-
甲醛的传统处理方法主要有吸附法[1]、植物净化法、等离子体技术、负离子技术和热催化氧化等,这些方法在处理室内甲醛时效果不佳。光催化氧化[2-4]和室温下催化氧化[5-6]作为新型催化氧化技术,是应用前景广阔的室内空气净化方法。尤其是光催化剂能够在室温下利用光能进行甲醛气体降解,对低浓度污染物去除效率也很高,并且能够长期起效,成为近年来的研究热点[7-9]。然而,由于室内的光线为可见光,光的强度也往往不高,单组分光催化剂在此条件下催化性能较低,因此,需要开发可见光响应型复合光催化剂,才能高效降解室内甲醛气体。
BiOBr是一种可见光催化剂[10],与其它材料复合能够有效提高其催化性能[11-13]。还原氧化石墨烯(RGO)具有优良的导电性和巨大的比表面积,BiOBr/RGO复合材料在可见光下具有很强的光催化活性,就是源于BiOBr的光生电子可以迅速迁移到RGO表面,从而有效提高了光生载流子的分离效率[14];而且,RGO对污染物有一定的吸附富集作用,这也对光催化剂的性能提高很有利[15]。应用光催化剂和多孔材料构建的复合催化剂具有很高的光催化降解性能,原因是多孔材料具有很大的比表面积、大量的孔隙、良好的分散性和很强的吸附性,可以吸附富集低浓度污染物,富集的污染物分子可以通过二者之间的界面从吸附剂向光催化剂转移[16]。硅藻土(diatomite,DT)是制备复合光催化剂的一种良好的多孔材料,它的多孔形态和表面羟基使其能够吸附富集空气或水中的污染物分子,提高光催化剂的性能[17]。基于吸附富集-光催化协同降解低浓度气态甲醛这一思路,使用BiOBr、RGO和硅藻土构建三元复合催化剂,会产生更好的协同作用效果。
本研究使用溶剂热法制备复合光催化剂BiOBr/RGO/DT,并对催化剂的形貌、组成和光吸收性能等进行详细表征。筛选出复合催化剂中硅藻土和BiOBr的最佳比例,并研究复合催化剂降解气态甲醛的机理。本研究可为室内气态甲醛和其他挥发性有机污染物的净化提供参考。
BiOBr/RGO/硅藻土复合催化剂的制备及其在可见光条件下催化降解甲醛气体
Fabrication of BiOBr/RGO/diatomite and its photocatalytic degradation performance of formaldehyde gas under visible light
-
摘要: 使用溶剂热法成功地制备了由BiOBr、还原氧化石墨烯(RGO)和硅藻土组成的三元复合光催化剂,应用XRD、SEM、XPS 、UV–Vis、BET和ESR等方法对催化剂进行了表征,并研究了其在可见下光催化降解甲醛气体的性能和催化机理。结果表明,硅藻土和BiOBr的质量比为1.5时,所制得的复合光催化剂对甲醛气体的光催化降解效率最高,3 h可达89.6%,其应用的最适宜空气相对湿度为45%。经过4个循环的重复使用后,复合光催化剂的催化性能衰减很小。复合光催化剂降解甲醛气体的主要活性物种为羟基自由基和光生空穴,其高催化性能主要得益于硅藻土吸附富集了低浓度甲醛气体以及RGO增加了光生载流子的分离效率。本研究结果可为开发可见下光催化降解甲醛气体工艺开发提供参考。Abstract: A photocatalyst composed of BiOBr, reduced graphene oxide (RGO) and diatomite was successfully prepared by solvothermal method, the composite was characterized by XRD, SEM, XPS, UV-Vis, BET and ESR. The performance and catalytic mechanism of its catalytic degradation of formaldehyde gas under visible light were also studied. When the mass ratio of diatomite and BiOBr was 1.5, the prepared composite photocatalyst had the highest photocatalytic degradation efficiency for formaldehyde gas, which can reach 89.6% in 3 hours, and the most suitable air relative humidity for its application was 45%. After 4 cycles of repeated use, the photocatalytic performance of composite photocatalyst decayed very little. The main active species of the composite photocatalyst to degrade formaldehyde were hydroxyl radicals and photo-generated holes. The high photocatalytic performance of the composite photocatalyst was due to the adsorption and enrichment of low-concentration gaseous formaldehyde by diatomite, and the RGO increased the separation efficiency of photo-generated carriers of the photocatalyst. The results of this study can provide a reference for the photocatalytic degradation of formaldehyde gas under visible light.
-
Key words:
- photocatalysis /
- degradation /
- formaldehyde gas /
- composite photocatalyst /
- BiOBr /
- diatomite.
-
-
[1] 罗瑞, 陈旺, 张进, 等. 碱处理和掺氮耦合改性对活性炭纤维吸附甲醛性能的影响[J]. 环境工程学报, 2018, 12(10): 2791-2796. doi: 10.12030/j.cjee.201804158 [2] LIU R F, LI W B, PENG A Y. A facile preparation of TiO2/ACF with C-Ti bond and abundant hydroxyls and its enhanced photocatalytic activity for formaldehyde removal[J]. Applied Surface Science, 2018, 427: 608-616. doi: 10.1016/j.apsusc.2017.07.209 [3] LIU H X, WANG M, ZHANG X Q, et al. High efficient photocatalytic hydrogen evolution from formaldehyde over sensitized Ag@Ag-Pd alloy catalyst under visible light irradiation[J]. Applied Catalysis B-Environmental, 2018, 237: 563-573. doi: 10.1016/j.apcatb.2018.06.028 [4] LI J, ZHAO W H, WANG J, et al. Noble metal-free modified ultrathin carbon nitride with promoted molecular oxygen activation for photocatalytic formaldehyde oxidization and DFT study[J]. Applied Surface Science, 2018, 458: 59-69. doi: 10.1016/j.apsusc.2018.07.015 [5] ZHANG S, ZHUO Y, EZUGWU C I, et al. Synergetic molecular oxygen activation and catalytic oxidation of formaldehyde over defective MIL-88B(Fe) nanorods at room temperature[J]. Environmental Science & Technology, 2021, 55(12): 8341-8350. [6] LI S, EZUGWU C I, ZHANG S, et al. Co-doped MgAl-LDHs nanosheets supported Au nanoparticles for complete catalytic oxidation of HCHO at room temperature[J]. Applied Surface Science, 2019, 487: 260-271. doi: 10.1016/j.apsusc.2019.05.083 [7] YAO C K, YUAN A L, ZHANG H H, et al. Facile surface modification of textiles with photocatalytic carbon nitride nanosheets and the excellent performance for self-cleaning and degradation of gaseous formaldehyde[J]. Journal of Colloid and Interface Science, 2019, 533: 144-153. doi: 10.1016/j.jcis.2018.08.058 [8] SONG S Q, LU C H, WU X, et al. Strong base g-C3N4 with perfect structure for photocatalytically eliminating formaldehyde under visible-light irradiation[J]. Applied Catalysis B-Environmental, 2018, 227: 145-152. doi: 10.1016/j.apcatb.2018.01.014 [9] 刘菊荣, 苏晨光, 董雅鑫, 等. Pd-Na/Al2O3催化剂的表征及室温下催化氧化甲醛的性能[J]. 环境工程学报, 2020, 14(8): 2203-2210. [10] YANG Y, ZHANG C, LAI C, et al. BiOX (X = Cl, Br, I) photocatalytic nanomaterials: Applications for fuels and environmental management[J]. Advances in Colloid and Interface Science, 2018, 254: 76-93. doi: 10.1016/j.cis.2018.03.004 [11] ZOU Q, ZHANG Z P, LI H F, et al. Synergistic removal of organic pollutant and metal ions in photocatalysis-membrane distillation system[J]. Applied Catalysis B-Environmental, 2020, 264: 118463. doi: 10.1016/j.apcatb.2019.118463 [12] LI X B, XIONG J, GAO X M, et al. Novel BP/BiOBr S-scheme nano-heterojunction for enhanced visible-light photocatalytic tetracycline removal and oxygen evolution activity[J]. Journal of Hazardous Materials, 2020, 387: 121690. doi: 10.1016/j.jhazmat.2019.121690 [13] JU B Q, YANG F, HUANG K, et al. Fabrication, characterization and photocatalytic mechanism of a novel Z-scheme BiOBr/Ag3PO4@rGO composite for enhanced visible light photocatalytic degradation[J]. Journal of Alloys and Compounds, 2020, 815: 151886. doi: 10.1016/j.jallcom.2019.151886 [14] YU X, SHI J J, FENG L J, et al. A three-dimensional BiOBr/RGO heterostructural aerogel with enhanced and selective photocatalytic properties under visible light[J]. Applied Surface Science, 2017, 396: 1775-1782. doi: 10.1016/j.apsusc.2016.11.219 [15] ZHU Z H, GUO F, XU Z H, et al. Photocatalytic degradation of an organophosphorus pesticide using a ZnO/rGO composite[J]. RSC Advances, 2020, 10(20): 11929-11938. doi: 10.1039/D0RA01741H [16] LIU S H, LIN W X. A simple method to prepare g-C3N4-TiO2/waste zeolites as visible-light responsive photocatalytic coatings for degradation of indoor formaldehyde[J]. Journal of Hazardous Materials, 2019, 368: 468-476. doi: 10.1016/j.jhazmat.2019.01.082 [17] ZHANG G X, SUN Z M, DUAN Y W, et al. Synthesis of nano-TiO2/diatomite composite and its photocatalytic degradation of gaseous formaldehyde[J]. Applied Surface Science, 2017, 412: 105-112. doi: 10.1016/j.apsusc.2017.03.198 [18] ALLAGUI L, B CHOUCHENE, T GRIES, et al. Core/shell rGO/BiOBr particles with visible photocatalytic activity towards water pollutants[J]. Applied Surface Science, 2019, 490: 580-591. doi: 10.1016/j.apsusc.2019.06.091 [19] XU L C, SUN W, ZHANG L, et al. Facile synthesis of alpha-Fe2O3/diatomite composite for visible light assisted degradation of Rhodamine 6G in aqueous solution[J]. Journal of Materials Science-Materials in Electronics, 2017, 28(6): 4661-4668. doi: 10.1007/s10854-016-6105-x [20] CHENG H, HUANG B, WANG Z, et al. One-pot miniemulsion-mediated route to BiOBr hollow microspheres with highly efficient photocatalytic activity[J]. Chemistry-a European Journal, 2011, 17(29): 8039-8043. doi: 10.1002/chem.201100564 [21] XU F Y, ZHANG L Y, CHENG B, et al. Direct Z-Scheme TiO2/NiS Core-Shell Hybrid Nanofibers with Enhanced Photocatalytic H2-Production Activity[J]. ACS Sustainable Chemistry & Engineering, 2018, 6(9): 12291-12298. [22] ZOU X J, YUAN C Y, DONG Y Y, et al. Lanthanum orthovanadate/bismuth oxybromide heterojunction for enhanced photocatalytic air purification and mechanism exploration[J]. Chemical Engineering Journal, 2020, 379: 122380. doi: 10.1016/j.cej.2019.122380 [23] CHENG L, TIAN Y L, ZHANG J D. Construction of p-n heterojunction film of Cu2O/alpha-Fe2O3 for efficiently photoelectrocatalytic degradation of oxytetracycline[J]. Journal of Colloid and Interface Science, 2018, 526: 470-479. doi: 10.1016/j.jcis.2018.04.106 [24] LI X, YU J, LOW J, et al. Engineering heterogeneous semiconductors for solar water splitting[J]. Journal of Materials Chemistry A, 2015, 3(6): 2485-2534. doi: 10.1039/C4TA04461D [25] QIAO X Q, ZHANG Z W, LI Q H, et al. In situ synthesis of n–n Bi2MoO6 & Bi2S3 heterojunctions for highly efficient photocatalytic removal of Cr(VI)[J]. Journal of Materials Chemistry A, 2018, 6(45): 22580-22589. doi: 10.1039/C8TA08294D [26] THOMMES M, K KANEKO, A V NEIMARK, et al. Physisorption of gases, with special reference to the evaluation of surface area and pore size distribution[J]. Pure and Applied Chemistry, 2015, 87(9-10): 1051-1069. doi: 10.1515/pac-2014-1117 [27] LI W J, DU D D, YAN T J, et al. Relationship between surface hydroxyl groups and liquid-phase photocatalytic activity of titanium dioxide[J]. Journal of Colloid and Interface Science, 2015, 444: 42-48. doi: 10.1016/j.jcis.2014.12.052 [28] SHI Y Y, QIAO Z W, LIU Z L, et al. Cerium doped Pt/TiO2 for catalytic oxidation of low concentration formaldehyde at room temperature[J]. Catalysis Letters, 2019, 149(5): 1319-1325. doi: 10.1007/s10562-019-02684-z [29] ZHU M P, Y MUHAMMAD, HU P, et al. Enhanced interfacial contact of dopamine bridged melamine-graphene/TiO2 nano-capsules for efficient photocatalytic degradation of gaseous formaldehyde[J]. Applied Catalysis B-Environmental, 2018, 232: 182-193. doi: 10.1016/j.apcatb.2018.03.061 [30] SUN D, LE Y, JIANG C J, et al. Ultrathin Bi2WO6 nanosheet decorated with Pt nanoparticles for efficient formaldehyde removal at room temperature[J]. Applied Surface Science, 2018, 441: 429-437. doi: 10.1016/j.apsusc.2018.02.001 [31] LING Y L, DAI Y Z, ZHOU J H. Fabrication and high photoelectrocatalytic activity of scaly BiOBr nanosheet arrays[J]. Journal of Colloid and Interface Science, 2020, 578: 326-337. doi: 10.1016/j.jcis.2020.05.111 [32] WANG P, WANG J, WANG X F, et al. One-step synthesis of easy-recycling TiO2-rGO nanocomposite photocatalysts with enhanced photocatalytic activity[J]. Applied Catalysis B-Environmental, 2013, 132: 452-459.