以上河流有34条,其中龙华区内有19条。
观澜河流域(龙华区段)内共有干支流24条,其中干流1条,独立河流2条(君子布河、牛湖水),一级支流14条,二、三级支流7条。各水体均为雨源性河流,根据对观澜河流域内各降雨站点多年降雨系列的分析,多年平均降雨量为1 606 mm。降雨年际变化较大,最大年降雨量2 080 mm,最小年降雨量780 mm;降雨年内分配极不均匀,汛期(4—9月份)降雨量大且集中,约占全年降雨总量的80%,并且降雨强度大,多以暴雨形式出现,极易形成洪涝地质灾害。
1.2 样品采集与分析
1)调研对象。观澜河流域(龙华区段)干支流共计24条;通过查阅当地相关资料和结合现场踏察发现岗头河已为干涸状态,仅作为泄洪渠道;其余23条干支流均为本次研究对象,分别为观澜河干流、白花河、大水坑河、牛湖水、君子布河、樟坑径河、横坑水、大布巷河、丹坑水、茜坑水、长坑水、清湖水、横坑仔河、黄泥塘河、龙华河、大浪河、冷水坑河、高峰水、上芬水、坂田河、油松河、塘水围河、牛咀水。经统计,河道长度合计106.44 km。
2)调研方法。参照《水质 采样方案设计技术规定》(HJ 495-2009)结合现场情况按照科学有效的布点原则,充分考虑河段取水口、排污口数量和分布及污染物排放状况、水文及河道地形、支流汇入及水工程情况、植被与水土流失情况、其他影响水质及其均匀程度的因素等。污染严重的河段可根据污水口分布及排污状况,设置若干控制断面,控制的排污量不得小于本河段总量的80%。
3)样品采集。根据观澜河流域特征,选择水流相对缓慢平直的节点区域设置采样点。从观澜河上游到下游的顺序,每条支流从上游到下游的采样点位顺序,以每条河的前2个字母为样点代号依次命名,共定位176个点位。水质数据采集时间是从2017年11月—2020年5月,采样频次为每周1次。水样共分4瓶,采集的水样储存于提前加入HgCl2的250 mL塑料样品中,以抑制微生物的氧化分解,用于测定水样中的氨氮(NH3-N)含量;同时,现场采用多功能水质检测仪(HQ43d,德国WTW)测定水温T、溶解氧DO和pH;对每个采样点处的水样利用ULTRAMETERⅡ 6PFC型号的便携式水质分析仪对其氧化还原电位(oxidation-reduction potential)进行准确测定;并对每个采样点处的水质透明度运用塞氏盘法进行测定。每次水样采集完毕后快速置于4 ℃的车载冰箱中进行冷藏保存。
4)数据处理。采用纳氏试剂分光光度法测定(HJ 535-2009)NH3-N。测定原理是碘化汞和碘化钾的碱性溶液与氨反应生成淡黄棕色胶态化合物,其色度与氨氮含量成正比,通常可在波长410~425 mm内测其吸光度,计算其含量。水样经过0.45 μm尼龙膜过滤后留滤液(空白和标曲不需要过滤),依据稀释倍数取样,加入到哈希管,用无氨水加至总体积为10 mL。加0.2 mL酒石酸钾钠溶液,混匀。加0.3 mL纳氏试剂,混匀。放置10 min后,在波长420 mm处,用光程10 mm比色皿,以无氨水为参比,测定吸光度。
1.3 黑臭水体基本情况
黑臭水体治理措施实施之前,观澜河流域(龙华区段)河流黑臭严重。流域内22条河流全部为黑臭河流,其中重度黑臭河流有坂田河、长坑水、大水坑河、牛湖水、清湖水、大布巷河、丹坑水、塘水围河、上芬水、高峰水、横坑水、横坑仔河、黄泥塘河和樟坑径河等14条支流,河流水质差,DO平均值为5.63 mg·L−1,氨氮平均值为22.86 mg·L−1,黑臭长度62.04 km,黑臭面积1.226 km2,感官黑色,有明显臭味,河面漂浮物较多,沿途排污口较多;轻度黑臭河流有白花河、牛咀水、茜坑水、油松河、冷水坑河、君子布河、龙华河和大浪河等8条支流,河流水质较差,DO平均值为4.27 mg·L−1,氨氮平均值为8.01 mg·L−1,黑臭长度7.05 km,黑臭面积0.051 km2,河流沿岸也存在污水直排口,数量较少,但仍有明显黑臭现象。
氨氮是影响我国地表水水环境质量的首要指标[11]。相关参考资料显示,观澜河流域(龙华区段)水量总计约9.2×105 m3·d−1,由式(1)计算得出观澜河流域(龙华区段)黑臭水体治理之前,水体中氨氮含量总负荷为14.20 t·d−1。
W=C×Q (1) 式中:W为氨氮含量负荷,t
;C为氨氮,mg⋅d−1 ;Q为水量,m3⋅L−1 。⋅d−1 1.4 黑臭原因解析
1)外源污染输入量大,污染负荷重。造成水体黑臭的主要原因分为外源污染物质输入、内源隐性污染和水生态退化严重。外源污染是水体黑臭的重要原因之一,主要为城市人口密集,城中存在众多散乱污小作坊偷排污水,并且市政管网系统不健全,污水处理能力严重不足[12]。当地提供的勘察资料显示,观澜河流域(龙华区段)入河污水排口共计533个,管径最大有2 000 mm,主要为居民生活污水,水量少,但污染物浓度较高。当地有关部门资料显示,2017年观澜河流域(龙华区段)沿岸排扣污水直排入河现象严重,排污量大,大部分排放入河的污水均为生活污水,观澜河流域(龙华区段)年排口入河污水量达8.196 57
t。×107 2)河道存在隐性污染,内源污染问题突出。内源污染通常指的是水中底泥释放的污染物不断污染水体,使水体富营养化,并含有一些有毒有害物质,污染物厌氧发酵产生的甲烷和氮气导致底泥上浮造成水体黑臭[13]。当地提供的勘察资料得出,观澜河流域(龙华区段)的河道纵坡较大,底泥淤积量相对较少,总河道底泥量约为20×104 m3,且底泥中的pH平均值为7.83,最大值为8.45,最小值为7.22,有机质质量含量为0.08%~16.2%,部分河段Cu浓度高达422~500 mg
,Pb的平均浓度值为10.4 mg⋅kg−1 ,同时也检测出了Zn、Cr、Hg等重金属物质,且含量较高。⋅kg−1 3)河流水生态退化严重,流域水环境容量低。观澜河流域(龙华区段)内建设开发强度高,开发利用超50%,自然河流属性退化;干流滨河生态空间不足,支流人工渠道化;流域蓝绿生态空间为42.6%,水域所占比重仅为4.25%,生态安全保障低、服务能力差。
水环境容量是指在流域系统内,在不影响流域水质、水生态等水环境的情况下,流域水体所能容纳污染物的最大量,具体计算方法见式(2)。
W=W稀释+W自净=0.001Q(Cj−C0)+0.001KVCj (2) 当Cj<
时,式(2)转换为式(3)。C0 W=W自净=0.001KVCj (3) 式中:W为观澜河留水环境容量,kg
;Q为稀释水量,m3⋅d−1 ;V为河道水位库容量,m3;K为污染降解系数,d−1;COD降解系数,取0.1 d−1,TP降解系数,取0.02 d−1;Cj为目标水质,mg⋅d−1 ,取地表水V类标准;C0为补水水质,mg⋅L−1 。⋅L−1 采用式(1)和式(2)计算观澜河流域水环境容量得到观澜河流域旱季水环境容量氨氮容量为0.072 t
,远小于旱季入河污染物总量。⋅d−1 2. 工程治理措施
2.1 总体治理思路
根据上述问题分析,流域内水质改善工程治理从以下3个方面开展:1)针对城中村散乱污小作坊偷排漏排、市政基础设施不健全等外源污染问题,通过实施正本清源、雨污分流、管网提质增效、污水处理厂提标改造等工程措施,彻底切断污水来源;2)针对河道黑臭底泥淤积等内源污染问题,开展河道清淤工程措施,实现污染物的永久去除;3)针对流域水生态退化问题,开展碧道建设和生态补水工程措施,提高流域水环境容量。
2.2 工程治理措施
1)外源截污措施。①雨污分流工程。对原有排水管网实施雨、污分流制改造,现状合流管可保留使用的改作雨水管,同时新增一条污水管,以达到雨、污分流的目的,龙华区雨污分流工程共实施了5期,完成973 km的雨污分流管网建设。②正本清源工程。主要分为污染源调查、现状排水系统梳理、建筑排水小区调研等,根据不同类型小区排水管网的特征,结合实际制定不同的设计方案,先已完成正本清源工程7个批次,共完成2 032个小区的正本清源改造。③管网提质增效工程。重点开展干管修复,解决市政高水位运行、淤堵等问题,并全面覆盖正本清源工程所遗漏的小区,实现龙华区管网全覆盖,保证污水处理厂进水浓度合格,同时协助解决暴雨积水点和雨天溢流等问题,实现污染全面防治。④污水处理设施提标改造工程。修建了8座临时污水处理设施,处理沿河截污管道收集的生活污水,污水处理能力为2.05
,出水水质达准Ⅳ类。观澜、龙华污水处理厂用于处理市政管网收集的污废水,处理规模为7.6×105m3⋅d−1 ,出水水质已全部达地表水准Ⅳ类,民治污水厂目前在建,处理规模为9×105m3⋅d−1 m3·d−1,预计2020年投入使用。.0×104 外源治理共计整治污水直排口547个,截留直排污水8 196.57×104 t,完成973 km的雨污分流管网建设,完成2 032个小区的正本清源改造,城市污水收集率达83%,完成氨氮负荷削减8 720.88 t。
2)内源治理措施。内源治理技术是指通过打捞、净化等途径使水体中的垃圾、淤泥等污染物得以清除,实现河流水质改善[14-16]。实施了清淤疏浚措施,主要采用的是机械清淤的方式(小型装载机外形尺寸5.45 m×1.96 m×2.52 m),对全流域23条支流进行清淤,底泥被运往处理中心进行集中处理。同时,对全区83段22.31 km暗涵实施清淤、总口截污、揭盖复涌工作,分别在暗涵段出口处新建高约30 cm的截污挡墙,截流暗涵内污水。共计清理底泥93 077 m3,削减氨氮污染负荷2 180.22 t,有效的清除了河道中隐性的污染源。
3)流域生态化改造措施。①河道生态化改造,恢复滨河生态空间。结合流域蓝线管控,以河岸带人工干扰程度40%以下为目标,拆除了河道违建并逐步拓宽滨岸带,在位于人民路-环观南路地段,开展了1.3 km碧道建设,沿岸新建主题公园,依托现有体育馆等建筑,打造了特色滨水跑道。②综合利用多种水源,保障河道生态基流。当地积极运用活水循环技术,通过向黑臭水体中加入洁净水的方式[17],即生态补水工程,通过新建补水管道和提升泵站的方式进行河流生态补水,补水工程实施2期,共新建DN300~DN1200的补水管道61.07 km管道,6座提升泵站,总规模为4.5
。同时,构建了流域污水处理设施-水库群-河道分类分区补水系统,实现干支流的科学补水。×105t⋅d−1 3. 治理成效分析
通过上述工程措施的实施,极大地改善了观澜河(龙华区段)河流水系的水环境状况。外源治理措施和内源治理措施降低了河流上覆水的污染负荷,河流生态化改造措施提高了河流自净能力。在时间尺度上,治理后(2020年)的监测数据表明,氨氮和DO在流域范围内得到较大改善,已实现全面“消黑”;在空间分布上,除塘水围、上芬水、大布巷等支流氨氮超过地表水环境质量Ⅴ标准类外,其余干支流均能满足地表水环境质量Ⅴ标准。
3.1 在时间尺度上的水质改善情况
1)河流水质年际变化趋势。观澜河流域水文气候独特,汛期降雨量充沛、雨天水量大而急、季节性水量差异明显等。选取DO和氨氮作为典型指标[18]进行评价分析。图2(a)和图2(b)分别为观澜河流域(龙华区段)黑臭水体治理之前DO、氨氮含量分布图,可知流域DO含量平均值为4.95 mg·L−1,各种浮游生物即不能生存[19-22],各条河流DO含量基本大于2.0 mg·L−1,有个别河段如坂田河、大水坑河、横坑水、樟坑径河存在局部DO含量小于2.0 mg·L−1,其中横坑仔河全河段DO含量小于2.0 mg·L−1,为流域内DO含量最低的河流,整条河段水体也为缺氧状态;而氨氮含量平均值高达15.44 mg·L−1,其剧烈的毒性直接导致河流水体中水生生物的死亡,严重破坏水环境生物链[23-24],表明观澜河流域(龙华区段)河流水生态是基本丧失的。全流域所有河流均为达黑臭水体标准,即氨氮含量大于8.0 mg·L−1,且坂田河、长坑水、大水坑河等14条河流氨氮含量大于15.0 mg·L−1,水质恶化非常严重。通过增设河道跌水设施,对河流水体进行“充氧”,实施控源截污措施,将直排入河的生活污水引入市政管网,使得入河污染负荷减少,并且对河道进行了清淤疏浚工作,将河道内污染物质彻底清理,流域内水质因此得到大幅度提升。如图3(a)所示,流域内各河流DO含量均符合黑臭标准,且DO含量平均值达5.78 mg·L−1,基本满足水体中浮游生物、鱼类、好氧微生物等的生存条件,且长坑水2020年5月DO含量为8.13 mg·L−1,则可划分为清洁河流水准;且图3(b)中氨氮含量已稳步下降,均低于国家黑臭水体标准值(8.0 mg·L−1),且流域内氨氮含量平均值降至1.81 mg·L−1,氨氮污染负荷减少了10 901.1 t,实现全流域黑臭水体的全面消除。其中,观澜河流域各条河流DO和氨氮年际变化趋势见图4和图5。
2)河流水质年内变化趋势分析。观澜河流域属南亚热带海洋性季风气候区,降雨年内分配极不均匀,即导致河流水质年内变化幅度较大(见图6)。总体来看,流域内河流汛期DO含量整体高于非汛期,汛期流域内河流氨氮含量整体高于非汛期。河流水质受水量、点源与非点源污染共同作用的影响,非汛期水质主要反映点源污染情况,而汛期则主要反映面源污染和稀释作用的影响[25]。图中数据可知,汛期该流域水质整体受水量增大的影响程度低于面源污染所带来的影响,如黄泥塘河汛期氨氮含量(21.39 mg·L−1)为非汛期氨氮值(13.35 mg·L−1)的1.6倍,其原因在于汛期雨天合流制排口溢流严重且河流受面源污染严重;而上芬水汛期氨氮含量(9.26 mg·L−1)远低于非汛期(16.72 mg·L−1),其原因在于该河流存在排口截流不彻底、晴天污水溢流现象。可见,该流域整体河流水质受点源和非点源污染物的共同影响。
3.2 在空间尺度上的水质改善情况
1)干流与支流水质变化。为更直观地了解观澜河流域干流与一级支流之间的空间变化,对干流及15条一级支流进行了箱式图分析。箱式图可反应数据的离散程度,尽可能排除随机干扰和异常极端值的影响,且可以表现数据的分布结构,并进行多批数据的时空比较和分析[26]。如图7所示,观澜河干流DO含量的平均值为流域内最高值,并且数值主要集中在5.6~7 mg·L−1,氨氮含量数值集中在0.44~1.87 mg·L−1,优于地表水V类水标准。观澜河干流氨氮含量的平均值为流域内最低值,其余一级支流从汇入干流上游至下游的顺序,整体呈现缓慢上升趋势。其原因在于,观澜河上游段位民治街道,地理位置靠近市区中心,经济发展相对较好,市政基础设施建设较为完善,污水入河现象较少;相反,观澜河下游段,市政配套设施不完备,存在污水入河现象,则导致汇入下游一级支流氨氮含量上升。部分河流DO和氨氮数值存在异常点,其原因为治理前存在雨天排口污水溢流导致水质短期恶化。
2)河流水质变化比较。为探究影响水体黑臭重要指标(DO、氨氮)之间的相关性,选取了具有4条河流(观澜河干流、白花河、坂田河、大浪河)进行了线性回归分析,结果如图8所示。DO和氨氮的线性拟合度较高,其中观澜河干流R2=0.68,坂田河R2=0.57,白花河R2=0.28,大浪河R2=0.15,且4条河流DO和氨氮均呈相反的数量关系。这表明氨氮在城市黑臭水体中可能是造成溶解氧降低的关键因素。河流水质产生黑臭的重要原因即为人类活动所造成的生活污水、工业废水等直排入河,含氮有机物进入水体后,亚硝酸菌和硝酸菌消耗氧气,有机物逐步被分解为或氧化为无机氨(NH3)、铵(
)、亚硝酸盐(NH+4 )和最终产物硝酸盐(NO−2 )。因此,河流水体中氨氮升高导致了水体DO的降低,进而对水生生物的新陈代谢产生影响[27-28]。NO−3 4. 结语
1)深圳市龙华区经过数年黑臭水体治理,已实现观澜河流域(龙华区段)黑臭水体的全面消除,河流水质明显改善。观澜河流域(龙华区段)水质年际变化显著,汛期DO、氨氮含量均高于非汛期,干流DO、氨氮含量主要受汇入支流含量的影响。
2)绿色市政基础设施建设工程、多水源生态补水工程、河道生态化改造工程、河道清淤疏浚工程等工程措施的开展,支撑了观澜河流域(龙华区段)河流水质的改善和提升。
3)虽然观澜河流域(龙华区段)黑臭水体已全面消除,但是汛期雨天溢流等问题仍旧无法彻底解决,需进一步深入研究并提出对策,以保障城市河流长制久清。
-
表 1 复合式人工湿地系统设计进出水质指标
Table 1. Designed inlet and outlet water quality indexes of hybrid constructed wetland system
mg·L−1 设计水质 COD NH4+-N TN TP 设计进水 ≤50 ≤5 ≤15 ≤0.5 设计出水 ≤30 ≤1.5 消减50% ≤0.3 表 2 人工湿地各单元设计参数
Table 2. Design parameters of each unit of constructed wetland
湿地单元 面积/m2 水力停留时间/h 基质层组成 基质粒径/mm 植物名称 植物密度/(株·m−2) 注:1)睡莲覆盖度为50%~55%。 表 3 微生物样品多样性指数分析
Table 3. Diversity index analysis of microbial samples
样品名称 丰富度指数 多样性指数 覆盖率/% ACE Chao Shannon Simpson A 2 169.99 2 176.79 6.422 0.005 99.9 B 3 192.66 3 116.03 5.804 0.011 98.7 C 2 997.97 2 976.22 6.141 0.007 99.1 表 4 双向横流过滤单元湿地植物的生理指标和泌氧速率
Table 4. Physiological index and ROL of bidirectional cross flow filtration unit plants
日期 植物种类 株高/cm 地上生物量/(g·株−1) 平均根长/cm 孔隙度/% 根系泌氧率/(μmol·(d·g)−1) 2020年12月 美人蕉(Canna indica) 45 35 17.5 27.3 2.86 花叶芦竹(Arundo donax var.versicolor) 40 39 18.6 36 7.36 再力花(Thalia dealbata Fraser) 168 242 20 25.26 0.892 2021年1月 美人蕉(Canna indica) 干枯 30 17.1 24.97 1.2 花叶芦竹(Arundo donax var.versicolor) 干枯 35 17.5 32.07 5.14 再力花(Thalia dealbata Fraser) 干枯 230 21.3 23.15 0.837 -
[1] 魏俊, 赵梦飞, 刘伟荣, 等. 我国尾水型人工湿地发展现状[J]. 中国给水排水, 2019, 35(2): 29-33. [2] 王芬, 段洪利, 刘亚飞, 等. 人工湿地处理含盐富营养化水的植物根际与非根际菌群分析[J]. 环境工程学报, 2020, 14(7): 1844-1851. doi: 10.12030/j.cjee.201909029 [3] 沈耀良, 孙立柱, 王德兴, 等. 混凝沉淀工艺深度处理污水厂二级出水的混凝剂优化[J]. 中国给水排水, 2007, 23(23): 56-58. doi: 10.3321/j.issn:1000-4602.2007.23.013 [4] 薛爽, 文杨, 铁梅, 等. 强化混凝对二级处理出水中溶解性有机物特性的影响[J]. 环境科学学报, 2013, 33(8): 2199-2208. [5] 张永森, 郑彤, 孙彦龙, 等. 臭氧-活性炭组合工艺深度处理垃圾渗滤液MBR出水[J]. 环境工程学报, 2017, 11(8): 4535-4541. doi: 10.12030/j.cjee.201603256 [6] 左名景, 阮文权, 薛涛, 等. 臭氧氧化法深度处理城市污水厂生物处理出水研究[J]. 水处理技术, 2012, 38(6): 102-105. doi: 10.3969/j.issn.1000-3770.2012.06.026 [7] FERESHTEH M, MEHRDAD F, MORTEZA S, et al. Application of nanofiltration as a tertiary treatment in a polyester production industry for wastewater reuse[J]. Desalination and Water Treatment, 2016, 57(16): 37-44. [8] SARA R, MARTA R, MARIANNE K, et al. Pharmaceuticals and pesticides in reclaimed water: Efficiency assessment of a microfiltration-reverse osmosis (MF-RO) pilot plant[J]. Journal of Hazardous Materials, 2015, 282(26): 59-68. [9] JAN V. The use of hybrid constructed wetlands for wastewater treatment with special attention to nitrogen removal: A review of a recent development[J]. Water Research, 2013, 47(14): 4795-4811. doi: 10.1016/j.watres.2013.05.029 [10] 桂双林, 王顺发, 吴永明, 等. 生物滤塔-人工湿地组合工艺对农村生活污水净化效果研究[J]. 环境工程学报, 2011, 15(10): 2312-2314. [11] 林运通, 崔理华, 范远红, 等. 5种湿地沉水植物对模拟污水厂尾水的深度处理[J]. 环境工程学报, 2016, 10(12): 6914-6922. doi: 10.12030/j.cjee.201507215 [12] 张长宽, 倪其军, 杨栋, 等. 低温条件下高效复合人工湿地对尾水的净化效应[J]. 环境工程学报, 2017, 11(4): 2034-2040. doi: 10.12030/j.cjee.201510119 [13] 张玲玲, 杨永强, 张权, 等. 组合型人工湿地对二级好氧单元出水的深度处理[J]. 环境工程学报, 2019, 13(7): 1592-1601. doi: 10.12030/j.cjee.201811083 [14] VYMAZAL J. Constructed wetlands for wastewater treatment: Five decades of experience[J]. Environmental Science & Technology, 2011, 45(1): 61-69. [15] CHRISTOS S A, VASSILIOS A T. Effect of temperature, HRT, vegetation and porous media on removal efficiency of pilot-scale horizontal subsurface flow constructed wetlands[J]. Ecological Engineering, 2006, 29(2): 173-191. [16] VYMAZAL J. Removal of nutrients in various types of constructed wetlands[J]. Science of the Total Environment, 2007, 380(3): 48-65. [17] 段田莉, 成功, 郑媛媛, 等. 高效垂直流人工湿地+多级生态塘深度处理污水厂尾水[J]. 环境工程学报, 2017, 11(11): 5828-5835. doi: 10.12030/j.cjee.201608161 [18] 江林, 刘润龙, 陈培, 等. 阶段曝气和植物对人工湿地处理城镇污水厂尾水的影响[J]. 环境工程学报, 2016, 10(9): 4761-4767. doi: 10.12030/j.cjee.201504074 [19] 孙亚平, 周品成, 袁敏忠, 等. 水力负荷对改良型垂直流人工湿地降解模拟污水厂尾水效果的影响[J]. 环境工程学报, 2019, 13(11): 2629-2636. doi: 10.12030/j.cjee.201812190 [20] 王琳娜, 吴若静. 水平潜流人工湿地小试系统处理污水厂尾水试验研究[J]. 环境科学与管理, 2008, 33(2): 85-88. doi: 10.3969/j.issn.1673-1212.2008.02.022 [21] 邓欢欢, 葛利云, 顾国泉, 等. 水平潜流和组合人工湿地水处理研究进展[J]. 工业用水与废水, 2007, 38(2): 1-4. doi: 10.3969/j.issn.1009-2455.2007.02.001 [22] 杨立君. 垂直流人工湿地用于城市污水处理厂尾水深度处理[J]. 中国给水排水, 2009, 25(18): 41-43. doi: 10.3321/j.issn:1000-4602.2009.18.011 [23] 杨长明, 马锐, 山城幸, 等. 组合人工湿地对城镇污水处理厂尾水中有机物的去除特征研究[J]. 环境科学学报, 2010, 30(9): 1804-1810. [24] 王翔, 朱召军, 尹敏敏, 等. 组合人工湿地用于城市污水处理厂尾水深度处理[J]. 中国给水排水, 2020, 36(6): 97-101. [25] 高奇英, 沈文钢, 刘晓波. 高水力负荷下人工湿地处理污水厂尾水的研究[J]. 环境科学导刊, 2018, 37(6): 66-71. [26] 张燕, 周巧红, 徐栋, 等. 不同C/N下人工湿地的脱氮效果及其强化措施[J]. 环境工程学报, 2013, 7(11): 4246-4250. [27] 周新程, 彭明国, 陈晶, 等. 低温低碳源下表面流人工湿地净化污水厂尾水[J]. 中国给水排水, 2017, 33(17): 113-116. [28] 何媛媛, 吕鑑, 张涛, 等. 污水处理厂进水水质变化对污水处理效率的影响分析[J]. 北京水务, 2013(2): 29-31. doi: 10.3969/j.issn.1673-4637.2013.02.008 [29] YI C, YUE W, ZHIRU T, et al. Effects of plant biomass on bacterial community structure in constructed wetlands used for tertiary wastewater treatment[J]. Ecological Engineering, 2015, 84(3): 38-45. [30] VAN N L, JETTEN S M. Anaerobic ammonium-oxidizing bacteria: Unique microorganisms with exceptional properties[J]. Microbiology and Molecular Biology Reviews:MMBR, 2012, 76(3): 585-596. doi: 10.1128/MMBR.05025-11 [31] TRUU M, JUHANSON J. Microbial biomass, activity and community composition in constructed wetlands[J]. Science of the Total Environment, 2009, 407(13): 585-596. [32] HOEFEL D, MONIS T, GROOBY W L, et al. Profiling bacterial survival through a water treatment process and subsequent distribution system[J]. Journal of Applied Microbiology, 2005, 99(1): 175-186. doi: 10.1111/j.1365-2672.2005.02573.x [33] YOUNGGY K, BRUCE E L. Simultaneous removal of organic matter and salt ions from saline wastewater in bioelectrochemical systems[J]. Desalination, 2013, 308(21): 115-121. [34] 黄磊, 梁银坤, 梁岩, 等. 生物炭添加对湿地植物菖蒲根系通气组织和根系泌氧的影响[J]. 环境科学, 2019, 40(3): 1280-1286. [35] 刘臣. 基于季节变化与收割研究芦苇根系泌氧在湿地污染物去除中的作用[D]. 济南: 山东大学, 2014. -