-
挥发性有机化合物(VOCs)作为PM2.5和臭氧的重要前驱体,已经对大气环境质量和人体健康造成直接和间接的危害[1-2],VOCs废气治理成为了近年来的环境热点话题之一。在VOCs废气的众多处理技术中,催化燃烧技术因处理效率高、能耗低、二次污染小而在工业上应用广泛[3]。为达到VOCs催化燃烧所需温度,工业上多采用电加热使VOCs废气达到起燃温度。由于电加热是采用热传导的加热方式,因而对大气量的VOCs废气加热时能耗巨大。另外,VOCs催化燃烧时,持续的高温环境会使催化剂活性组分烧结而影响VOCs降解效果[4]。微波加热应用于VOCs催化燃烧是一种新技术,它利用电磁波的选择性仅对催化剂进行加热,因而能耗低且催化剂受热均匀、快速[5]。而且,微波对催化剂活性组分的热点效应有利于引发VOCs的催化燃烧,同时微波的偶极极化作用还可降低VOCs的反应阈能而促进其氧化降解[6]。卜龙利等[7]、姚泽等[8]利用吸波型催化剂证实了微波催化燃烧VOCs效果优于电加热催化燃烧。
微波催化燃烧技术的关键是高效而稳定的催化剂。过渡金属氧化物催化剂种类丰富、经济性好、不易中毒,但其对于某些难降解有机物的催化活性差、低温活性以及热稳定性有待提高[9]。贵金属催化剂具有催化活性高、高温下稳定性好和适用范围广的优点,但也存在资源稀少和价格高昂的问题[10]。目前,市面上较为常见的是铜锰铈三元金属氧化物催化剂。胡旭睿[11]研究证实,铜锰铈氧化物催化剂对芳香烃类、醇类、酮类等有机物具有良好的氧化性能,但其矿化效果不佳且对芳香烃的降解效果低于醇、酮类。贵金属Pt、Pd等在低温时对芳烃类和3个碳以上的直链烷烃活化能力强[12]。已有研究证实,将贵金属与过渡金属复合可以增强催化剂活性。SHI等[13]通过还原法和离子交换法合成了Pt /Ce-USY催化剂,其对1,2-二氯乙烷的催化活性高于Pt/USY催化剂,Pt与CeO2之间的相互作用抑制了碳物质的沉积,从而增强了催化剂的耐久性。LEE等[14]将贵金属金、钯沉积在CeO2表面,证实适量Au的加入使得Pd/CeO2催化剂活性增强。CHEN等[15]合成了Pd/Fe3O4催化剂用于去除CO,当沉积适量Fe3O4时,CO氧化的起燃温度明显降低。因此,本研究在铜锰铈三元催化剂基础上复合微量贵金属Pt,以期提高催化剂对芳烃类VOCs的活化能力,进而提高总VOCs的去除效果。
本研究选取油墨印刷VOCs废气中含量最多的2种物质甲苯和乙酸乙酯作为目标污染物,以蜂窝状堇青石为载体制备Pt复合铜锰铈(CMC)负载型催化剂(Pt-CMC/堇青石),重点考察Pt复合前后催化剂对模拟VOCs废气催化燃烧效果的差异,以探究低含量贵金属添加对铜锰铈氧化物催化剂催化活性的影响程度。
Pt-CuMnCeOx/堇青石微波催化燃烧VOCs性能
Application of Pt-CuMnCeOx/Cordierite catalyst in microwave catalytic combustion of VOCs
-
摘要: 微波催化燃烧是一项新的VOCs处理技术,提升VOCs处理效率的关键在于开发催化活性更高、性能更稳定的催化剂。将贵金属Pt与铜锰铈金属氧化物复合制备了Pt-CuMnCeOx/堇青石催化剂,SEM、BET和XRD表征基础上测试催化剂对双组分VOCs-甲苯和乙酸乙酯的催化活性与稳定性。研究表明,Pt的复合提高了催化剂表面活性颗粒的分散性,增大了催化剂的比表面积和孔体积,升高了铜锰价态而提高了催化剂的低温催化活性。微波功率40 W时,Pt-CuMnCeOx/堇青石催化剂的甲苯和乙酸乙酯的降解效率高出CuMnCeOx/堇青石16%和11%;微波功率70 W时,Pt-CuMnCeOx/堇青石催化剂可完全去除甲苯和乙酸乙酯,总VOCs去除率达97%左右且活性保持稳定。本研究结果可为微波催化燃烧VOCs技术提供参考。
-
关键词:
- 微波 /
- CuMnCeOx/堇青石 /
- Pt复合 /
- 催化燃烧 /
- VOCs
Abstract: Microwave catalytic combustion is an emerging technology for VOCs treatment, and preparation of the catalyst with higher catalytic activity and stability is the key to highly efficient VOCs removal. Noble metal Pt was composited with copper-manganese-cerium oxides and loaded on the surface of honeycomb cordierite carrier to prepare a Pt-CuMnCeOx/Cordierite catalyst by incipient-wetness impregnation method. Based on SEM, BET and XRD characteristics, the catalytic activity and stability of three catalysts in microwave catalytic combustion of bi-component VOCs toluene and ethyl acetate were tested in this work. The experimental results showed that Pt composition improved the dispersion of active particles on the catalyst surface, increased specific surface area and pore volume of the catalyst and lifted valence states of copper and manganese to enhance the low temperature catalytic activity of the catalyst greatly. The removal efficiencies of toluene and ethyl acetate on the surface of Pt-CuMnCeOx/Cordierite catalyst were higher 16% and 11% than CuMnCeOx/Cordierite catalyst under 40 W of microwave power. Toluene and ethyl acetate were degraded completely by Pt-CuMnCeOx/Cordierite catalyst under 70 W of microwave power, and the removal rate of total VOCs reached 97% simultaneously. Pt-CuMnCeOx/cordierite catalyst exhibited a high catalytic activity and an excellent stability during consecutive seven times test. This study can provide a reference for microwave catalytic combustion of VOCs technology.-
Key words:
- microwave /
- CuMnCeOx/Cordierite /
- Pt composition /
- catalytic combustion /
- VOCs
-
表 1 堇青石载体和2种催化剂的比表面积、孔体积及孔径数据表
Table 1. Data table of specific surface area, pore volume and pore diameter of Cordierite and two catalysts
供试样品 比表面积/
(m2·g−1)微孔面积/
(m2·g−1)孔体积/
(cm3·g−1)总孔容/
(cm3·g−1)平均孔
径/nm堇青石 0.11 ND ND 0.30 36.79 CMC/堇青石 0.66 ND ND 0.09 41.23 Pt-CMC/堇青石 2.95 1.11 0.000 47 0.38 36.85 备注:ND为未检出。 表 2 微波催化燃烧甲苯反应动力学
Table 2. Reaction kinetics of microwave catalytic combustion of toluene
功率条件 催化剂 ln(C0/C)=kt k R2 50 W Pt-CMC/堇青石 y=0.0594x−0.0204 0.0594 0.9828 60 W CMC/堇青石 y=0.1119x−0.1398 0.1119 0.9553 60 W Pt-CMC/堇青石 y=0.129x−0.0797 0.129 0.9887 70 W CMC/堇青石 y=0.1045x−0.0428 0.1045 0.995 70 W CMC/堇青石 y=0.1299x+0.031 0.1299 0.9983 -
[1] 张新民, 薛志钢, 孙新章, 等. 中国大气挥发性有机物控制现状及对策研究[J]. 环境科学与管理, 2014, 39(1): 16-19. doi: 10.3969/j.issn.1673-1212.2014.01.004 [2] 杨栋. 长治市主城区环境空气臭氧污染较重时期VOCs污染特征分析[J]. 山西化工, 2020, 40(2): 120-122. [3] ZHU A M, ZHOU Y, WANG Y, et al. Catalytic combustion of VOCs on Pt/CuMnCe and Pt/CeY honeycomb monolithic catalysts[J]. J Rare Earth, 2018, 36(12): 1272-1277. doi: 10.1016/j.jre.2018.03.032 [4] 张钰彩, 卜龙利, 王晓晖, 等. 微波加热下苯的催化氧化性能研究[J]. 环境科学, 2012, 33(8): 2759-2765. [5] 蔡春芳. 微波加热技术在生物质能源领域的应用研究进展[J]. 精细与专用化学品, 2018, 26(7): 49-52. [6] 周德良, 刘洁. 微波加热及其量子特性[J]. 黑龙江八一农垦大学学报, 2019, 31(1): 74-77. doi: 10.3969/j.issn.1002-2090.2019.01.013 [7] 卜龙利, 张钰彩, 王晓晖, 等. 微波辅助催化氧化苯高性能催化剂实验研究[J]. 燃料化学学报, 2012, 40(7): 878-885. doi: 10.3969/j.issn.0253-2409.2012.07.018 [8] 姚泽. 微波加热α-MnO2催化去除甲苯和臭氧的研究[D]. 哈尔滨: 哈尔滨工业大学, 2016. [9] 徐少娟, 张洪祥, 林建翔, 等. VOCs催化燃烧催化剂的研究进展[J]. 广东化工, 2020, 47(22): 96-97. doi: 10.3969/j.issn.1007-1865.2020.22.040 [10] 曾俊淋, 刘霄龙, 王健, 等. 贵金属催化剂对VOCs催化氧化的研究进展[J]. 环境工程, 2015, 33(11): 72-77. [11] 胡旭睿. 微波催化燃烧 VOCs 催化剂制备及性能研究[D]. 石家庄: 河北科技大学, 2016. [12] 左满宏, 吕宏安. 催化燃烧与催化剂材料在VOCs治理方面研究进展[J]. 天津化工, 2007(4): 8-10. doi: 10.3969/j.issn.1008-1267.2007.04.003 [13] SHI Y J, LI Z M, WANG J L, et al. Synergistic effect of Pt/Ce and USY zeolite in Pt-based catalysts with high activity for VOCs degradation[J]. Applied Catalysis B:Environmental, 2021: 286. [14] LEE D S, CHEN Y W. The mutual promotional effect of Au–Pd/CeO2 bimetallic catalysts on destruction of toluene[J]. Journal of Taiwan Institute of Chemical Engineers, 2013, 44(1): 40-44. doi: 10.1016/j.jtice.2012.08.002 [15] CHEN S T, SI R, TAYLOR E, et al. Synthesis of Pd/Fe3O4 hybrid nanocatalysts with controllable interface and enhanced catalytic activities for CO oxidation[J]. Journal of Physical Chemistry C, 2012, 116(23): 12969-12976. [16] 贺利娜, 卜龙利, 都琳, 等. 微波催化燃烧气态甲苯特性及床层温度分布[J]. 中国环境科学, 2019, 39(8): 3242-3248. doi: 10.3969/j.issn.1000-6923.2019.08.014 [17] 刘艳春, 王兆春, 曾令可, 等. 堇青石蜂窝陶瓷的表面改性[J]. 分析测试学报, 2014, 33(9): 1044-1049. doi: 10.3969/j.issn.1004-4957.2014.09.010 [18] 余鸿敏. Cu-Mn-Ce复合氧化物催化剂掺杂改性和热稳定性研究[D]. 杭州: 浙江工业大学. 2011. [19] 刘超, 李彦秋, 柳璐, 等. VOCs催化燃烧的锰铈催化剂研究进展[J]. 辽宁化工, 2020, 49(8): 968-970. doi: 10.3969/j.issn.1004-0935.2020.08.020 [20] 刘海楠. 二氧化钛复合型催化剂制备及其微波辅助催化氧化甲苯性能试验研究[D]. 西安: 西安建筑科技大学, 2013. [21] BO L L, ZHANG Y B, QUAN X, et al. Microwave assisted catalytic oxidation of p-nitrophenol in aqueous solution using carbon-supported copper catalyst[J]. Journal of Hazardous Materials, 2008, 153(3): 1201-1206. doi: 10.1016/j.jhazmat.2007.09.082 [22] ADITI R G, JEANETTE S R, FIGUEIREDO J L, et al. Manganese oxide OMS-2 as an effective catalyst for total oxidation of ethyl acetate[J]. Applied Catalysis B:Environmental, 2007, 72(1-2): 129-135. doi: 10.1016/j.apcatb.2006.10.017 [23] GOTZ V, MURTAZA Z, LANNY D S. Ignition in alkane oxidation on nobel metal catalysts[J]. Catal Today, 1999, 47(1): 219-228. [24] 卢晗锋. 低温催化燃烧VOCs的复合氧化物催化剂活性、稳定性及整体化研究[D]. 杭州: 浙江工业大学, 2010.