-
作为水生生态系统的主要养分[1],磷(P)是引起湖泊富营养化的关键营养元素,可导致藻类过度繁殖和水质恶化[2],其触发水体富营养化的阈值浓度可低至10 μg·L−1[3]。全球约有30%~50%的水源由于淡水中含有过量溶解磷而面临富营养化问题[4]。调节总磷浓度、减少磷源输入是解决富营养化的重要途径。
传统污水除磷方法主要有生物处理、化学沉淀、离子交换和吸附[5]。其中,吸附具有易于操作、去除效率高、污泥产生少、成本低等特点,被认为是除磷的最佳选择[6]。除了使用沸石、活性炭和生物炭等吸附剂除磷,近年来,由于凹凸棒土易获得且体量大,比传统的吸附剂更环保、更具成本效益[7]。凹凸棒土(Si8O20Mg5 (OH) 2 (H2O) 4·4H2O)是一种水合Mg-Al硅酸盐矿物,具有固有通道和纳米结晶度的纤维层状结构。与其他材料相比,凹凸棒土由于具有高度多孔的微结构、阳离子交换能力强和活性表面官能团多等优势,故可将其作为潜在的除磷吸附剂应用于大规模废水治理[8]。
近年来,相关学者已经探索了对天然凹凸棒土进行改性以克服其局限性并提高吸附磷酸盐能力的方法。稀土具有较活泼的化学性质,能与周期表中许多元素反应,生成络合物,其与无机配体形成络合物的稳定性顺序由大到小为PO4>CO3>F>SO4>SCN>NO3 >Cl[9]。稀土吸附剂具有可选择性、吸附效果好、吸附容量高、易于再生等特点,且能替代贵金属,在含磷废水处理中应用前景广阔,因此,开展稀土在废水除磷方面的研究具有一定意义[10]。在过去的20 a中,由于镧(La)系吸附剂对磷酸盐具有亲和力强、吸附效果好的优点,被广泛用于废水除磷。但使用除La以外的其他稀土元素去除磷酸盐却鲜有报道,且目前大多数研究集中在对高浓度磷的去除,而对低浓度磷去除研究较少。
为此,本研究以凹凸棒土(ATP)为原料,分别使用钕(Nd)、铈(Ce)、钇(Y)、镧(La)、镨(Pr)对凹凸棒土的表面进行了改性,旨在制备出吸附效果好、选择性吸附强的环境友好型高效吸附除磷剂,以期为低浓度含磷废水的处理提供参考。
稀土改性凹凸棒土对低浓度磷的吸附性能
Performance of rare earth modified attapulgite on the adsorption of low concentration phosphorus wastewater
-
摘要: 为提高凹凸棒土对污水中低浓度磷的吸附能力,制备了稀土改性凹凸棒土(Nd-ATP、Ce-ATP、Y-ATP、La-ATP、Pr-ATP),且将其用于低浓度含磷(TP=1 mg·L−1)废水的吸附处理,比较了5种吸附剂的除磷性能、吸附动力学和等温线模型,以及改性前后的结构组成和表面基团变化。结果表明:当pH为3时,改性凹凸棒土除磷效果最好,TP去除率为84%~98%;共存
${\rm{HCO}}_3^ - $ 对吸附剂除磷有较强的抑制作用,${\rm{SO}}_4^{2 - }$ 和Cl−对TP吸附的影响几乎可以忽略;准二级动力学模型和Langmuir等温线模型能较好描述该吸附除磷过程。其中,pH、投加量、共存阴离子对Y-ATP除磷效果影响最小;Y-ATP对TP的吸附容量最大,为12.94 mg·g−1。稀土改性凹凸棒土吸附剂除磷主要遵循球内络合机理,其中吸附剂表面的羟基基团起关键作用。Abstract: In order to improve the adsorption capacity of attapulgite towards low concentration phosphorus in sewage, rare earth modified attapulgite (Nd-ATP, Ce-ATP, Y-ATP, La-ATP, Pr-ATP neodymium, cerium, yttrium, lanthanum, praseodymium) absorbents were prepared to treat low-concentration phosphorus-containing (TP=1 mg·L−1) wastewater. The phosphorus removal performance, adsorption kinetics and isotherm models of five adsorbents were compared, as well as the changes in the structure, composition and surface groups before and after modification. The results showed that at pH 3 the modified attapulgite had the best phosphorus removal effect, and the TP removal rate was 84%~98%; the coexisting${\rm{HCO}}_3^ - $ had a strong inhibitory effect on the phosphorus removal, while${\rm{SO}}_4^{2 - }$ and Cl− had almost negligible effects. The quasi-second-order kinetic model and Langmuir isotherm model could better describe the process of phosphorus removal process than other models. Among them, pH, dosage, and coexisting anions had the least influence on the phosphorus removal effect of Y-ATP yttrium modified attapulgite; Y-ATP yttrium modified attapulgite had the largest adsorption capacity for phosphorus TP, which was 12.94 mg·g−1. The phosphorus removal of rare earth modified attapulgite adsorbent mainly followed the intra-sphere complex mechanism, of which the surface hydroxyl groups on the adsorbent played a key role. -
表 1 稀土改性前后凹凸棒土主要化学组成
Table 1. Main chemical composition of attapulgite before and after rare earth modification
样品 化学组成/% ATP Nd-ATP Ce-ATP Y-ATP La-ATP Pr-ATP SiO2 47.26 45.16 44.04 44.93 45.14 45.29 CaO 15.02 14.84 14.18 15.52 14.84 14.94 MgO 13.04 13.04 13.873 12.87 12.89 13.17 Al2O3 11.06 10.75 10.316 10.54 10.71 10.73 Fe2O3 8.987 8.37 7.255 8.533 8.438 8.228 K2O 2.6 2.271 1.808 2.369 2.371 2.249 TiO2 1.45 1.35 1.09 1.37 1.34 1.34 P2O5 0.204 0.194 0.134 0.182 0.191 0.209 MnO 0.109 0.096 7 0.077 3 0.091 6 0.091 2 0.094 5 稀土氧化物 — 2.93 3.78 2.308 3.01 2.73 表 2 共存阴离子对TP去除率的影响
Table 2. The effect of coexisting anions on TP removal rate
共存阴离子 TP去除率% Nd-ATP Ce-ATP Y-ATP La-ATP Pr-ATP ${\rm{HCO}}_3^ - $ 53.92 71.15 95.46 90.6 59.22 ${\rm{SO}}_4^{2 - }$ 96.26 94.91 96.71 94.91 93.1 Cl- 96.74 98.09 98.09 98.09 97.64 ${\rm{PO}}_4^{2 - }$ 95.91 95.91 97.67 97.23 97.67 混合离子 57.51 81.29 97.29 97.13 57.51 表 3 稀土改性凹凸棒土吸附除磷动力学拟合参数
Table 3. Kinetic parameters of adsorption and removal of phosphorus by rare earth modified attapulgite
吸附剂 准一级动力学方程 准二级动力学方程 Qe/
(mg·g−1)K1/
min−1R2 Qe/
(mg·g−1)K2/
(g·(mg·h)−1)R2 Nd-ATP 2.543 0.041 0.885 2.829 0.053 0.933 8 Ce-ATP 2.541 0.050 0.888 2.799 0.066 0.933 7 Y-ATP 2.600 0.038 0.874 2.910 0.047 0.924 9 La-ATP 2.604 0.041 0.873 2.904 0.051 0.924 1 Pr-ATP 2.558 0.046 0.876 2.829 0.059 0.927 5 表 4 稀土改性凹凸棒土吸附除磷等温线拟合参数
Table 4. Fitting parameters of P adsorption isotherm by rare earth modified attapulgite
吸附剂 Langmuir模型 Freundlich模型 Qm/(mg·g−1) b R2 Kf n R2 Nd-ATP 11.95 0.261 0.991 4.550 0.261 0.875 Ce-ATP 11.32 0.271 0.995 4.164 0.271 0.884 Y-ATP 12.94 0.278 0.996 4.602 0.280 0.885 La-ATP 11.53 0.270 0.995 4.240 0.271 0.887 Pr-ATP 11.76 0.266 0.994 4.398 0.266 0.885 -
[1] WANG S, JIN X, ZHAO H, et al. Phosphorus fractions and its release in the sediments from the shallow lakes in the middle and lower reaches of Yangtze River area in China[J]. Colloids and Surfaces A:Physicochemical and Engineering Aspects, 2006, 273: 109-116. [2] YIN H, REN C, LI W. Introducing hydrate aluminum into porous thermally-treated calcium-rich attapulgite to enhance its phosphorus sorption capacity for sediment internal loading management[J]. Chemical Engineering Journal, 2018, 348: 704-712. doi: 10.1016/j.cej.2018.05.065 [3] REITZEL K, ANDERSEN F O, EGEMOSE S, et al. Phosphate adsorption by lanthanum modified bentonite clay in fresh and brackish water[J]. Water Research, 2013, 47(8): 2787-2796. doi: 10.1016/j.watres.2013.02.051 [4] YIN H, HAN M, TANG W. Phosphorus sorption and supply from eutrophic lake sediment amended with thermally-treated calcium-rich attapulgite and a safety evaluation[J]. Chemical Engineering Journal, 2016, 285: 671-678. doi: 10.1016/j.cej.2015.10.038 [5] WANG H, WANG X, MA J, et al. Removal of cadmium (II) from aqueous solution: A comparative study of raw attapulgite clay and a reusable waste-struvite/attapulgite obtained from nutrient-rich wastewater[J]. Journal of Hazardous Materials, 2017, 329: 66-76. doi: 10.1016/j.jhazmat.2017.01.025 [6] HONG S H, NDINGWAN A M, YOO S C, et al. Use of calcined sepiolite in removing phosphate from water and returning phosphate to soil as phosphorus fertilizer[J]. Journal of Environmental Management, 2020, 270: 110817. doi: 10.1016/j.jenvman.2020.110817 [7] HUANG R, LIN Q, ZHONG Q, et al. Removal of Cd(II) and Pb(II) from aqueous solution by modified attapulgite clay[J]. Arabian Journal of Chemistry, 2020, 13(4): 4994-5008. doi: 10.1016/j.arabjc.2020.01.022 [8] LI X, ZHANG X, WANG X, et al. Phytoremediation of multi-metal contaminated mine tailings with Solanum nigrum L. and biochar/attapulgite amendments[J]. Ecotoxicology and Environmental Safety, 2019, 180: 517-525. doi: 10.1016/j.ecoenv.2019.05.033 [9] 邓春玲. 稀土吸附剂废水深度脱磷[D]. 昆明: 昆明理工大学, 2002. [10] 李彬. 稀土吸附剂微污染水深度除磷研究[D]. 昆明: 昆明理工大学, 2005. [11] YIN H, YAN X, GU X. Evaluation of thermally-modified calcium-rich attapulgite as a low-cost substrate for rapid phosphorus removal in constructed wetlands[J]. Water Research, 2017, 115: 329-338. doi: 10.1016/j.watres.2017.03.014 [12] XU C, QI J, YANG W, et al. Immobilization of heavy metals in vegetable-growing soils using nano zero-valent iron modified attapulgite clay[J]. Science of the Total Environment, 2019, 686: 476-483. doi: 10.1016/j.scitotenv.2019.05.330 [13] WANG Q, WEN J, HU X, et al. Immobilization of Cr(VI) contaminated soil using green-tea impregnated attapulgite[J]. Journal of Cleaner Production, 2021, 278: 123967. doi: 10.1016/j.jclepro.2020.123967 [14] BOUDRICHE L, CALVET R, CHAMAYOU A, et al. Influence of different wet milling on the properties of an attapulgite clay, contribution of inverse gas chromatography[J]. Powder Technology, 2021, 378: 29-39. doi: 10.1016/j.powtec.2020.09.045 [15] YIN H, YANG P, KONG M, et al. Use of lanthanum/aluminum co-modified granulated attapulgite clay as a novel phosphorus (P) sorbent to immobilize P and stabilize surface sediment in shallow eutrophic lakes[J]. Chemical Engineering Journal, 2020, 385: 123395. doi: 10.1016/j.cej.2019.123395 [16] SUN P, ZHANG W, ZOU B, et al. Preparation of EDTA-modified magnetic attapulgite chitosan gel bead adsorbent for the removal of Cu(II), Pb(II), and Ni(II)[J]. International Journal of Biological Macromolecules, 2021, 182: 1138-1149. doi: 10.1016/j.ijbiomac.2021.04.132 [17] 苗琛琛, 毛林强, 陶德晶, 等. 镧改性凹凸棒土的制备及其对水中磷酸盐的吸附[J]. 环境工程学报, 2016, 10(12): 7070-7074. [18] YIN H, KONG M. Simultaneous removal of ammonium and phosphate from eutrophic waters using natural calcium-rich attapulgite-based versatile adsorbent[J]. Desalination, 2014, 351: 128-137. doi: 10.1016/j.desal.2014.07.029 [19] 刘晨, 张美一, 潘纲. 超薄水滑石纳米片除磷效果与机理[J]. 环境工程学报, 2018, 12(9): 2446-2456. [20] 杨树润, 张世熔, 冯灿, 等. 4种镧改性海藻粉末对养殖废水中磷的去除[J]. 环境工程学报, 2019, 13(10): 2357-2368. [21] WU B, WAN J, ZHANG Y, et al. Selective Phosphate Removal from Water and Wastewater using Sorption: Process Fundamentals and Removal Mechanisms[J]. Environmental Science & Technology, 2020, 54(1): 50-66. [22] 崔有为, 李杰, 杜兆富. 镧、铈改性沸石对污水除磷性能和机制的比较研究[J]. 中国稀土学报, 2016, 34(4): 461-467.