Processing math: 100%

针对室内弱气流环境中气体污染源的多机器人三维溯源

鲍高贵, 蔡浩, 张博远, 姜建中, 李斐, 金晓公. 针对室内弱气流环境中气体污染源的多机器人三维溯源[J]. 环境工程学报, 2021, 15(9): 3105-3115. doi: 10.12030/j.cjee.202105138
引用本文: 鲍高贵, 蔡浩, 张博远, 姜建中, 李斐, 金晓公. 针对室内弱气流环境中气体污染源的多机器人三维溯源[J]. 环境工程学报, 2021, 15(9): 3105-3115. doi: 10.12030/j.cjee.202105138
BAO Gaogui, CAI Hao, ZHANG Boyuan, JIANG Jianzhong, LI Fei, JING Xiaogong. Experimental research on multi robot three-dimensional source localization of gas pollution sources in indoor weak airflow environment[J]. Chinese Journal of Environmental Engineering, 2021, 15(9): 3105-3115. doi: 10.12030/j.cjee.202105138
Citation: BAO Gaogui, CAI Hao, ZHANG Boyuan, JIANG Jianzhong, LI Fei, JING Xiaogong. Experimental research on multi robot three-dimensional source localization of gas pollution sources in indoor weak airflow environment[J]. Chinese Journal of Environmental Engineering, 2021, 15(9): 3105-3115. doi: 10.12030/j.cjee.202105138

针对室内弱气流环境中气体污染源的多机器人三维溯源

    作者简介: 鲍高贵(1998—),男,硕士研究生。研究方向:室内环境污染传播和污染源控制。baogaogui@njtech.edu.cn
    通讯作者: 蔡浩(1976—),男,博士,教授。研究方向:室内环境污染传播和污染源控制。caihao@njtech.edu.cn
  • 基金项目:
    国家自然科学基金面上项目(51478468);国家重点基础研究发展计划(2015CB058003)
  • 中图分类号: TU831

Experimental research on multi robot three-dimensional source localization of gas pollution sources in indoor weak airflow environment

    Corresponding author: CAI Hao, caihao@njtech.edu.cn
  • 摘要: 室内弱气流环境通常指没有通风或通风不良的室内环境。现有针对室内弱气流环境的机器人源定位的实验研究均为单机器人二维溯源。单机器人二维溯源不仅成功率和效率较低,而且可能无法应对现实应用中源高度未知的场景。针对上述局限,开发了由3台机器人组成的多机器人三维溯源系统,每台机器人的传感器均可在0.5~1.5 m高度内受控移动,并基于粒子群算法提出了1种三维溯源方法(SPSO方法)。在某实训中心共开展了60组源定位实验,机器人的活动范围是7.65 m×4.1 m,二维溯源时传感器的高度为1.05 m。当源高度为1.05 m和0.75 m时,三维溯源的成功率分别为60%(9组/15组)和53.3%(8组/15组),平均定位步数分别为30步和32.8步;二维溯源的成功率分别为80%(12组/15组)和26.7%(4组/15组),平均定位步数分别为16步和42步。结果表明:在室内弱气流环境下,SPSO方法对不同源高度下的三维溯源具有良好的适应性,能够应用于源高度未知的场景,但其成功率有待提高;SPSO方法用于二维溯源能适用于源高度已知的场景,但并不适用于源高度未知的场景。
  • 由于矿山开采、金属冶炼[1]、不合格农药使用等人类生产活动而导致大量含有重金属的废水进入自然环境,已造成严重的土壤和地下水污染[2]。根据2014年原环境保护部与原国土资源部联合发布的全国土壤污染调查公报,我国污水灌溉区超标点位占26.4%,重金属元素镉(Cd)的超标率位列第一。而且,Cd具有不能被分解或降解的特性,对环境中的生物体表现不同程度的毒性,会通过食物链进行传递,严重威胁人类身体健康[3]

    近年来,已有多种物理和化学技术应用于水体中Cd(Ⅱ)的污染修复,其中包括化学沉淀、离子交换、膜分离和吸附[4]。在这些方法中,吸附方法因其能高效固定水体中的重金属且操作简单而被广泛应用。目前,已有多种吸附材料已经被用于水体中Cd(Ⅱ)的污染修复,包括活性炭、沸石、生物炭等[5]。有研究表明,生物炭因其具有高比表面积、高阳离子交换容量(CEC)、丰富的含氧官能团和高矿物质含量,能够将Cd(Ⅱ)吸附在其表面,成为Cd(Ⅱ)污染修复应用中的有效吸附剂[6]。HAN等利用生物炭吸附水体Cd(Ⅱ),其最大吸附量为74.04 mg·g−1[7]。然而,传统生物炭存在对Cd(Ⅱ)的吸附效果不理想,难以分离和回收重金属资源,并且容易引起二次污染等问题[8],因而限制了其在水污染修复中的应用。有研究表明,铁改性生物炭不仅可以增强Cd(Ⅱ)的吸附能力,而且可磁性回收[9]。纳米零价铁(nZVI)因其粒径小、表面积大、活性强,在反应过程中产生的铁氧化物能够高效吸附Cd(Ⅱ)[10],被广泛应用于生物炭改性吸附剂。然而,之前研究中通过化学还原方法制备的nZVI改性生物炭存在易氧化和抗干扰性不足,还原剂成本高等问题,故难以广泛应用。因此,如何研发出既能高效吸附Cd(Ⅱ),同时抗干扰能力强,且可以回收的铁炭复合材料是当前Cd(Ⅱ)污染修复的关键和难点。

    综上所述,本研究使用废弃木屑生物质和铁盐为原料,使用碳热厌氧还原方法制备出一种新型多孔生物质铁炭基功能材料,并采用多种固相技术对材料的组成、结构和性质进行了表征和分析;研究了材料对水体Cd(Ⅱ)的吸附效果及其构效关系,考察了pH和干扰离子等对Cd(Ⅱ)吸附的影响;揭示了新型多孔生物质铁炭基功能材料对Cd(Ⅱ)的固定机制。

    氢氧化钠、无水亚硫酸钠、氯化镉、乙醇、30%过氧化氢等化学试剂均为分析纯(广州化学试剂厂),九水硝酸铁(分析纯)购自上海阿拉丁生化科技有限公司(中国上海)。所有实验均使用超纯水(18 MΩ·cm−1)。

    将废弃的球状天然毫米木球浸泡在NaOH和Na2SO3的混合溶液中,超声30 min后转移到反应釜中,并在100 ℃中反应10 h。反应后将木球取出,用超纯水冲洗,然后转移到反应釜中并加入H2O2,加热至100 ℃,继续保持6 h,反应后冷冻干燥,所得生物质简称为MC。将MC浸泡在Fe(NO3)3·9H2O溶液中,持续振荡10 h,使得Fe3+充分吸附在MC上。最后置于氮气保护的真空管式炉中,分别在热解温度为400、600、800 ℃条件下保持1 h,升温速率为10 ℃·min−1。制备出新型多孔生物质铁炭基功能材料,分别简称为MCFe-400、MCFe-600、MCFe-800。其中,将MC置于氮气保护的真空管式炉中在热解温度为800 ℃,其他条件与制备无铁负载的生物炭材料(BC)相同。

    扫描电子显微镜(SU8220,HIT ACHI,日本)用于分析MCFe的形貌。比表面积和孔隙分析仪(Tristar II 3020 M,Micromeritics,美国)用于分析MCFe的比表面积和孔容。此外,使用Smartlab X射线衍射仪在为10~90°(9 kW)内使用Cu靶测量反应前后样品的X射线衍射。X射线光电子能谱(ESCALAB 250Xi,Thermo Fischer,美国)用于对反应前后MCFe表面元素组成和价态进行表征。振动样品磁强计仪(PPMS-9,Quantum Design,美国)用于表征MCFe的磁滞回线。

    使用不同热解温度制备的MCFe和生物炭(MCFe-400、MCFe-600、MCFe-800、BC)进行动力学实验,以研究材料对水体Cd(Ⅱ)的吸附性能。实验材料的投加量为0.8 g·L−1;Cd(Ⅱ)的初始质量浓度为10 mg·L−1;反应体系为40 mL。所有批次实验均在50 mL离心管中进行(200 r·min−1,(25±1) ℃)。反应一段时间(0、5、15、30、60、90、120、240、360 min)后,取反应混合液过0.22 μm的滤膜,用于Cd(Ⅱ)质量浓度的测定。所有实验均设置3组平行。

    为探究MCFe对Cd(Ⅱ)的吸附行为,采用伪二级动力学模型(式(1))对实验数据进行拟合。采用Langmuir(式(2))和Freundlich(式(4))模型对实验结果进行拟合[11]

    tqt=1k2q2e+1qet (1)

    式中:qtqe分别是在平衡和t时刻的吸附量,mg·g−1k2是吸附速率常数,g·(mg·min)−1

    qe=KLQmCe1+KLCe (2)
    qe=KFCne (3)

    式中:qe为吸附达到平衡时的吸附量,mg·g−1Qm为最大吸附量,mg·g−1Ce为平衡时溶液中污染物的质量浓度,mg·L−1KL为Langmuir模型中结合位点的附着性相关吸附平衡常数,L·mg−1KF为Freundlich吸附平衡常数;n为非均质性因子。

    本研究考察了pH和共存的阳离子或阴离子对吸附效果的影响。实验的初始条件同上。使用HCl (0.1 mol·L−1)和NaOH (0.1 mol·L−1)将水溶液的初始pH调至4、6、7、9,反应6 h后测定反应体系中Cd(Ⅱ)的质量浓度。此外,磷酸根(PO43-)、硫酸根(SO42-)、碳酸氢根(CO32-)、硝酸根(NO3)、钙离子(Ca2+)和镁离子(Mg2+)为水体终常见的阴阳离子,研究其对MCFe吸附效果的影响。

    研究MCFe-800对实际水体中Cd(Ⅱ)的吸附效果。选用湖泊水、农田灌溉水和河水配制初始质量浓度为10 mg·L−1的Cd(Ⅱ)溶液,用于循环吸附实验,其他实验条件同上。反应1 h后,将MCFe-800从溶液中分离出来,加入准备好的40 mL溶液中,重复4次。在带有恒温水浴夹套的层析柱(长100 mm,直径10 mm)中进行实验。每根柱子填满MCFe-800。将含有1 000 µg·L−1和2 000 µg·L−1 Cd(Ⅱ)的农田灌溉水(pH=7.15±0.2)由蠕动泵(LongerPump,中国)以2 mL·min−1的恒定流速自下而上模式连续送入层析柱,空床接触时间(EBCT)为4 min。在预设时间收集流出溶液样品,并分析Cd(Ⅱ)的质量浓度以确定吸附效率。

    采用电感耦合等离子体发射光谱仪(ICP-OES)测定Cd(Ⅱ)的质量浓度。将材料分散到不同pH的溶液中,超声至充分分散的悬浊液,使用Zeta电位仪测定材料表面在不同pH条件下的电位。将不同材料负载在工作电极上,然后浸入0.1 mol·L−1 KCl溶液中在CHI-920d电化学工作站上进行腐蚀电流测定。

    MCFe-(400~800)材料的SEM表征结果如图1所示。可见,MCFe-400材料碳表面较为光滑且出现很多小颗粒。随着热解温度升高到600 ℃和800 ℃,由图1(b)、图1(c)可以观察到,在生物炭表面上承载着较为均匀分散的球形颗粒,且在MCFe-800表面出现褶皱,该褶皱结构可以增大生物炭比表面积[12]。此外,通过XRD分析了MCFe的晶型矿物组成(图1(d))。结果表明,MCFe-400无明显的晶型峰生成,而随着热解温度的升高,MCFe-600和MCFe-800在2θ为44.7°和82.3°出现了明显的特征峰,与零价铁(Fe0)的标准卡片(PDF#06-0696)一致。这表明材料表面生成的球形颗粒为nZVI,即MCFe复合材料成功制备。此外,MCFe-800在26.4°出现石墨的晶型峰,而且,由图1(d)还可以看到Fe3C的特征峰,与其标准卡片(PDF#35-0772)一致[13]。复合材料的氮吸附-脱附等温线如图1(e)和表1所示。可见,MCFe-800的比表面积为209.286 m2·g−1,明显大于MCFe-600和MCFe-400。随着热解温度的升高,材料孔容由0.010 cm3·g−1增加到0.216 cm3·g−1,表明热解温度升高可使材料形成多孔结构,同时也增加了材料的比表面积[14-15]。因而,MCFe-800表现出最大的比表面积和多孔结构。图1(f)显示了MCFe材料的磁性。磁滞回线表明所制备的材料均具有磁性。MCFe-400、MCFe-600和MCFe-800的饱和磁化强度值分别为8.22、27.35和60.38 emu·g−1。这表明热解温度为800 ℃时制备的材料磁性最大,可以更容易实现材料的固液分离[16]

    图 1  MCFe-400、MCFe-600和MCFe-800的SEM、XRD、BET、孔径及VSM分析
    Figure 1.  SEM, XRD, BET, Pore Size and VSM Analysis of MCFe-400, MCFe-600 and MCFe-800
    表 1  MCFe的结构性能
    Table 1.  Structural properties of MCFe
    吸附材料比表面积/(m2·g−1)孔容/(cm3·g−1)孔径/(nm)
    MCFe-4005.380.0114.01
    MCFe-600166.770.113.63
    MCFe-800209.290.224.12
     | Show Table
    DownLoad: CSV

    通过动力学实验研究了不同材料对Cd(Ⅱ)的吸附效果。如图2(a)所示,BC、MCFe-400和MCFe-600在反应360 min对Cd(Ⅱ)的去除率分别为4.9%、8.3%和12.8%。这表明BC、MCFe-400和MCFe-600对Cd(Ⅱ)的吸附效果较低。而MCFe-800加入到反应体系中后,Cd(Ⅱ)的质量浓度迅速降低,在120 min后逐渐趋于平衡,反应结束时MCFe-800对Cd(Ⅱ)的去除率为85.5%。反应后,不同材料对Cd(Ⅱ)去除率从高到低依次为MCFe-800>MCFe-600>MCFe-400>BC。这主要是因为MCFe-800具有更大的比表面积,能提供更多的镉吸附位点[17],而且随着热解温度的升高,材料表面生成更多的纳米零价铁颗粒,有利于Cd(Ⅱ)的吸附。同时,MCFe-(400~800)对Cd(Ⅱ)吸附动力学数据能够较好地拟合伪二级动力学模型(R2>0.98)。这表明MCFe-(400~800)对Cd(Ⅱ)的吸附主要以化学吸附为主[18]。动力学实验结果表明,MCFe-800对Cd(Ⅱ)的吸附效果最佳。

    图 2  MCFe-(400~800)和BC对Cd(Ⅱ)吸附动力学及MCFe-800的吸附等温线拟合
    Figure 2.  Adsorption kinetics of Cd(Ⅱ) by MCFe-(400~800) and BC and adsorption isotherm fitting of MCFe-800

    MCFe-800对Cd(Ⅱ)的吸附等温线结果如图2(b)所示。采用Langmuir和Freundlich等温吸附模型分别拟合MCFe-800对溶液Cd(Ⅱ)的吸附过程,其等温吸附的拟合结果如表2所示。MCFe-800的Langmuir和Freundlich等温吸附模型的R2分别为0.99和0.91,可见,Langmuir模型更适合描述MCFe-800对Cd(Ⅱ)的等温吸附过程。这表明MCFe-800对Cd(Ⅱ)吸附过程中单层吸附占主导作用[19]。此外,考虑到单独的BC对镉的去除率(4.9%)较低,根据Langmuir模型,MCFe-800对Cd(Ⅱ)的最大吸附量归一化到Fe为463.84 mg·g−1。基于上述结果,选取MCFe-800进行后续实验。

    表 2  吸附等温模型和动力学参数
    Table 2.  Adsorption isotherm model and kinetic parameters
    材料Langmuir模型伪二级动力学拟合
    Qm/(mg·g−1)KL/(L·mg−1)R2k2/(g·(mg·min)−1)R2
    MCFe-4000.0310.98
    MCFe-6000.0570.99
    MCFe-800(pH=4)0.0020.95
    MCFe-800(pH=6)463.840.050.990.0040.99
    MCFe-800(pH=7)0.0020.95
    MCFe-800(pH=9)0.0020.95
     | Show Table
    DownLoad: CSV

    溶液的pH不仅会影响吸附剂表面的物理化学性质,还会影响水溶液中Cd(Ⅱ)的赋存形态[20]。因此,考察了初始pH对MCFe-800吸附Cd(Ⅱ)的影响,结果如图3(a)所示。在不同pH条件下,反应开始时溶液中Cd(Ⅱ)的质量浓度迅速下降,120 min后溶液中Cd(Ⅱ)的质量浓度逐渐趋于平衡。随着初始pH由4增加到6,Cd(Ⅱ)去除率由53.04%升高到85.48%。当pH达到9时,Cd(Ⅱ)的去除率明显下降,表明溶液pH为6时对Cd(Ⅱ)的去除率最大。这主要是因为:在酸性条件下(pH<5),铁氧化物表面主要带正电荷,不利于阳离子镉与材料表面发生静电吸附[21];同时质子也会与Cd(Ⅱ)竞争吸附位点,导致对镉的吸附能力下降。pH的升高会导致反应生成的铁氧化物表面向带负电转化,Cd(Ⅱ)与吸附剂表面之间会发生静电结合,从而导致吸附量的增加[22]。然而,当pH偏碱性时不利于nZVI的腐蚀,反应体系中生成铁氧化物减少,抑制了Cd(Ⅱ)的与铁氧化物的共沉淀和表面络合等吸附反应[23-24],并且当反应体系pH为7~9时,溶液中Cd(Ⅱ)还未开始沉淀[25]。因此,本研究中pH升高可抑制MCFe-800中的nZVI的腐蚀,从而降低MCFe-800对Cd(Ⅱ)的去除率。Cd(Ⅱ)吸附动力学数据符合伪二级动力学模型(R2>0.95),二级动力学常数显示pH为6的反应速率为0.004 g·(mg·min)−1,大于pH为4、7和9的反应速率。因此,偏中性条件下MCFe-800对Cd(Ⅱ)吸附效果最佳。

    图 3  不同pH和共存离子条件下MCFe-800对Cd(Ⅱ)的吸附效果影响
    Figure 3.  Effects of pH and coexisting ions on Cd(Ⅱ) removal by MCFe-800

    常见共存阳离子和阴离子对Cd(Ⅱ)吸附的影响如图3(b)所示。结果表明,当CO32-和PO43-存在,MCFe-800对Cd(Ⅱ)去除率分别由95.93%降到83.79%和80.98%,表明CO32-和PO43-抑制了MCFe-800对Cd(Ⅱ)的吸附。有研究表明,CO32-通过与铁氧化物形成内球表面复合物,能够被吸附固定到非晶型铁氧化物表面[26]。此外,CO32-可能与生成的Fe2+反应形成菱铁矿(FeCO3)或Fe2+/Fe3+(氧化物)羟基碳酸盐,从而消耗铁离子并阻塞反应位点[27]。与此同时,PO43-通过与铁氧化物形成内球复合物与Cd(Ⅱ)竞争部分的结合位点[28-29]。因此,CO32-和PO43-会降低MCFe-800对Cd(Ⅱ)的去除率,在实际应用过程中需要考虑水体中CO32-和PO43-的质量浓度。针对共存阳离子,当Ca2+和Mg2+存在时,MCFe-800对Cd(Ⅱ)去除率分别为91.23%和94.18%,MCFe-800对Cd(Ⅱ)吸附能力只有微弱下降。这主要是因为阳离子间存在吸附位点的直接竞争[30],但不明显。综上所述,MCFe-800对水体Cd(Ⅱ)污染修复中具有较强的抗干扰离子能力。

    为揭示MCFe-800对Cd(Ⅱ)的固定机理,使用XRD、XPS对反应前后的MCFe-800进行了详细的表征,以分析材料的表面组成和化学性质的变化。如图4(a)所示,根据Fe2p结合能的值,Fe峰可以进一步分峰为Fe0、Fe(Ⅱ)和Fe(III)[25]。结合能为710.8 eV和724.2 eV的Fe2p峰属于Fe(Ⅱ),714.2 eV和727 eV处的峰对应Fe(III)[31]。反应前在706.9 eV处有一个小峰为Fe0。然而,该峰在反应后明显减弱,并且Fe(Ⅱ)和Fe(III)与总铁的比值分别从49.06%和39.58%增加到55.39%和43.92%,表明MCFe-800表面的nZVI在反应后被氧化。与此同时,对比图4(b)可见,反应后Fe0的峰(44.64°、82.33°、65.02°)明显减弱。该结果与Fe2p分峰结果一致。而反应前后材料Fe3C的峰无明显变化。有研究表明,Fe3C和石墨在反应过程中具有一定的催化作用,可以促进电子转移,从而提高材料中nZVI的腐蚀,生成铁氧化物,有利于Cd(Ⅱ)的吸附[32-33]。电化学结果进一步的证实,如图4(c)所示,MCFe-800的腐蚀电压为0.023 V,小于MCFe-600和MCFe-400。同时,不同材料的腐蚀电流结果表明 MCFe-800电流最高为1.49×10−7 A,明显大于其他材料。有研究[34]表明,腐蚀电流越高,表明材料失去电子的能力越强,材料中nZVI更容易被氧化。因此,在好氧情况下,Cd(Ⅱ)会与MCFe-800中释放的Fe(Ⅱ)或铁的氢氧化物发生共沉淀和络合反应(式(4)和式(5))[22, 35],从而把Cd固定在MCFe-800表面上。

    图 4  反应前后MCFe-800的XPS和XRD表征及MCFe-(400~800)的电化学分析
    Figure 4.  XPS and XRD characterization of MCFe-800 before and after reaction and electrochemical analysis of MCFe-(400~800)
    xCd2++(1-x)Fe2++ 2H2O →CdxFe(1-x)(OH)2 (4)
    FeOH +Cd2++H2O → FeOCdOH + 2H+ (5)

    图4(d)为3种材料的zeta电位图。可见,当pH从3升高到10,MCFe-400、MCFe-600的Zeta电位分别从−2.61 mV和−4.15 mV下降到−27.05 mV和−25.20 mV,其表面电荷始终为负。而MCFe-800由19.95 mV下降到−14.40 mV时,其等电位(pHPZC)为3.74。当溶液pH大于3.74时,其表面总是带负电,这有利于阳离子Cd(Ⅱ)的吸附[36]。根据上述分析,MCFe-800在好氧情况下固定Cd(Ⅱ)的机制主要是通过静电吸附、共沉淀和表面络合反应。

    图5(a)描述了MCFe-800对实际水体中Cd(Ⅱ)的吸附及循环利用。可见,MCFe-800在农田灌溉水、湖泊水和河水中的去除率分别为88.3%、90.5%和85.4%,相较于在超纯水反应体系中的95.9%去除率分别降低了7.6%、5.4%和10.5%。这表明MCFe-800在实际水体中依然对Cd(Ⅱ)保持良好的吸附效果,具有较强的抗干扰能力。在连续4次的循环中(图5(b)),MCFe-800对水体Cd(Ⅱ)的去除率在循环吸附过程中逐渐下降。其原因可能是,每次循环后吸附剂表面nZVI的损失导致活性位点的减少,进而导致Cd(Ⅱ)的吸附容量降低[37]。然而,其去除率在第4次循环中仍然保持在75.0%,表明MCFe-800能够实现多次的循环使用。

    图 5  在不同实际水体,循环及滤柱实验中MCFe-800对Cd(Ⅱ)吸附效果的影响
    Figure 5.  Effects of MCFe-800 on Cd(Ⅱ) removal in different real water bodies, circulation and filter column experiments

    此外,为了评估MCFe-800在从污染农田灌溉水中吸附Cd(Ⅱ)的工程应用,选取了实际的农田灌溉水进行滤柱实验,其结果如图5(c)所示。Cd(Ⅱ)质量浓度能快速降低到国家饮用水标准5 μg·L−1以下,分别在经过200 min和135 min后出水Cd(Ⅱ)质量浓度才缓慢增加,表明MCFe-800作为层析柱填充材料能够高效吸附农田灌溉水中的Cd(Ⅱ)。Cd(Ⅱ)初始质量浓度为1 000 μg·L−1和2 000 μg·L−1,其有效处理量分别为400 BV和270 BV。结合前面对镉的最大吸附量(463.84 mg·g−1),本研究中MCFe-800材料对镉的吸附容量和效率明显优于以往研究中使用的单一零价铁、生物炭和生物炭负载零价铁[17, 25]。综上所述,MCFe-800在农田灌溉水镉污染修复中具有潜在的应用价值。

    1)对本研究制备的新型多孔生物质铁炭基功能材料的表征结果表明,随者热解温度升高,MCFe比表面积和孔容增加,在800℃制备的MCFe-800材料表面为分散均匀的纳米零价铁颗粒;磁滞回线表明,MCFe-800的磁性最强,更容易实现固液分离。

    2) MCFe-800对水体Cd(Ⅱ)的去除率明显高于其他热解温度,符合伪二级动力学,并且根据Langmuir等温线模型,MCFe对Cd(Ⅱ)的最大吸附量高达463.84 mg·g−1。当pH为6~7时,其对Cd(Ⅱ)的吸附效果最佳,高浓度的CO32-和PO43-会抑制材料对Cd(Ⅱ)的吸附。MCFe800固定Cd(Ⅱ)的主要机制有静电吸附、共沉淀和表面络合。

    3) MCFe-800对Cd(Ⅱ)的吸附具有较强的抗干扰能力,还能实现多次循环。滤柱实验结果显示,该材料能够将农田灌溉水中1 000 μg·L−1和2 000 μg·L−1的Cd(Ⅱ)快速降低至饮用水标准,其有效处理量分别为400 BV和270 BV。

  • 图 1  源定位流程

    Figure 1.  Flow chart of source localization

    图 2  实验方案设计图

    Figure 2.  Experimental scheme design

    图 3  二维和三维溯源机器人实物图

    Figure 3.  Configuration of two-dimensional and three-dimensional source localization robot

    图 4  实验场地图

    Figure 4.  Map of the experimental site

    图 5  在室内弱气流环境中使用SPSO方法进行三维溯源的成功实验结果

    Figure 5.  Successful experiment result of three-dimensional source localization using SPSO method in indoor weak airflow environment

    图 6  在室内弱气流环境中使用SPSO方法进行二维溯源的失败实验结果

    Figure 6.  Failed experiment result of two-dimensional source localization using SPSO method in indoor weak airflow environment

    表 1  源在不同高度释放时二维溯源和三维溯源实验结果统计

    Table 1.  Statistics of two-dimensional and three-dimensional source localization experiment results when the source was released at different heights

    溯源类型源高度/m成功组数/总组数成功率/%平均定位步数/步平均定位时长/s
    三维溯源1.059/1560.030.0762
    0.758/1553.332.8815
    二维溯源1.0512/1580.016.0318
    0.754/1526.742.0734
    溯源类型源高度/m成功组数/总组数成功率/%平均定位步数/步平均定位时长/s
    三维溯源1.059/1560.030.0762
    0.758/1553.332.8815
    二维溯源1.0512/1580.016.0318
    0.754/1526.742.0734
    下载: 导出CSV

    表 2  源在不同高度释放时二维溯源和三维溯源失败实验结果统计

    Table 2.  Statistics of two-dimensional and three-dimensional source localization failure experiment results when the source was released at different heights

    溯源类型源高度/m总失败组数/组定位偏差超0.5 m组数/组定位步数超50步组数/组
    三维溯源1.05642
    0.75743
    二维溯源1.05321
    0.751138
    溯源类型源高度/m总失败组数/组定位偏差超0.5 m组数/组定位步数超50步组数/组
    三维溯源1.05642
    0.75743
    二维溯源1.05321
    0.751138
    下载: 导出CSV
  • [1] LANDRIGAN P J. Air pollution and health[J]. The Lancet Public Health, 2017, 2(1): 4-5. doi: 10.1016/S2468-2667(16)30023-8
    [2] FERRETTI L, WYMANT C, KENDALL M, et al. Quantifying SARS-CoV-2 transmission suggests epidemic control with digital contact tracing[J]. Science, 2020, 368(6491): 619-620.
    [3] ALEXANDER D A, KLEIN S. Biochemical terrorism: too awful to contemplate, too serious to ignore: Subjective literature review[J]. The British Journal of Psychiatry, 2003, 183(6): 491-497.
    [4] CAI H, LONG W D, LI X T, et al. Evaluating emergency ventilation strategies under different contaminant source locations and evacuation modes by efficiency factor of contaminant source (EFCS)[J]. Building and Environment, 2010, 45(2): 485-497. doi: 10.1016/j.buildenv.2009.07.005
    [5] FENG Q L, ZHANG C X, LU J Y, et al. Source localization in dynamic indoor environments with natural ventilation: An experimental study of a particle swarm optimization-based multi-robot olfaction method[J]. Building and Environment, 2019, 161: 106228. doi: 10.1016/j.buildenv.2019.106228
    [6] YANG Y B, FENG Q L, CAI H, et al. Experimental study on three single-robot active olfaction algorithms for locating contaminant sources in indoor environments with no strong airflow[J]. Building and Environment, 2019, 155: 320-333. doi: 10.1016/j.buildenv.2019.03.043
    [7] LIU D, ZHAO F Y, WANG H Q, et al. History source identification of airborne pollutant dispersions in a slot ventilated building enclosure[J]. International Journal of Thermal Sciences, 2013, 64: 81-92. doi: 10.1016/j.ijthermalsci.2012.08.005
    [8] FONTANINI A D, VAIDYA U, GANAPATHYSUBANMANIAN B. A methodology for optimal placement of sensors in enclosed environments: A dynamical systems approach[J]. Building and Environment, 2016, 100: 145-161. doi: 10.1016/j.buildenv.2016.02.003
    [9] ZHANG T T, LI H, WANG S. Inversely tracking indoor airborne particles to locate their release sources[J]. Atmospheric Environment, 2012, 55: 328-338. doi: 10.1016/j.atmosenv.2012.03.066
    [10] CHEN X X, HUANG J. Odor source localization algorithms on mobile robots: A review and future outlook[J]. Robotics and Autonomous Systems, 2019, 112: 123-136. doi: 10.1016/j.robot.2018.11.014
    [11] FRICKE G M, ASPERTI-BOURSIN F, HEXKER J, et al. From microbiology to microcontrollers: robot search patterns inspired by T cell movement[C]//Artificial Life Conference Proceedings 13. One Rogers Street, Cambridge, MA 02142-1209 USA journals-info@ mit. edu: MIT Press, 2013: 1009-1016..
    [12] NURAZAMAN S G, MATSUMOTO Y, NAKAMURA Y, et al. 'Yuragi'-based adaptive mobile robot search with and without gradient sensing: from bacterial chemotaxis to a levy walk[J]. Advanced Robotics, 2011, 25(16): 2019-2037. doi: 10.1163/016918611X590229
    [13] ISHIDA H, HAYASHI K, TAcAKUSAKI M, et al. Odour-source localization system mimicking behaviour of silkworm moth[J]. Sensors and Actuators A: Physical, 1995, 51(2/3): 225-230.
    [14] HAYES A T, MARTINOLI A, GOODMAN R M. Distributed odor source localization[J]. Ieee Sensors J, 2002, 2(3): 260-271. doi: 10.1109/JSEN.2002.800682
    [15] JATMIKO W, SEKIYAMA K, FUKUDA T. A pso-based mobile robot for odor source localization in dynamic advection-diffusion with obstacles environment: Theory, simulation and measurement[J]. Computational Intelligence Magazine, 2007, 2(2): 37-51. doi: 10.1109/MCI.2007.353419
    [16] LOCHMATTER T, RAEMY X, MATTHEY L, et al. A comparison of casting and spiraling algorithms for odor source localization in laminar flow[C]//International Conference on Robotics and Automation, 2008: 1138-1143.
    [17] FERRI G, CASELLI E, MATTOLI V, et al. SPIRAL: A novel biologically-inspired algorithm for gas/odor source localization in an indoor environment with no strong airflow[J]. Robotics and Autonomous Systems, 2009, 57(4): 393-402. doi: 10.1016/j.robot.2008.07.004
    [18] MENG Q H, YANG W X, WANG Y, et al. Adapting an ant colony metaphor for multi-robot chemical plume tracing[J]. Sensors, 2012, 12(4): 4737-4763. doi: 10.3390/s120404737
    [19] MENG Q H, YANG W X, WANG Y, et al. Collective odor source estimation and search in time-variant airflow environments using mobile robots[J]. Sensors, 2011, 11(11): 10415-10443. doi: 10.3390/s111110415
    [20] LIU X, LI F, CAI H, et al. Dynamical source term estimation in a multi-compartment building under time-varying airflow[J]. Building and Environment, 2019, 160: 106162. doi: 10.1016/j.buildenv.2019.106162
    [21] MA T, LIU S, XIAO H. Location of natural gas leakage sources on offshore platform by a multi-robot system using particle swarm optimization algorithm[J]. Journal of Natural Gas Science and Engineering, 2020, 84: 103636. doi: 10.1016/j.jngse.2020.103636
    [22] FENG Q, CAI H, LI F, et al. An improved particle swarm optimization method for locating time-varying indoor particle sources[J]. Building and environment, 2019, 147: 146-157. doi: 10.1016/j.buildenv.2018.10.008
    [23] FENG Q, CAI H, YANG Y, et al. An experimental and numerical study on a multi-robot source localization method independent of airflow information in dynamic indoor environments[J]. Sustainable Cities and Society, 2020, 53: 101897. doi: 10.1016/j.scs.2019.101897
    [24] YANG Y, ZHANG B, FENG Q, et al. Towards locating time-varying indoor particle sources: development of two multi-robot olfaction methods based on whale optimization algorithm[J]. Building and Environment, 2019, 166: 106413. doi: 10.1016/j.buildenv.2019.106413
    [25] FERRI G, CASELLI E, MATTOLI V, et al. SPIRAL: A novel biologically-inspired algorithm for gas/odor source localization in an indoor environment with no strong airflow[J]. Robotics and Autonomous Systems, 2009, 57(4): 393-402. doi: 10.1016/j.robot.2008.07.004
    [26] LILIENTHAL A, REIMANN D, ZELL A. Gas source tracing with a mobile robot using an adapted moth strategy[M]. Autonome Mobile Systeme 2003: 150-160.
    [27] FERRI G, CASELLI E, MATTOLI V, et al. Explorative particle swarm optimization method for gas/odor source localization in an indoor environment with no strong airflow[C]//International Conference on Robotics and Biomimetics (ROBIO), 2007: 841-846.
    [28] LILIENTHAL A, DUCKETT T. Experimental analysis of gas-sensitive Braitenberg vehicles[J]. Advanced Robotics, 2004, 18(8): 817-834. doi: 10.1163/1568553041738103
    [29] LILIENTHAL A, ZELL A, WANDEL M, et al. Sensing odour sources in indoor environments without a constant airflow by a mobile robot[C]//Proceedings 2001 ICRA. IEEE International Conference on Robotics and Automation, 2001, 4: 4005-4010.
    [30] FERRI G, CASELLI E, MATTOLI V, et al. A biologically-inspired algorithm implemented on a new highly flexible multi-agent platform for gas source localization[C]//The First IEEE/RAS-EMBS International Conference on Biomedical Robotics and Biomechatronics, 2006: 573-578.
    [31] FENG Q L, CAI H, LI F, et al. Locating time-varying contaminant sources in 3D indoor environments with three typical ventilation systems using a multi-robot active olfaction method[C]//Building Simulation. Springer Berlin Heidelberg, 2018, 11(3): 597-611.
    [32] OSÓRIO L, CABRITA G, MARQUES L. Mobile Robot Odor Plume Tracking using Three Dimensional Information[C]//ECMR. 2011: 165-170.
    [33] 李吉功. 室外时变气流环境下机器人气味源定位[D]. 天津: 天津大学, 2010.
    [34] 赵泽宇, 蒲明博, 王彦钦, 等. 广义折反射定律[J]. 光电工程, 2017, 44(2): 129-139.
    [35] FENG Q L, CAI H, CHEN Z, et al. Experimental study on a comprehensive particle swarm optimization method for locating contaminant sources in dynamic indoor environments with mechanical ventilation[J]. Energy and Buildings, 2019, 196: 145-156. doi: 10.1016/j.enbuild.2019.03.032
  • 加载中
图( 6) 表( 2)
计量
  • 文章访问数:  4173
  • HTML全文浏览数:  4173
  • PDF下载数:  66
  • 施引文献:  0
出版历程
  • 收稿日期:  2021-05-25
  • 录用日期:  2021-08-08
  • 刊出日期:  2021-09-10
鲍高贵, 蔡浩, 张博远, 姜建中, 李斐, 金晓公. 针对室内弱气流环境中气体污染源的多机器人三维溯源[J]. 环境工程学报, 2021, 15(9): 3105-3115. doi: 10.12030/j.cjee.202105138
引用本文: 鲍高贵, 蔡浩, 张博远, 姜建中, 李斐, 金晓公. 针对室内弱气流环境中气体污染源的多机器人三维溯源[J]. 环境工程学报, 2021, 15(9): 3105-3115. doi: 10.12030/j.cjee.202105138
BAO Gaogui, CAI Hao, ZHANG Boyuan, JIANG Jianzhong, LI Fei, JING Xiaogong. Experimental research on multi robot three-dimensional source localization of gas pollution sources in indoor weak airflow environment[J]. Chinese Journal of Environmental Engineering, 2021, 15(9): 3105-3115. doi: 10.12030/j.cjee.202105138
Citation: BAO Gaogui, CAI Hao, ZHANG Boyuan, JIANG Jianzhong, LI Fei, JING Xiaogong. Experimental research on multi robot three-dimensional source localization of gas pollution sources in indoor weak airflow environment[J]. Chinese Journal of Environmental Engineering, 2021, 15(9): 3105-3115. doi: 10.12030/j.cjee.202105138

针对室内弱气流环境中气体污染源的多机器人三维溯源

    通讯作者: 蔡浩(1976—),男,博士,教授。研究方向:室内环境污染传播和污染源控制。caihao@njtech.edu.cn
    作者简介: 鲍高贵(1998—),男,硕士研究生。研究方向:室内环境污染传播和污染源控制。baogaogui@njtech.edu.cn
  • 1. 南京工业大学城市建设学院,南京 210009
  • 2. 中国人民解放军军事科学院国防工程研究院,北京 100036
基金项目:
国家自然科学基金面上项目(51478468);国家重点基础研究发展计划(2015CB058003)

摘要: 室内弱气流环境通常指没有通风或通风不良的室内环境。现有针对室内弱气流环境的机器人源定位的实验研究均为单机器人二维溯源。单机器人二维溯源不仅成功率和效率较低,而且可能无法应对现实应用中源高度未知的场景。针对上述局限,开发了由3台机器人组成的多机器人三维溯源系统,每台机器人的传感器均可在0.5~1.5 m高度内受控移动,并基于粒子群算法提出了1种三维溯源方法(SPSO方法)。在某实训中心共开展了60组源定位实验,机器人的活动范围是7.65 m×4.1 m,二维溯源时传感器的高度为1.05 m。当源高度为1.05 m和0.75 m时,三维溯源的成功率分别为60%(9组/15组)和53.3%(8组/15组),平均定位步数分别为30步和32.8步;二维溯源的成功率分别为80%(12组/15组)和26.7%(4组/15组),平均定位步数分别为16步和42步。结果表明:在室内弱气流环境下,SPSO方法对不同源高度下的三维溯源具有良好的适应性,能够应用于源高度未知的场景,但其成功率有待提高;SPSO方法用于二维溯源能适用于源高度已知的场景,但并不适用于源高度未知的场景。

English Abstract

  • 室内污染源/危险源的定位在提升室内空气品质、防控流行病疫情、处置危险气体泄漏和应对生化恐怖袭击等方面均能发挥重要作用[1-4]。迄今为止,研究者们针对室内通风环境中的源定位问题已经开展了大量研究[5]。然而,针对未通风或通风不良的室内弱气流环境中的源定位问题,除了多年前的个别探索,鲜有研究报道[6]。在实际应用中,室内弱气流环境对应的场景十分普遍,如在过渡季节室内未通风的场景,通风空调系统发生故障的场景,在事故和灾害中通风空调系统受损的场景以及受建筑结构或家具影响形成室内风影区的场景等。在上述场景中,由于通风量不足且缺乏主导气流的输运作用,污染物或危险物质更容易积聚并达到有害或危险浓度。现有研究的不足与实际应用需求之间的矛盾凸显了在室内弱气流环境下开展源定位研究的必要性。

    目前,对室内污染源/危险源进行定位的方法主要分为固定传感器网络(SSN)方法和移动机器人嗅觉(MRO)方法。SSN方法通常利用传感器读数,通过正向或反向求解室内流场和污染物扩散的基本模型(如计算流体动力学(CFD)模型和多区模型)来定位室内污染源/危险源[7-9]。由于只有当污染物/危险物扩散到监测位置,传感器才能获得其浓度读数,SSN方法也被视作为被动式方法。迄今为止,尽管SSN方法在室内通风环境的源定位研究中已经有大量报道,但尚未见有此类方法应用在室内弱气流环境中进行源定位的研究报道。近年来,尽管SSN方法的研究已经取得了很大的进展,但该类方法仍存在需要提前布置传感器,边界条件难以确定,模型求解难度大等局限。另外,室内弱气流环境由于其特殊性,也对SSN方法的研究提出了一些新挑战。例如,由于缺少主导气流且受湍流主控,污染物扩散过程的建模和求解会更加困难。此外,污染物可能需要更长的时间才能扩散到传感器所在位置,因此,也难以对突发污染作出快速响应。

    与SSN方法相比,因为移动机器人具有在空间中主动搜索的能力,MRO方法也被视作为主动式方法。此类方法通常是受动物的觅食、求偶和避敌等行为启发而发展而来,因而在方法中通常会体现出仿生学原理[10-12]。与SSN方法相比,MRO方法主要有以下3点优势:机器人通过主动搜索可以更快地探测到目标污染物;MRO方法通常不需要对复杂的室内污染物扩散过程进行建模和求解;机器人可以执行多重任务,如源头控制、疏散引导、医疗救助等。综上所述,针对室内弱气流环境中的源定位问题,本文开展基于MRO方法的研究。

    现有的基于MRO方法的源定位研究主要针对有主导气流的室内通风环境[5,13-24]。相比之下,只有少数研究考虑了未通风或通风不良的室内弱气流环境[6,25-30]。与室内通风环境相比,室内弱气流环境对MRO方法的挑战主要有2点:没有主导气流信息可以指导机器人连续跟踪污染物烟羽;污染物的扩散受湍流的影响更大,其浓度的波动往往会更加剧烈和频繁,从而无法形成持续指向源的浓度梯度,并由此增加机器人溯源的难度。

    针对室内弱气流环境的MRO方法溯源研究,根据使用机器人的数量可分为单机器人嗅觉方法和多机器人嗅觉方法。在早期研究中,单机器人嗅觉方法因其成本低、易于实现而受到青睐。LILIENTHAL团队[22]提出了Braitenberg-type方法,FERRI团队受飞蛾等生物启发提出了Spiral方法[25]。2个团队皆通过实验验证了其所提方法在室内弱气流环境中的有效性。从这2个团队的单机器人溯源实验来看,均采用二维溯源方式,即假设源高度已知,且机器人所携带的传感器也固定在源高度上。然而,在实际应用中还普遍存在源高度未知的场景,此时二维溯源能否适用则有待于验证。

    为了进一步提升源定位的成功率和效率,研究者们尝试着用多机器人嗅觉方法来解决室内弱气流环境中的源定位问题。FERRI[30]提出了1种基于家蚕行为的多机器人嗅觉方法,通过模拟室内弱气流环境对该方法进行了测试,结果表明,该方法在成功率和效率方面明显优于单机器人嗅觉方法。在这项研究之后,FERRI[27]进一步提出了1种基于粒子群优化算法的多机器人嗅觉方法(EPSO),该方法进一步加强了机器人之间的协作。尽管上述研究取得了一定进展,但是这些研究均是基于模拟的污染物浓度场开展的仿真研究,因此,不可避免地存在以下局限:在真实的室内弱气流环境中,受湍流影响,污染物的浓度会呈现出剧烈和频繁的波动,这是难以通过时均化的数值模型模拟得出的;在仿真研究中也没有充分考虑传感器的实际特性,如响应/恢复时间和检测误差;在仿真研究中也很难体现机器人之间的碰撞以及机器人运动对流场的干扰。

    本研究的目标是在真实的室内弱气流环境下,利用基于标准粒子群算法(SPSO)的多机器人嗅觉方法(SPSO方法)来实现对源高度未知的气体污染物的溯源。虽然OSÓRIO[32]等建立了一种能够检测不同高度气味浓度和风向的机器人,但其机器人上仅是在垂直方向3个高度上携带了传感器,其传感器是固定不可受控移动的[32],而本研究中我们开发了多机器人三维溯源系统,该系统由3台传感器可以在高度方向上受控移动的三维溯源机器人组成,并且能够执行SPSO方法。在本研究中,设置了1.05 m和0.75 m 2种源高度,并在每种源高度下均开展了15组三维和二维溯源(传感器高度为1.05 m)实验,以验证三维溯源的有效性,并对比三维溯源和二维溯源的性能。

  • 图1所示,多机器人在源定位过程中包括3个阶段:烟羽发现、烟羽跟踪和源确认阶段。烟羽发现是源定位的开始,在此阶段机器人通过烟羽发现算法以相同的速度向各个方向发散,直到其中某个机器人检测到目标气体浓度高于烟羽发现预设浓度阈值Cmin,则所有机器人进入烟羽跟踪阶段;在烟羽跟踪阶段,机器人结合烟羽跟踪算法和获得的传感器信息去规划路径,从而接近污染源。烟羽跟踪阶段根据功能还可细分为烟羽跟踪和烟羽再发现,当机器人在跟踪烟羽的过程中丢失烟羽时,便可根据烟羽再发现重新寻回烟羽;在源确认阶段,机器人利用源确认算法判断是否到达源附近,或是陷入了局部浓度极值区域(源不在其中但浓度比周围高的区域)。如果陷入了局部浓度极值区域,则需要利用烟羽发现算法逃离,机器人逃离出局部浓度极值区后,则切换到烟羽跟踪阶段来重新寻找源。在这3个阶段中,每台机器人行进一步后,均要停留一段时间来采集浓度信息,信息采集完成后机器人会共享各自的位置和浓度信息,并根据源定位方法计算出各自下一步的目标位置。

  • 本研究采用的SPSO方法主要包括3个核心算法,即烟羽发现算法、烟羽跟踪算法、源确认算法。此外,在现实的应用场景中进行多机器人源定位研究时,需考虑机器人本身以及周围障碍物的存在,所以在源定位过程中还加入了1种已知障碍物的机器人避障算法[28]

    1)烟羽发现算法。本研究所采用的烟羽发现算法为1种简单的发散搜索策略[33],通过多台机器人以相同速度向不同方向并行直线运动的形式快速捕获实验场地里目标气体的烟羽。在烟羽发现过程中,如果机器人碰到场地边界,则根据反射定律[34]改变移动轨迹。当机器人检测到的气体浓度超过Cmin,则切换到烟羽跟踪模式。

    2)烟羽跟踪算法。为了进一步理解烟羽跟踪算法的实现,需要引入2个重要的概念,即全局最优值和全局最优位置。全局最优值C*(t)为到当前时刻t,机器人群检测到的最大浓度;全局最优位置Pg(t)为到目前时刻t,检测到的全局最优值的机器人所在的位置。

    本研究所采用的烟羽跟踪算法是标准粒子群算法(SPSO),该算法是1种模仿鸟群、鱼群觅食行为发展起来的1种进化算法。该算法易于编程实现、运行效率高、参数相对较少,在源定位领域中得到了广泛的应用[5,15,27,31,35]。SPSO算法一般使用第i个机器人Ri(i=1,2,3,,N)t时刻测量的浓度Ci(t)作为适应度函数来评估机器人是否处于合适的位置,并指导机器人的下一步行动。本研究中N取3,3是群体的最小单位,再加上系统复杂程度和场地大小限制,最终选择既能体现算法特性,又能在极大程度上控制实现成本的3台机器人。SPSO算法中机器人Ri具有2个属性:速度和位置,速度和位置根据C*(t)不断迭代,最终得到满足终止条件的最优解。在SPSO算法中,Ri的速度向量根据式(1)进行计算。

    式中:Vi(t+1)为Rit+1时刻的速度向量;wVi(t)Ri以往的经验信息,Vi(t)Rit时刻的速度向量,w为惯性因子,表征因自身速度而产生的惯性,用于控制当前速度对于下一步速度的影响力,本研究取值为1[15]l1r1(Pi(t)Pi(t))表示Ri自身认知,即趋向自身探索浓度最优值的位置,Pi(t)示Rit时刻位置,Pi(t)表示从溯源开始到t时刻Ri自身浓度最大值Ci(t)对应的位置,l1为学习因子,表示Ri从自身溯源过程中学习的经验,本研究取值为2[15]l2r2(Pg(t)Pi(t))表示Ri之间协同合作与信息共享,其中Pg(t)表示从溯源开始到t时刻机器人群检测到的浓度最大值C*(t)所对应的位置,l2为学习因子,表示Ri从群体溯源过程中所学的经验,本研究取值为2[15]r1r2是均匀分布在0~1之间的随机数。

    Ri的位置更新如式(2)所示。机器人自身的局部最优位置更新如式(3)所示。机器人群的全局最优位置更新如式(4)所示。

    3)源确认算法。源确认是指通过获取气味特征来确认源在机器人附近的定位过程。本研究中使用浓度极大值方法来进行源确认和结束源定位过程,即当机器人在全局最优位置Pg(t)探测到的浓度极大值C*(t)超过预设的浓度阈值Cmax时,则认为机器人到达了源附近,结束源定位过程,否则,认为机器人陷入了局部浓度极值区域。然后,机器人重启烟羽发现算法逃离局部浓度极值区域,直到检测到新C*(t)超过Cmin,则切换到烟羽跟踪模式。

  • 图2所示,为了验证在室内弱气流环境下三维溯源的有效性以及对比三维和二维溯源的性能,在实验开始前设置了1.05 m和0.75 m 2种源高度。在每种源高度下,分别计划开展15组三维和二维溯源实验,共计60组实验。实验过程中,二维溯源机器人传感器固定在1.05 m高度。

  • 本研究基于课题组之前开发的多机器人二维溯源系统新开发了1套多机器人三维溯源系统,该系统机器人上的传感器可在0.5~1.5 m内受控移动。每台二维溯源机器人(图3(a))均配备1种用于搭载和移动的机器人底盘(Kobuki Turtlebot2),用于定位和导航机器人的激光测距雷达(RPlidarA2),用于监测和收集气流速度与方向的超声波风速风向仪(Windsonic, Gill,传感器精度:风速(12±0.24) m·s−1,风向±3 °),以及用于监测和收集乙醇蒸汽浓度的气体传感器MICS-5524((267±8) mg·m−3,响应时间小于2 s)。

    三维溯源机器人(图3(b))的基础配置跟二维溯源机器人类似,包括机器人底盘,激光测距雷达,超声波风速风向仪和气体传感器。三维机器人与二维机器人的显著区别是设计了可以使传感器在高度上受控移动的三维运载模组。三维运载模组用于控制风速风向仪与气体传感器在垂直高度方向上的移动。三维运载模组的运行逻辑为:首先启动并初始化机器人,待气体传感器将收集到的浓度信息传送给工控机,工控机根据相应的运行策略计算出下一步传感器要到达的目标高度;然后根据此刻激光测距传感器测得的传感器的高度来计算出需要上下移动的距离;最后换算出直流电机需要的转向和圈数,如此迭代更新,不断控制传感器在不同高度上的移动。

  • 本研究的溯源实验在城市建设学院生产实训基地(图4(a))开展,其中机器人活动范围限定为7.65 m×4.1 m(图4(b))。在本研究中,由于乙醇无毒、易挥发、易获取、价格低廉等特性被选来作为示踪气体。在实验过程中使用水浴箱(保持65 °C恒温)加热含有乙醇液体的烧瓶,生成的乙醇蒸汽通过与气泵相连的橡胶管输送到源位置。实验过程中乙醇以12.5 mg·s−1的速率恒定释放。

  • 在每次源定位实验前,将门窗打开进行通风,直至室内乙醇浓度低于10.3 mg·m−3,以保证每次实验开始前的情况基本一致。在实验过程中,室内通风设备全部关闭,门窗也均呈关闭状态,以营造1个无主导气流的室内弱气流环境。在实验开始时,3个机器人分别从起始位置S1、S2、S3出发(图4(b)),机器人采用“走-停-走”的行进策略,即机器人每向前走1步,均需要停留一段时间,以便收集浓度信息,机器人每移动1步均会共享各自的位置信息和浓度信息,然后根据共享的信息代入各阶段的算法计算出各机器人下一步所需抵达的位置。在烟羽发现阶段,各机器人以烟羽发现算法更新自己的位置,一旦某个机器人测得的烟羽浓度超过所设的烟羽发现的阈值,各机器人则进入烟羽追踪阶段,在该阶段,3台机器人的位置信息和浓度信息每行进一步都会带入式(1)~式(4)来计算更新局部最优位置和全局最优位置,以此来规划机器人的路径。

    三维溯源与二维溯源不同的是,机器人每次停留,其三维运载模组均在高度上移动一段距离(0~0.08 m),以采集不同高度上的浓度信息,其中在烟羽发现阶段固定移动0.08 m,在烟羽追踪和源确认阶段,每一步将根据3台机器人所处位置的高度和浓度通过标准粒子群算法计算出下一步在高度上移动的最优距离。在机器人溯源过程中,如果浓度最大值在5步内保持不变,则视为自己被困在了局部浓度极值区域,此时转为源确认算法。当实验结束时,如果定位误差小于或等于0.5 m,则视为实验成功。此外,为控制每次实验的耗时和保障溯源过程的效率,若机器人在50步(二维溯源约为15 min,三维溯源约为20 min)内无法找到源位置,则溯源实验终止,并宣布实验失败。

  • 为了验证三维溯源的有效性,以及在源高度未知的场景中二维溯源是否仍然适用,在室内弱气流环境下,本研究利用SPSO方法进行源定位实验。针对1.05 m和0.75 m 2种源高度,共开展了60组溯源实验,结果如表1所示。由表1可见,对于2种源高度,三维溯源的实验结果差别很小。在源高度为1.05 m和0.75 m时,三维溯源实验分别成功完成了9组和8组,成功率分别为60%和53.3%。上述实验结果验证了三维溯源的有效性,同时表现出三维溯源对不同源高度的较好适应性。此外,以上研究结果也表明,在弱气流环境中三维溯源的成功率仍不是很理想,还有待进一步提高。

    对比三维溯源和二维溯源实验结果可以发现,当源高度为1.05 m时,即源高度与二维溯源传感器高度相同时,二维溯源不仅成功率(80%)明显高于三维溯源的成功率(60%),而且平均定位步数(16步)和平均定位时长(318 s)也明显低于三维溯源的平均定位步数(30步)和平均定位时长(762 s)。当源高度为0.75 m时,即源高度与二维溯源传感器高度不同时,从成功率和平均定位步数以及平均定位时间来看,三维溯源性能仅略有降低,但二维溯源的性能却显著下降,尤其是成功率已从80%陡降至26.7%,虽然此工况下二维溯源平均定位时长要低于三维溯源,但如此低的成功率已经不能满足实际应用需求。上述对比进一步说明,对于源高度未知的场景,三维溯源具有较高的适应性,而二维溯源却不具备类似的适应性。

    表2可见,二维溯源和三维溯源的失败实验多是由于定位误差超过了0.5 m,主要因为室内弱气流环境缺少主导气流且受湍流主控,实验区域内很容易形成多个浓度局部极值区域,导致机器人难以跳出,以至于最后在远离源的位置宣告了源的存在。对于源高度为0.75 m的二维溯源失败实验多是因为机器人传感器高度为1.05 m固定不变,以至于难以在这一高度上持续追踪从源处释放的酒精蒸汽的烟羽。

  • 1)在源高度0.75 m时成功的三维溯源实验。图5展示了1组利用3台三维溯源机器人在实训中心三楼实验区域中,使用SPSO方法进行三维溯源并成功定位恒定源的实验过程以及机器人每1步检测到的最大浓度平均值。在实验过程中,从起始点出发到最终定位目标源,机器人主要经历了烟羽发现、烟羽追踪、第1次陷入并逃离局部极值区域、烟羽重发现以及源确认阶段,共用了27步。

    实验开始前,3台机器人首先进行初始化,机器人移动到预先设置的出发位置。实验开始后,机器人从起始位置采用发现搜索策略出发,烟羽是由R1在第6步发现的,此时R1的信息采集模块高度为0.76 m。在此组实验过程中,R1第6步发现烟羽后,整个机器人群便切换到烟羽追踪阶段,开始执行SPSO算法。开始烟羽追踪后,第9步时,R1在0.81 m高度检测到1个较大的浓度平均值,接着R1开始在附近继续移动搜索以找到更高的浓度值,R2和R3则开始不断向R1靠近。在接下来的5步中,3台机器人均未检测到更高的浓度均值,表明此时机器人已经陷入了局部浓度极值区,并采用浓度极大值方法进行源确认。但R1在第9步检测到的较高浓度平均值小于之前设定的源确认浓度阈值Cmax,根据浓度极大值方法,机器人判定找到了1个局部浓度极值区。为了更好地逃离局部浓度极值区并再次搜索到更高的浓度,机器人再次采用发散搜索策略去移动探索。在第19步时,R2检测到了1个更高的浓度值,3台机器人再次进入烟羽追踪阶段。在第21步时,R2检测到1个较高的浓度平均值,并已经到达了源位置附近。然后R2对其周边领域进行搜索,试图找到1个更高的浓度均值,R1和R3则不断向R2靠近,直到第27步时,机器人群均未找到1个更高的浓度均值。机器人立即开始采用浓度极大值方法进行源确认,判断出第22步测得的浓度大于设定的Cmax,故判定机器人已经成功定位到了释放源,终止源定位过程。此时,机器人确定的源位置(全局最优位置)与真实源位置之间的距离为0.32 m(小于0.5 m),表明这组源定位实验成功完成。

    2)在源高度0.75 m时失败的二维溯源实验。在源释放高度为0.75 m时,机器人从预先设定的起始位置按固定角度出发,按直线发散搜索策略前进。第14步时,R3发现烟羽,随后进入烟羽追踪阶段;第26步时,机器人群找到了1个局部浓度极值区,并根据浓度极大值方法判定机器人已经陷入该区域,随后采用发散搜索策略跳出,进入烟羽再发现阶段;第31步时,机器人重新检测到1个较高的浓度均值,开始进行烟羽追踪,但在接下来直到源定位过程结束均未找到更高的浓度值,又因第31步的浓度值未到达源确认的阈值,故判定此组源定位实验失败(图6)。

    进一步分析这组失败的实验案例可以发现,在二维溯源机器人上的传感器高度低于源释放高度时,即使机器人与源的距离会很近甚至是小于0.5 m,但在该位置不能检测到更高的浓度均值来取代已测得的较高的浓度均值,从而导致机器人接下来朝远离源的方向行进,最后终止了源定位过程。这说明,室内弱气流环境下风速风向无规律变化会使源附近的流场和气体浓度出现较大的波动,让机器人有时检测不到较高的浓度均值。此外,由于乙醇蒸汽的密度较大而发生下沉,可能使机器人在高于源释放高度上难以持续追踪其烟羽,从而导致源定位失败。

  • 1)在源高度为1.05 m和0.75 m时各开展了15组三维溯源实验。结果表明,SPSO方法能够适用于室内弱气流环境下的三维溯源,并且对不同的源高度具有良好的适应性,故其能够应用于源高度未知的场景;此外,在室内弱气流环境中三维溯源的成功率还有待提高。

    2)当三维溯源的源高度(1.05 m)与二维溯源的传感器高度相同时,二维溯源的性能明显优于三维溯源;但当源高度(0.75 m)与二维溯源传感器高度不同时,二维溯源的成功率(26.7%)已不能满足现实需求,说明二维溯源并不能适应不同的源高度,因而也难以将其应用于源高度未知的场景中。

    3)当源高度(0.75 m)低于二维溯源的传感器高度时,三维和二维溯源的源定位过程显示,三维溯源通过主动调节传感器高度更易于检测到乙醇蒸汽,而二维溯源则因为传感器的高度固定而难以检测到乙醇蒸汽,这也说明在室内弱气流环境中三维溯源比二维溯源更能够适应源高度未知的场景。

参考文献 (35)

返回顶部

目录

/

返回文章
返回