[1] LANDRIGAN P J. Air pollution and health[J]. The Lancet Public Health, 2017, 2(1): 4-5. doi: 10.1016/S2468-2667(16)30023-8
[2] FERRETTI L, WYMANT C, KENDALL M, et al. Quantifying SARS-CoV-2 transmission suggests epidemic control with digital contact tracing[J]. Science, 2020, 368(6491): 619-620.
[3] ALEXANDER D A, KLEIN S. Biochemical terrorism: too awful to contemplate, too serious to ignore: Subjective literature review[J]. The British Journal of Psychiatry, 2003, 183(6): 491-497.
[4] CAI H, LONG W D, LI X T, et al. Evaluating emergency ventilation strategies under different contaminant source locations and evacuation modes by efficiency factor of contaminant source (EFCS)[J]. Building and Environment, 2010, 45(2): 485-497. doi: 10.1016/j.buildenv.2009.07.005
[5] FENG Q L, ZHANG C X, LU J Y, et al. Source localization in dynamic indoor environments with natural ventilation: An experimental study of a particle swarm optimization-based multi-robot olfaction method[J]. Building and Environment, 2019, 161: 106228. doi: 10.1016/j.buildenv.2019.106228
[6] YANG Y B, FENG Q L, CAI H, et al. Experimental study on three single-robot active olfaction algorithms for locating contaminant sources in indoor environments with no strong airflow[J]. Building and Environment, 2019, 155: 320-333. doi: 10.1016/j.buildenv.2019.03.043
[7] LIU D, ZHAO F Y, WANG H Q, et al. History source identification of airborne pollutant dispersions in a slot ventilated building enclosure[J]. International Journal of Thermal Sciences, 2013, 64: 81-92. doi: 10.1016/j.ijthermalsci.2012.08.005
[8] FONTANINI A D, VAIDYA U, GANAPATHYSUBANMANIAN B. A methodology for optimal placement of sensors in enclosed environments: A dynamical systems approach[J]. Building and Environment, 2016, 100: 145-161. doi: 10.1016/j.buildenv.2016.02.003
[9] ZHANG T T, LI H, WANG S. Inversely tracking indoor airborne particles to locate their release sources[J]. Atmospheric Environment, 2012, 55: 328-338. doi: 10.1016/j.atmosenv.2012.03.066
[10] CHEN X X, HUANG J. Odor source localization algorithms on mobile robots: A review and future outlook[J]. Robotics and Autonomous Systems, 2019, 112: 123-136. doi: 10.1016/j.robot.2018.11.014
[11] FRICKE G M, ASPERTI-BOURSIN F, HEXKER J, et al. From microbiology to microcontrollers: robot search patterns inspired by T cell movement[C]//Artificial Life Conference Proceedings 13. One Rogers Street, Cambridge, MA 02142-1209 USA journals-info@ mit. edu: MIT Press, 2013: 1009-1016..
[12] NURAZAMAN S G, MATSUMOTO Y, NAKAMURA Y, et al. 'Yuragi'-based adaptive mobile robot search with and without gradient sensing: from bacterial chemotaxis to a levy walk[J]. Advanced Robotics, 2011, 25(16): 2019-2037. doi: 10.1163/016918611X590229
[13] ISHIDA H, HAYASHI K, TAcAKUSAKI M, et al. Odour-source localization system mimicking behaviour of silkworm moth[J]. Sensors and Actuators A: Physical, 1995, 51(2/3): 225-230.
[14] HAYES A T, MARTINOLI A, GOODMAN R M. Distributed odor source localization[J]. Ieee Sensors J, 2002, 2(3): 260-271. doi: 10.1109/JSEN.2002.800682
[15] JATMIKO W, SEKIYAMA K, FUKUDA T. A pso-based mobile robot for odor source localization in dynamic advection-diffusion with obstacles environment: Theory, simulation and measurement[J]. Computational Intelligence Magazine, 2007, 2(2): 37-51. doi: 10.1109/MCI.2007.353419
[16] LOCHMATTER T, RAEMY X, MATTHEY L, et al. A comparison of casting and spiraling algorithms for odor source localization in laminar flow[C]//International Conference on Robotics and Automation, 2008: 1138-1143.
[17] FERRI G, CASELLI E, MATTOLI V, et al. SPIRAL: A novel biologically-inspired algorithm for gas/odor source localization in an indoor environment with no strong airflow[J]. Robotics and Autonomous Systems, 2009, 57(4): 393-402. doi: 10.1016/j.robot.2008.07.004
[18] MENG Q H, YANG W X, WANG Y, et al. Adapting an ant colony metaphor for multi-robot chemical plume tracing[J]. Sensors, 2012, 12(4): 4737-4763. doi: 10.3390/s120404737
[19] MENG Q H, YANG W X, WANG Y, et al. Collective odor source estimation and search in time-variant airflow environments using mobile robots[J]. Sensors, 2011, 11(11): 10415-10443. doi: 10.3390/s111110415
[20] LIU X, LI F, CAI H, et al. Dynamical source term estimation in a multi-compartment building under time-varying airflow[J]. Building and Environment, 2019, 160: 106162. doi: 10.1016/j.buildenv.2019.106162
[21] MA T, LIU S, XIAO H. Location of natural gas leakage sources on offshore platform by a multi-robot system using particle swarm optimization algorithm[J]. Journal of Natural Gas Science and Engineering, 2020, 84: 103636. doi: 10.1016/j.jngse.2020.103636
[22] FENG Q, CAI H, LI F, et al. An improved particle swarm optimization method for locating time-varying indoor particle sources[J]. Building and environment, 2019, 147: 146-157. doi: 10.1016/j.buildenv.2018.10.008
[23] FENG Q, CAI H, YANG Y, et al. An experimental and numerical study on a multi-robot source localization method independent of airflow information in dynamic indoor environments[J]. Sustainable Cities and Society, 2020, 53: 101897. doi: 10.1016/j.scs.2019.101897
[24] YANG Y, ZHANG B, FENG Q, et al. Towards locating time-varying indoor particle sources: development of two multi-robot olfaction methods based on whale optimization algorithm[J]. Building and Environment, 2019, 166: 106413. doi: 10.1016/j.buildenv.2019.106413
[25] FERRI G, CASELLI E, MATTOLI V, et al. SPIRAL: A novel biologically-inspired algorithm for gas/odor source localization in an indoor environment with no strong airflow[J]. Robotics and Autonomous Systems, 2009, 57(4): 393-402. doi: 10.1016/j.robot.2008.07.004
[26] LILIENTHAL A, REIMANN D, ZELL A. Gas source tracing with a mobile robot using an adapted moth strategy[M]. Autonome Mobile Systeme 2003: 150-160.
[27] FERRI G, CASELLI E, MATTOLI V, et al. Explorative particle swarm optimization method for gas/odor source localization in an indoor environment with no strong airflow[C]//International Conference on Robotics and Biomimetics (ROBIO), 2007: 841-846.
[28] LILIENTHAL A, DUCKETT T. Experimental analysis of gas-sensitive Braitenberg vehicles[J]. Advanced Robotics, 2004, 18(8): 817-834. doi: 10.1163/1568553041738103
[29] LILIENTHAL A, ZELL A, WANDEL M, et al. Sensing odour sources in indoor environments without a constant airflow by a mobile robot[C]//Proceedings 2001 ICRA. IEEE International Conference on Robotics and Automation, 2001, 4: 4005-4010.
[30] FERRI G, CASELLI E, MATTOLI V, et al. A biologically-inspired algorithm implemented on a new highly flexible multi-agent platform for gas source localization[C]//The First IEEE/RAS-EMBS International Conference on Biomedical Robotics and Biomechatronics, 2006: 573-578.
[31] FENG Q L, CAI H, LI F, et al. Locating time-varying contaminant sources in 3D indoor environments with three typical ventilation systems using a multi-robot active olfaction method[C]//Building Simulation. Springer Berlin Heidelberg, 2018, 11(3): 597-611.
[32] OSÓRIO L, CABRITA G, MARQUES L. Mobile Robot Odor Plume Tracking using Three Dimensional Information[C]//ECMR. 2011: 165-170.
[33] 李吉功. 室外时变气流环境下机器人气味源定位[D]. 天津: 天津大学, 2010.
[34] 赵泽宇, 蒲明博, 王彦钦, 等. 广义折反射定律[J]. 光电工程, 2017, 44(2): 129-139.
[35] FENG Q L, CAI H, CHEN Z, et al. Experimental study on a comprehensive particle swarm optimization method for locating contaminant sources in dynamic indoor environments with mechanical ventilation[J]. Energy and Buildings, 2019, 196: 145-156. doi: 10.1016/j.enbuild.2019.03.032