Processing math: 100%

锰铁氧体活化PMS降解双酚A的过程机制

李广英, 杜敏洁, 谈成英, 关海刚, 陈荣志. 锰铁氧体活化PMS降解双酚A的过程机制[J]. 环境工程学报, 2021, 15(9): 2954-2965. doi: 10.12030/j.cjee.202105024
引用本文: 李广英, 杜敏洁, 谈成英, 关海刚, 陈荣志. 锰铁氧体活化PMS降解双酚A的过程机制[J]. 环境工程学报, 2021, 15(9): 2954-2965. doi: 10.12030/j.cjee.202105024
LI Guangying, DU Minjie, TAN Chengying, GUAN Haigang, CHEN Rongzhi. The mechanism of BPA degradation in a system of peroxymonosulfate activated by a Mn/Fe bimetallic oxide catalysts[J]. Chinese Journal of Environmental Engineering, 2021, 15(9): 2954-2965. doi: 10.12030/j.cjee.202105024
Citation: LI Guangying, DU Minjie, TAN Chengying, GUAN Haigang, CHEN Rongzhi. The mechanism of BPA degradation in a system of peroxymonosulfate activated by a Mn/Fe bimetallic oxide catalysts[J]. Chinese Journal of Environmental Engineering, 2021, 15(9): 2954-2965. doi: 10.12030/j.cjee.202105024

锰铁氧体活化PMS降解双酚A的过程机制

    作者简介: 李广英(1973—),女,学士,高级工程师。研究方向:水污染控制等。E-mail:Lgy8174809@hotmail.com
    通讯作者: 陈荣志(1983—),男,博士,副教授。研究方向:水污染控制技术。E-mail:crz0718@ucas.ac.cn
  • 基金项目:
    青海省重大科技专项 “湟水流域水-气-土一体化环境管理体系及污染控制关键技术集成与示范”(2018-SF-A4)
  • 中图分类号: X703.1

The mechanism of BPA degradation in a system of peroxymonosulfate activated by a Mn/Fe bimetallic oxide catalysts

    Corresponding author: CHEN Rongzhi, crz0718@ucas.ac.cn
  • 摘要: 针对污水处理厂的出水中检测出了未代谢药物、内分泌干扰物等生物难降解有机物的问题,通过制备Mn/Fe双金属氧化物催化剂MnFeO,并耦合过一硫酸盐(PMS)构建了基于PMS活化的高级氧化体系,以降解废水中的BPA。结果表明,由于活化位点丰度的提升,所构建体系的氧化性能随着催化剂投加量的增加而增加;过高的PMS浓度会触发体系的自淬灭效应,从而导致污染物降解性能降低;该体系在不同pH条件下均表现出了良好的污染物降解性能,由于PMS稳定性的变化,弱碱性环境可显著提升体系的氧化性能。催化剂在循环使用过程中的催化性能有明显衰减,但可通过在空气气氛中的煅烧实现性能恢复。顺磁共振分析和自由基淬灭实验结果表明,体系中产生的自由基与单线态氧是PMS分解形成的主要活性物种;而电化学分析结果表明,污染物与MnFeO-PMS复合体之间存在直接电子传递过程,通过活性物种与直接电子传递过程实现了有机污染物的降解。以上研究结果可为锰铁双金属氧化物活化PMS提供参考。
  • 厌氧氨氧化(anaerobic ammonia oxidation, Anammox)是指在缺氧条件下,Anammox菌利用NO2-N氧化NH+4-N,最终生成N2和少量NO3-N的过程[1-2]。一段式部分亚硝化-厌氧氨氧化工艺是将氨氮的亚硝化和厌氧氨氧化集成在一个反应器中,从而一步实现氨氮的高效去除。与传统硝化反硝化工艺相比,一段式部分亚硝化-厌氧氨氧化工艺具有无需消耗有机碳源、节省60%的曝气量和污泥产率低等显著优势[3-5]

    目前,该工艺已成功用于处理高氨氮废水,如污泥消化液、垃圾渗滤液及畜牧业废水等[6-8]。截至2014年,全球已有100座以厌氧氨氧化工艺运行的污水处理工程,其中,88%采用一段式部分亚硝化-厌氧氨氧化[9]。一段式部分亚硝化-厌氧氨氧化稳定运行的关键在于维持反应器中氨氧化菌(ammonia oxidizing bacteria, AOB)和Anammox菌优势生长,同时抑制亚硝酸氧化菌(nitrite oxidizing bacteria, NOB)[10-11]。现有研究表明,在高氨氮环境下,通过控制溶解氧(dissolved oxygen, DO)、pH、游离氨(free ammonia, FA)、游离亚硝酸(free nitrite acid, FNA)和污泥龄[12-16]等均可实现抑制或者淘汰NOB,从而达到高氨废水的高效稳定脱氮。然而,在中低浓度(无厌氧消化的城市污水处理厂污泥水及部分工业废水)条件下,FA或FNA的浓度较低,对NOB的抑制作用减弱甚至消失。而有研究[17]发现,仅通过低溶解氧很难实现对NOB的长期抑制。MIAO等[18]在研究一段式部分亚硝化-厌氧氨氧化处理中低浓度氨氮废水时发现,在低溶解氧(0.17±0.08) mg·L−1条件下,出水NO3-N浓度快速上升,TN去除率下降至14.7%,这表明低溶解氧并未有效抑制NOB。因此,探究在中低浓度下一段式部分亚硝化-厌氧氨氧化工艺的稳定运行具有重要意义。

    本研究采用序批式反应器(sequencing batch reactor, SBR),通过控制溶解氧浓度(0.2~0.4 mg·L−1),以间歇曝气的方式启动并连续运行一段式亚硝化-厌氧氨氧化,对反应器的脱氮性能进行了分析评价,同时测定了AOB、NOB和Anammox的活性变化,并采用荧光原位杂交 (fluorescent in situ hybridization, FISH)对污泥中功能微生物的群落结构进行了分析,以期为一段式部分亚硝化-厌氧氨氧化提供理论基础和潜在的技术支持。

    SBR有效容积为5 L,水力停留时间(hydraulic retention time, HRT)为15 h,运行期间不排泥。反应器采用PLC控制系统实现自动控制,设定运行周期为6 h,其中进水10 min、反应时间300 min(曝气30 min(好氧)、搅拌45 min(缺氧),依次循环往复)、沉淀30 min、排水10 min、闲置10 min。反应温度为(35±1) ℃,DO控制在0.2~0.4 mg·L−1,pH维持在7.5~8.0。外部用锡箔纸包裹进行避光处理。

    实验用水采用人工配制,其成分为200 mg·L−1NH+4-N(NH4Cl)、1000~2000 mg·L−1 KHCO3、180 mg·L−1 CaCl2·2H2O、100 mg·L−1 MgSO4·7H2O、50 mg·L−1 KH2PO4、微量元素Ⅰ和微量元素Ⅱ各1 mL·L−1。微量元素Ⅰ组分为5 g·L−1 EDTA;9.14 g·L−1 FeSO4·7H2O;微量元素Ⅱ组分为0.43 g·L−1 ZnSO4·7H2O、0.24 g·L−1 CoCl·6H2O、0.99 g·L−1 MnCl2·4H2O、0.25 g·L−1 CuSO4·5H2O、0.22 g·L−1 NaMoO4·2H2O、0.19 g·L−1 NiCl2·6H2O、0.21 g·L−1 NaSeO4·10H2O、0.014 g·L−1 H3BO3[19-21]

    亚硝化阶段反应器接种污泥取自实验室稳定运行的亚硝化反应器,接种量为1.2 g·L−1,AOB活性(以NH+4-N计,下同)为1 258.62 mg·(g·d)−1,NOB活性(以NO2-N计,下同)281.02 mg·(g·d)−1。通过溶解氧和FA的双重抑制实现亚硝化反应器的稳定运行,在亚硝化反应器出水NO2-N与NH+4-N浓度之比接近1时,接种厌氧氨氧化污泥启动一段式部分亚硝化-厌氧氨氧化,反应器运行参数维持不变。Anammox接种污泥取自以SBR方式稳定运行的厌氧氨氧化反应器,Anammox活性(以NH+4-N计,下同)为315.25 mg·(g·d)−1,该污泥颗粒化程度良好,外观呈红棕色,接种量为1.72 g·L−1,接种后的污泥浓度为2.92 g·L−1

    实验中各项常规水质指标测定按标准方法进行[22]NH+4-N的测定采用纳氏试剂分光光度法,NO2-N的测定采用N-(1-萘基)-乙二胺分光光度法,NO3-N的测定采用紫外分光光度法。pH由在线式pH计(Inpro 4 010,梅特勒)测定。DO由在线式溶氧仪(Inpro 6 050,梅特勒)测定。MLSS和MLVSS均采用重量法。

    游离氨(FA)和游离亚硝酸(FNA)值[23]按照式(1)和式(2)进行计算。

    CFA=Ct,NH310pHe6344/(273+T)+10pH (1)
    CFNA=Ct,NO2(1+e2300/(273+T)10pH (2)

    式中:CFA为游离氨浓度,mg·L−1CFNA为游离亚硝酸浓度,mg·L−1Ct,NH3为总氨氮浓度,mg·L−1Ct,NO2总亚硝酸盐浓度,mg·L−1T为温度,℃。

    1)硝化活性测定。从反应器中取400 mL泥水混合液,经去离子水淘洗后分别置于2个500 mL广口瓶中,分别加入NH4Cl (NH+4-N: 40 mg·L−1)、NaNO2(NO2-N: 30 mg·L−1),随后用去离子水定容至400 mL,并在35 ℃条件下充分曝入空气,每间隔10 min从广口瓶中取样分别测定NH+4-N、NO2-N的浓度,取样结束后,分别测量MLVSS并计算AOB和NOB活性。

    2)厌氧氨氧化活性测定。从反应器中取400 mL泥水混合液,经去离子水淘洗后,置于500 mL广口瓶中,同时加入基质NH4Cl、NaNO2和微量元素(NH+4-N浓度为30 mg·L−1NO2-N为40 mg·L−1),然后使用去离子水定容至400 mL,在35 ℃条件下采用高纯氮气进行曝气以维持缺氧环境,每间隔20 min取样测定NH+4-N的浓度,pH控制在7.5~8.3,取样结束后,测量MLVSS并计算Anammox活性。

    Anammox菌和硝化菌的荧光原位杂交参照AMANN等[24]描述方法进行。杂交后的污泥样品通过激光共聚焦显微镜(TCS SP8, 莱卡)进行观察,并在100倍物镜下采集图像。实验所用探针如表1所示。

    表 1  荧光原位杂交所用的探针
    Table 1.  Probes used in FISH test
    探针名称RNA序列(5'~3')标记细菌种属来源
    Eub338GCTGCCTCCCGTAGGAGTEubacteria[25-26]
    Eub338ⅡGCAGCCACCCGTAGGTGTEubacteria[25-26]
    Eub338ⅢGCTGCCACCCGTAGGTGTEubacteria
    Nso1225CGCCATTGTATTACGTGTGABetaproteobacterial ammonia-oxidizing bacteria[27]
    NmVTCCTCAGAGACTACGCGGNitrosococcus mobilis[28]
    Cluster6a 192CTTTCGATCCCCTACTTTCCNitrosomonas oligotropha lineage[29]
    Ntspa662GGAATTCCGCGCTCCTCTGenus Nitrospira[30]
    Nit3CCTGTGCTCCATGCTCCGGenus Nitrobacter[31]
    Nsm156TATTAGCACATCTTTCGATNitrosomonas[27]
    Nsv443CCGTGACCGTTTCGTTCCGNitroso-spira, -lobus, -vibrio[27]
    AMX368CCT TTC GGG CAT TGG GAAAll anammox bacteria[32]
     | Show Table
    DownLoad: CSV

    反应器连续运行110 d,运行效果见图1。在亚硝化运行阶段(0~44 d),通过控制DO和FA浓度实现了AOB的富集和NOB的抑制,从而获得较大的氨氧化速率和较高的亚硝酸盐积累率。在反应器运行初期(1~13 d),出水NH+4-N浓度较高,对应的FA浓度高达10 mg·L−1以上,此阶段内不仅NOB被完全抑制(FA阈值为1.0 mg·L−1),AOB也被部分抑制(FA阈值10 mg·L−1)[23];随着运行时间的延长,AOB逐渐适应,出水NH+4-N浓度逐渐降低,NO2-N浓度逐渐增高,到第18 天时,出水氨氮浓度已经降至101.30 mg·L−1NO2-N浓度达到83.23 mg·L−1,出水NO2-N与NH+4-N浓度之比为0.82,亚硝酸盐积累率达到86%,其后出水NO2-N与NH+4-N浓度之比稳定在0.8~1.03。在此期间,出水FA平均浓度为4.40 mg·L−1,大于NOB抑制阈值(1 mg·L−1)[23],反应器内溶解氧浓度为0.2~0.4 mg·L−1,由于AOB对氧的亲和力大于NOB,溶解氧优先被AOB利用[33-34],表明此阶段NOB受到DO和FA的双重抑制作用。反应器出水的pH维持在7.5~8.0,即使在NO2-N浓度为98.87 mg·L−1的情况下,FNA的浓度也小于NOB的抑制浓度(0.023 mg·L−1)[35],这说明采用FNA抑制NOB的策略只有在高氨废水时才有可能实现。

    图 1  反应器运行效果
    Figure 1.  Performance of reactor

    当反应器接种厌氧氨氧化菌转入一段式亚硝化-厌氧氨氧化方式运行后(45~110 d),在曝气阶段,AOB可正常工作进行亚硝化;在停止供氧后,Anammox菌利用亚硝化产生亚硝酸,对氨进行氧化。因此,出水NO2-N浓度迅速降低,而NO3-N浓度在增加,这说明亚硝化和厌氧氨氧化协同作用发生。随着运行时间的延长,污泥中的AOB活性逐渐增加,出水NH+4-N浓度也逐渐降低。到70 d时,出水NH+4-N为26.81 mg·L−1NO2-N浓度在1 mg·L−1以下,NO3-N浓度为24.10 mg·L−1,反应器氨氮去除率和TN去除率分别达到86.60%和73.75%,其后反应器出水维持稳定,直至运行结束。在进入该反应阶段后,由于进行了Anammox反应,出水NH+4-N浓度的降低使得出水中FA浓度相应降低,但FA浓度处于抑制NOB的阈值范围内,因此NOB会受到FA的抑制作用,使系统中的Anammox菌能稳定利用AOB转化的亚硝酸盐进行Anammox反应,为一段式亚硝化-厌氧氨氧化反应器的稳定运行和较好的脱氮效果奠定了基础。韩志勇等[36]通过控制曝气时间和曝气量,采用MBR反应器研究了一段式部分亚硝化-厌氧氨氧化处理氨氮废水的运行特性,在进水氨氮浓度为200 mg·L−1条件下,氨氮和TN去除率分别为88.91%和58.87%。而本研究采用SBR反应器在低溶解氧条件下,获得较高的AOB和Anammox活性(图2),成功实现了一段式部分亚硝化-厌氧氨氧化的稳定运行,从而获得较好的脱氮效果。

    图 2  典型周期内DO、pH、氮素和FA浓度变化
    Figure 2.  Variations of DO, pH, nitrogen and FA concentrations during a typical cycle

    图2为一段式亚硝化-厌氧氨氧化阶段典型周期内DO、pH、氮素及FA浓度的变化。由图2可见,在进水结束后,由于进水中含有一定量的DO,首个好氧段的DO浓度可达0.6 mg·L−1以上,随着反应的进行,DO浓度快速下降并趋于稳定,而其余好氧段的DO浓度始终维持在0.2~0.4 mg·L−1,为亚硝化创造了良好的条件。在好氧段,氨氧化菌工作,NH+4-N被氧化为NO2-N,导致NH+4-N下降和NO2-N增加;在随后的缺氧段,Anammox菌开始工作,利用好氧段产生的NO2-N氧化NH+4-N,导致NH+4-N和NO2-N浓度同时减少;其后循环往复,直至反应结束,此时,NH+4-N浓度由周期起始时的95.76 mg·L−1降低到27.06 mg·L−1NO2-N浓度在1 mg·L−1以下。由于好氧段部分NO2-N被NOB氧化为NO3-N和缺氧段厌氧氨氧化反应产生部分NO3-N,导致整个周期内NO3-N浓度持续上升,由周期起始最低时的20.76 mg·L−1增加到周期结束时的28.28 mg·L−1。在整个周期内,混合液中的FA浓度大于1 mg·L−1,大于FA对NOB的抑制阈值,从而使得NOB被部分抑制。在周期内DO和FA的浓度变化结果说明本反应器的操作达到了DO和FA对NOB的双重抑制,通过间歇曝气在SBR反应器中实现了一段式亚硝化-厌氧氨氧化脱氮。

    值得注意的是,在好氧段NH+4-N浓度平均下降了约10 mg·L−1,而NO2-N浓度平均增加了5.61 mg·L−1NO3-N浓度增加了不到1 mg·L−1,约40%的氮在好氧段损失(被Anammox菌转化为氮气),氮平衡计算结果间接表明,在好氧段发生了同步亚硝化-厌氧氨氧化过程。这一结果说明在连续曝气(低DO)的条件下,同样可实现一段式亚硝化-厌氧氨氧化。

    图3图4分别为反应器运行期间污泥浓度和各功能微生物活性变化。由图3可知,污泥浓度基本维持稳定,在亚硝化阶段污泥浓度维持稳定在1.2 g·L−1左右,接种厌氧氨氧化污泥后,污泥浓度稳定在2.8 g·L−1。由图4可知,在亚硝化阶段,AOB活性逐渐升高,由1 258.62 mg·(g·d)−1升至1 842.80 mg·(g·d)−1,而NOB活性由于受到溶解氧和FA的双重抑制而稳定在281.02~330.03 mg·(g·d)−1。在此阶段,AOB活性快速上升而NOB活性维持稳定,上述结果表明,反应器在成功富集培养AOB的同时,也有效抑制了NOB,从而实现了亚硝酸盐的稳定积累。

    图 3  反应器中污泥浓度的变化
    Figure 3.  Variations of sludge concentration in the reactor
    图 4  反应器中AOB、NOB及Anammox活性变化
    Figure 4.  Variations in activities of AOB, NOB and Anammox in the reactor

    接种厌氧氨氧化污泥后,污泥浓度的增加,污泥中AOB和NOB所占份额下降而导致AOB和NOB的活性分别下降至526.13 mg·(g·d)−1和60.84 mg·(g·d)−1。由图4可知,随着反应器的运行,AOB活性总体呈现升高的趋势,最终活性达到815 mg·(g·d)−1。而此阶段NOB受到DO和FA的双重抑制,在与Anammox菌竞争NO2-N时处于劣势,这使得NOB活性始终处于较低水平并呈下降趋势,最低下降至18.54 mg·(g·d)−1。Anammox活性在接种后略有下降,这主要是由于Anammox菌未适应好氧/缺氧交替环境,在运行一段时间后,Anammox活性开始恢复并缓慢增加,其平均和最大活性分别为113.09 mg·(g·d)−1和127.61 mg·(g·d)−1。由此可见,AOB和Anammox菌在反应器中优势生长,反应器内微生物之间形成良好的协同作用,系统具有良好的运行稳定性和较好的脱氮效果。李军等[37]采用间歇曝气模式启动一段式亚硝化-厌氧氨氧化反应器处理中低浓度废水,在稳定运行后,AOB和Anammox活性分别为403 mg·(g·d)−1和221 mg·(g·d)−1。MIAO等[38]研究认为,AOB活性是一段式部分亚硝化-厌氧氨氧化在间歇曝气模式下稳定运行的关键因素,Anammox活性随着AOB活性的增加而增加,反应器的脱氮效果也随之上升。本研究中AOB和Anammox活性逐渐上升,NOB活性逐渐下降,AOB和Anammox活性远大于NOB,更有利于一段式亚硝化-厌氧氨氧化反应器的长期稳定运行。

    反应器中AOB、NOB及Anammox的FISH图像如图5所示。由图5可见,在亚硝化阶段,AOB所占份额较高,而基本检测不出NOB,这表明在亚硝化阶段通过低溶解氧和FA的双重抑制成功富集AOB的同时也达到了抑制NOB的目的,实现了亚硝化的稳定运行。在一段式亚硝化-厌氧氨氧化阶段中,AOB和Anammox菌所占份额明显高于NOB,这说明此阶段AOB和Anammox菌为反应器中的优势菌,从微生物角度表明了一段式亚硝化-厌氧氨氧化反应器实现了良好的脱氮效果和长期运行稳定性。

    图 5  反应器中AOB、NOB及Anammox FISH图
    Figure 5.  FISH pictures of AOB, NOB and Anammox bacteria in reactor

    1)在温度为35 ℃,进水NH+4-N浓度为200 mg·L−1,DO浓度为0.2~0.4 mg·L−1条件下,一段式亚硝化-厌氧氨氧化反应器处理负荷(以TN计)可达到0.24 kg·(m3·d)−1,TN平均去除率为75.84%,成功实现一段式部分亚硝化-厌氧氨氧化的稳定运行。

    2)反应器内AOB和Anammox菌形成良好的协同作用并有效抑制NOB,一段式部分亚硝化-厌氧氨氧化具有较好的运行稳定性。

    3)一段式亚硝化-厌氧氨氧化反应器的成功启动并稳定运行,为Anammox技术处理中低浓度氨氮废水提供了参考。

  • 图 1  锰铁双金属有机框架材料以及MnFeO催化剂的场发射电镜图片与元素面扫分析

    Figure 1.  FESEM images of Mn/Fe bi-MOFs and MnFeO with mapping

    图 2  MnFeO催化剂XRD分析与EDX能谱分析

    Figure 2.  XRD analysis of MnFeO and element concentration of MnFeO

    图 3  MnFeO活化PMS降解BPA的影响因素分析

    Figure 3.  Effects of various reaction conditions on BPA degradation by MnFeO/PMS system

    图 4  DMPO与TEMP作为自旋捕获剂的顺磁共振分析

    Figure 4.  EPR analysis by using DMPO and TEMP as spin trapping agent

    图 5  MnFeO-PMS作用方式与活性物种类型分析

    Figure 5.  Reaction affinity between MnFeO and PMS, and identification of active oxidation species

    图 6  基于电化学以及XPS的PMS活化机理分析

    Figure 6.  Mechanism elucidation through quench experiment, electrochemical analysis, and XPS analysis

  • [1] 王培京, 胡明, 孙德智, 等. 再生水补给河道中内分泌干扰物壬基酚变化特征分析[J]. 环境工程学报, 2019, 13(7): 1645-1652. doi: 10.12030/j.cjee.201901182
    [2] 吕琳, 董梦琪, 秦占芬. 低剂量双酚A影响哺乳动物神经发育研究现状及争议[J]. 中国环境科学: 1-14[2021-06-03]. https://doi.org/10.19674/j.cnki.issn1000-6923.20210324.007.
    [3] STAPLES C A, DOME P B, KLECKA G M, et al. A review of the environmental fate, effects, and exposures of bisphenol A[J]. Chemosphere, 1998, 36(10): 2149-2173. doi: 10.1016/S0045-6535(97)10133-3
    [4] 毕薇薇, 陈娅, 马晓雁, 邓靖, 等. 磁性有序介孔碳的制备及其对水中双酚A的吸附[J]. 中国环境科学, 2020, 40(11): 4762-4769. doi: 10.3969/j.issn.1000-6923.2020.11.015
    [5] 童浩, 王荣昌, 夏四清, 等. 膜分离技术处理水中内分泌干扰物的研究进展[J]. 中国给水排水, 2009, 25(2): 509.
    [6] 程爱华, 雷昕钰. 聚铁硅盐掺杂羟基氧化铁类芬顿催化氧化苯酚[J]. 环境工程学报, 2021, 15(3): 817-825. doi: 10.12030/j.cjee.202006053
    [7] 殷洪晶, 崔康平. 微电解/芬顿/蒸发/AO工艺处理丙硫菌唑农药废水[J]. 中国给水排水, 2021, 37(6): 112-116.
    [8] 张泽宇, 鲁智礼, 张堯, 等. 多相芬顿催化剂表面生物膜对去除双酚A的影响及其微生物群落表征[J]. 环境工程学报, 2020, 14(12): 3372-3380. doi: 10.12030/j.cjee.202002093
    [9] 孙雪, 方迪, 周立祥. 热活化过二硫酸盐改善污泥-餐厨垃圾厌氧消化物脱水性能[J/OL], 环境工程学报, 2021(4): 1417-1423.
    [10] 钟美娥, 李季, 龚道新, 等. 均相Co(Ⅱ)/PMS体系对二氯喹啉酸的降解特性研究[J]. 中国环境科学, 2015, 35(11): 3282-3287. doi: 10.3969/j.issn.1000-6923.2015.11.011
    [11] ESLAMI A, HASHEMI M, GHANBARI F. Degradation of 4-chlorophenol using catalyzed peroxymonosulfate with nano-MnO2/UV irradiation: Toxicity assessment and evaluation for industrial wastewater treatment[J]. Journal of Cleaner Production, 2018, 195(SEP. 10): 1389-1397.
    [12] 黄丽坤, 李哲, 王广智, 等. 紫外催化过硫酸盐深度处理垃圾焚烧厂渗滤液[J]. 中国环境科学, 2021, 41(1): 161-168. doi: 10.3969/j.issn.1000-6923.2021.01.018
    [13] ANTONIOU M G, CRUZ A A D L, DIONYSIOU D D. Degradation of microcystin-LR using sulfate radicals generated through photolysis, thermolysis and e − transfer mechanisms[J]. Applied Catalysis B Environmental, 2010, 96(3/4): 290-298.
    [14] 韩文亮, 陈海明, 陈兴童. 改性零价铁降解多溴二苯醚的研究进展[J]. 环境化学, 2017, 36(7): 1474-1483. doi: 10.7524/j.issn.0254-6108.2017.07.2016110801
    [15] 陈炜, 张宇东, 蔡珺晨, 等. 壳聚糖负载磺化酞菁钴催化过硫酸盐降解甲基橙的研究[J]. 中国环境科学, 2019, 39(1): 157-163. doi: 10.3969/j.issn.1000-6923.2019.01.017
    [16] 王一凡, 李小蝶, 侯美茹, 等. 锰基氧化物活化过硫酸盐降解水中有机污染物的研究进展[J/OL]. 环境科学研究: 1-13[2021-06-03]. https://doi.org/10.13198/j.issn.1001-6929.2021.04.02.
    [17] HUANG G X, WANG C Y, YANG C W, et al. Degradation of bisphenol A by peroxymonosulfate catalytically activated with Mn1.8Fe1.2O4 nanospheres: Synergism between Mn and Fe[J]. Environmental Science & Technology, 2017, 51(21): 12611-12618.
    [18] QI F, CHU W, XU B. Ozonation of phenacetin in associated with a magnetic catalyst CuFe2O4: The reaction and transformation[J]. Chemical Engineering Journal, 2015, 262: 552-562. doi: 10.1016/j.cej.2014.09.068
    [19] DU J, BAO J, LIU Y, et al. Efficient activation of peroxymonosulfate by magnetic Mn-MGO for degradation of bisphenol A[J]. Journal of Hazardous Materials, 2016, 320(15): 150-159.
    [20] WANG L, XU H, JIANG N, et al. Trace ctupric species triggered decomposition of peroxymonosulfate and degradation of organic pollutants: Cu(III) being the primary and selective intermediate oxidant[J]. Environmental Science & Technology, 2020, 54: 4686-4694.
    [21] BERHANE T M, LEVY J, KREKELER M P S, et al. Adsorption of bisphenol A and ciprofloxacin by palygorskite-montmorillonite: Effect of granule size, solution chemistry and temperature[J]. Applied Clay Science, 2016, 132-133: 518-527. doi: 10.1016/j.clay.2016.07.023
    [22] HUANG Y H, HUANG Y F, HUANG C I, et al. Efficient decolorization of azo dye reactive black B involving aromatic fragment degradation in buffered Co2+/PMS oxidative processes with a ppb level dosage of Co2+-catalyst[J]. Journal of Hazardous Materials, 2009, 170(2-3): 1110-1118. doi: 10.1016/j.jhazmat.2009.05.091
    [23] HUANG Y F, HUANG Y H. Behavioral evidence of the dominant radicals and intermediates involved in Bisphenol A degradation using an efficient Co2+/PMS oxidation process[J]. Journal of Hazardous Materials, 2009, 167(1/2/3): 418-426.
    [24] QI C, LIU X, MA J, et al. Activation of peroxymonosulfate by base: Implications for the degradation of organic pollutants[J]. Chemosphere, 2016, 151: 280-288. doi: 10.1016/j.chemosphere.2016.02.089
    [25] XU Y, AI J, ZHANG H. The mechanism of degradation of bisphenol A using the magnetically separable CuFe2O4/peroxymonosulfate heterogeneous oxidation process[J]. Journal of Hazardous Materials, 2016, 309: 87-96. doi: 10.1016/j.jhazmat.2016.01.023
    [26] NIE C, DAI Z, LIU W, et al. Criteria of active sites in nonradical persulfate activation process from integrated experimental and theoretical investigations: boron–nitrogen-co-doped nanocarbon-mediated peroxydisulfate activation as an example[J]. Environmental Science: Nano, 2020, 7: 1899-1911. doi: 10.1039/D0EN00347F
    [27] YAO Y, CAI Y, WU G, et al. Sulfate radicals induced from peroxymonosulfate by cobalt manganese oxides (CoxMn3−xO4) for Fenton-Like reaction in water[J]. Journal of Hazardous Materials, 2015, 296(oct. 15): 128-137.
    [28] DING D, ZHOU L, KANG F, et al. Synergistic adsorption and oxidation of ciprofloxacin by biochar derived from metal-enriched phytoremediation plants: Experimental and computational insights[J]. ACS Applied Materials & Interfaces, 2020, 12: 53788-53798.
    [29] LI X, WANG Z, ZHANG B, et al. FexCo3xO4 nanocages derived from nanoscale metal-organic frameworks for removal of bisphenol A by activation of peroxymonosulfate[J]. Applied Catalysis B: Environmental, 2016, 181: 788-799. doi: 10.1016/j.apcatb.2015.08.050
  • 加载中
    Created with Highcharts 5.0.7访问量Chart context menu近一年内文章摘要浏览量、全文浏览量、PDF下载量统计信息摘要浏览量全文浏览量PDF下载量2024-062024-072024-082024-092024-102024-112024-122025-012025-022025-032025-042025-050Highcharts.com
    Created with Highcharts 5.0.7Chart context menu访问类别分布DOWNLOAD: 3.7 %DOWNLOAD: 3.7 %HTML全文: 87.7 %HTML全文: 87.7 %摘要: 8.6 %摘要: 8.6 %DOWNLOADHTML全文摘要Highcharts.com
    Created with Highcharts 5.0.7Chart context menu访问地区分布其他: 84.1 %其他: 84.1 %Ahmedabad: 0.2 %Ahmedabad: 0.2 %Baoding: 0.1 %Baoding: 0.1 %Bardoli: 0.1 %Bardoli: 0.1 %Beijing: 4.6 %Beijing: 4.6 %Brooklyn: 0.1 %Brooklyn: 0.1 %Chang'an: 0.1 %Chang'an: 0.1 %Changchun: 0.1 %Changchun: 0.1 %Changzhou: 0.1 %Changzhou: 0.1 %Chaowai: 0.1 %Chaowai: 0.1 %Chengdu: 0.4 %Chengdu: 0.4 %Chishiqiao: 0.1 %Chishiqiao: 0.1 %Chongqing: 0.1 %Chongqing: 0.1 %Foshan: 0.1 %Foshan: 0.1 %Guangzhou: 0.1 %Guangzhou: 0.1 %Haidian: 0.1 %Haidian: 0.1 %Hangzhou: 0.4 %Hangzhou: 0.4 %Hefei: 0.2 %Hefei: 0.2 %Huainan: 0.1 %Huainan: 0.1 %Hyderabad: 0.2 %Hyderabad: 0.2 %Jiang’an Qu: 0.1 %Jiang’an Qu: 0.1 %Jinan: 0.1 %Jinan: 0.1 %Jinrongjie: 0.2 %Jinrongjie: 0.2 %Jung-gu: 0.1 %Jung-gu: 0.1 %Mountain View: 0.2 %Mountain View: 0.2 %Nanjing: 0.4 %Nanjing: 0.4 %New Taipei: 0.3 %New Taipei: 0.3 %Putuo Qu: 0.1 %Putuo Qu: 0.1 %Qingzhou: 0.1 %Qingzhou: 0.1 %Qinnan: 0.1 %Qinnan: 0.1 %Quincy: 0.1 %Quincy: 0.1 %Rajkot: 0.2 %Rajkot: 0.2 %Sendai: 0.1 %Sendai: 0.1 %Shanghai: 0.3 %Shanghai: 0.3 %Shenyang: 0.1 %Shenyang: 0.1 %Shenzhen: 0.1 %Shenzhen: 0.1 %Shijiazhuang: 0.3 %Shijiazhuang: 0.3 %Starkville: 0.1 %Starkville: 0.1 %Taichung: 0.1 %Taichung: 0.1 %Taiyuan: 0.1 %Taiyuan: 0.1 %Whitehall: 0.1 %Whitehall: 0.1 %Wuhan: 0.2 %Wuhan: 0.2 %Wulipu: 0.1 %Wulipu: 0.1 %Xi'an: 0.2 %Xi'an: 0.2 %Xiamen: 0.1 %Xiamen: 0.1 %Xincheng: 0.2 %Xincheng: 0.2 %XX: 3.7 %XX: 3.7 %Yinchuan: 0.1 %Yinchuan: 0.1 %Yuncheng: 0.2 %Yuncheng: 0.2 %Zhengzhou: 0.1 %Zhengzhou: 0.1 %上海: 0.1 %上海: 0.1 %北京: 0.2 %北京: 0.2 %大连: 0.1 %大连: 0.1 %天津: 0.1 %天津: 0.1 %山景: 0.1 %山景: 0.1 %广州: 0.1 %广州: 0.1 %杭州: 0.1 %杭州: 0.1 %济南: 0.1 %济南: 0.1 %深圳: 0.2 %深圳: 0.2 %烟台: 0.1 %烟台: 0.1 %衢州: 0.1 %衢州: 0.1 %运城: 0.1 %运城: 0.1 %阳泉: 0.1 %阳泉: 0.1 %其他AhmedabadBaodingBardoliBeijingBrooklynChang'anChangchunChangzhouChaowaiChengduChishiqiaoChongqingFoshanGuangzhouHaidianHangzhouHefeiHuainanHyderabadJiang’an QuJinanJinrongjieJung-guMountain ViewNanjingNew TaipeiPutuo QuQingzhouQinnanQuincyRajkotSendaiShanghaiShenyangShenzhenShijiazhuangStarkvilleTaichungTaiyuanWhitehallWuhanWulipuXi'anXiamenXinchengXXYinchuanYunchengZhengzhou上海北京大连天津山景广州杭州济南深圳烟台衢州运城阳泉Highcharts.com
图( 6)
计量
  • 文章访问数:  12559
  • HTML全文浏览数:  12559
  • PDF下载数:  175
  • 施引文献:  0
出版历程
  • 收稿日期:  2021-05-06
  • 录用日期:  2021-07-05
  • 刊出日期:  2021-09-10
李广英, 杜敏洁, 谈成英, 关海刚, 陈荣志. 锰铁氧体活化PMS降解双酚A的过程机制[J]. 环境工程学报, 2021, 15(9): 2954-2965. doi: 10.12030/j.cjee.202105024
引用本文: 李广英, 杜敏洁, 谈成英, 关海刚, 陈荣志. 锰铁氧体活化PMS降解双酚A的过程机制[J]. 环境工程学报, 2021, 15(9): 2954-2965. doi: 10.12030/j.cjee.202105024
LI Guangying, DU Minjie, TAN Chengying, GUAN Haigang, CHEN Rongzhi. The mechanism of BPA degradation in a system of peroxymonosulfate activated by a Mn/Fe bimetallic oxide catalysts[J]. Chinese Journal of Environmental Engineering, 2021, 15(9): 2954-2965. doi: 10.12030/j.cjee.202105024
Citation: LI Guangying, DU Minjie, TAN Chengying, GUAN Haigang, CHEN Rongzhi. The mechanism of BPA degradation in a system of peroxymonosulfate activated by a Mn/Fe bimetallic oxide catalysts[J]. Chinese Journal of Environmental Engineering, 2021, 15(9): 2954-2965. doi: 10.12030/j.cjee.202105024

锰铁氧体活化PMS降解双酚A的过程机制

    通讯作者: 陈荣志(1983—),男,博士,副教授。研究方向:水污染控制技术。E-mail:crz0718@ucas.ac.cn
    作者简介: 李广英(1973—),女,学士,高级工程师。研究方向:水污染控制等。E-mail:Lgy8174809@hotmail.com
  • 1. 青海省生态环境规划和环保技术中心,西宁 810007
  • 2. 中国科学院大学资源与环境学院,北京 100049
基金项目:
青海省重大科技专项 “湟水流域水-气-土一体化环境管理体系及污染控制关键技术集成与示范”(2018-SF-A4)

摘要: 针对污水处理厂的出水中检测出了未代谢药物、内分泌干扰物等生物难降解有机物的问题,通过制备Mn/Fe双金属氧化物催化剂MnFeO,并耦合过一硫酸盐(PMS)构建了基于PMS活化的高级氧化体系,以降解废水中的BPA。结果表明,由于活化位点丰度的提升,所构建体系的氧化性能随着催化剂投加量的增加而增加;过高的PMS浓度会触发体系的自淬灭效应,从而导致污染物降解性能降低;该体系在不同pH条件下均表现出了良好的污染物降解性能,由于PMS稳定性的变化,弱碱性环境可显著提升体系的氧化性能。催化剂在循环使用过程中的催化性能有明显衰减,但可通过在空气气氛中的煅烧实现性能恢复。顺磁共振分析和自由基淬灭实验结果表明,体系中产生的自由基与单线态氧是PMS分解形成的主要活性物种;而电化学分析结果表明,污染物与MnFeO-PMS复合体之间存在直接电子传递过程,通过活性物种与直接电子传递过程实现了有机污染物的降解。以上研究结果可为锰铁双金属氧化物活化PMS提供参考。

English Abstract

  • 近年来,污水处理厂的出水,甚至再生水中,均检测出了未代谢药物、内分泌干扰物等生物难降解有机物[1]。虽然其浓度较低,但在大水量排放的情况,其在环境中会不断积累,存在一定的生态风险[2]。其中,以双酚A(bisphenol A,BPA)为代表的一类内分泌干扰物最为典型[3]。由于塑料制品的广泛应用,BPA已经在野生动物和人体中被大量发现。因此,对于该类污染物的深度处理受到了广泛的关注。大量研究者通过吸附[4]、膜分离[5]等物化方法尝试对BPA进行针对性去除,取得了较好的效果。然而,这些方法通常存在去除效率低、操作复杂等缺点。因此,开发高效的BPA去除技术迫在眉睫。

    高级氧化技术(advanced oxidation processes, AOPs)是一种通过氧化剂产生强氧化性的活性自由基,将难降解有机物直接矿化或分解成无毒小分子的水处理技术。该技术近年来在水处理领域得到越来越广泛的研究和应用,其中以芬顿工艺最为常见[6-7]。在该工艺体系中双氧水在特定pH环境下,被Fe2+活化从而产生羟基自由基(·OH),通过其极强的氧化性实现水中难降解有机物的降解或矿化。但芬顿技术存在化学污泥产量大、氧化性能相对不足的问题[8]。此外,芬顿氧化通常要求酸性反应环境,这在实际生产应用中极大增加了工艺的复杂程度,限制了其推广应用。为了解决这些问题,基于硫酸根自由基(SO4)的高级氧化技术成为近年来极具潜力的生物难降解污染物的处理技术。SO4可通过活化过一硫酸盐(peroxymonosulfate,PMS)和过硫酸盐产生(peroxydisulfate,PDS)。由于其具有较宽的pH适用范围、较高的氧化还原电位(2.5~3.1 V),因此,展现出了优于芬顿氧化技术的良好性能[9]。大量研究表明,通过过渡金属[10]、紫外线[11-12]、热[13]、超声等过程[14],可以显著活化过硫酸盐从而实现对有机物的降解。其中,过渡金属活化由于不需要外加能量而成为主流的研究方向。

    相对于均相过渡金属反应体系,采用非均相催化剂活化PMS具有能够抑制金属离子溶出、不易造成二次污染等优点。其中,铁氧体MFe2O4(M = Co, Mn, Cu, Zn等)是最广泛使用的催化剂之一。在不同的过渡金属铁氧体中,钴铁氧体在活化PMS过程中表现出了最佳的催化性能[15]。但由于钴本身具有生物毒性,溶出到污水中易产生二次污染,这使得毒性较低的锰成为了一个良好的替代选择[16]。有研究表明,铁锰氧化物中铁的存在可以显著增强体系对有机物和PMS的吸附作用,从而为锰进一步活化PMS并降解污染物提供先决条件[17]。同时,铁的存在亦可一定程度上抑制锰的溶出,使催化剂具有良好的稳定性。因此,制备锰铁氧体,使其活化过硫酸盐用于有机物的降解的可行性较高。值得注意的是,在过渡金属氧化物活化PMS的过程中,通常认为体系产生的大量自由基与一定量的单线态氧是实现污染物降解的主要途径。然而,有机物与过渡金属氧化物表面吸附态PMS之间是否存在直接电子传递作用,并导致其对污染物降解产生贡献,尚缺乏相关报道。

    本研究通过水热法合成了基于Mn/Fe的双金属有机框架材料,通过对其进行适宜的热处理,制备了传质效率良好的锰铁氧体催化剂。通过场发射扫描电镜、X射线衍射分析,X射线光电子能谱等手段对所制备催化剂的基础物化性质进行了详细的表征,并使其耦合PMS构建了非均相的硫酸根自由基高级氧化体系,用于目标污染物BPA的降解。实验中考察了催化剂投加量、氧化剂投加量、pH对降解效果的影响,并通过顺磁共振、自由基淬灭实验、电化学分析等手段,对过程机理进行了深入分析。

  • 乙酰丙酮铁 ((Fe(acac)3)、对苯二甲酸(C8H6O4)、四水合氯化锰(MnCl2·4H2O),过硫酸氢钾复合盐(Oxone, KHSO5·0.5KHSO5·0.5K2SO4)、双酚A (BPA)、N’N-二甲基甲酰胺 (DMF)、盐酸(HCl)、氢氧化钠(NaOH)等试剂均购于上海麦克林公司(分析纯)。无水乙醇、甲醇、乙腈等色谱纯有机溶剂均购于赛默飞公司。实验用水均出自Milli-Q超纯水系统。

  • 1)催化剂的制备与表征。本实验采用水热法与煅烧法耦合制备催化剂。具体方法如下:将1 mmol 乙酰丙酮铁、1.67 mmol 对苯二甲酸、0.5 mmol 四水合氯化锰溶于15 mL乙醇和25 mL DMF的混合溶液中,并在室温下不断搅拌直至全部溶解;将混合溶液转移到高压反应釜并放入烘箱,在120 ℃条件下反应12 h;水热反应结束后自然冷却至室温,将产物离心分离并使用甲醇清洗3次,然后在60 ℃烘箱中烘干得到锰铁双金属有机框架材料(Mn/Fe-MOFs);将该材料在马弗炉中以10 ℃每分钟升温速率升至450 ℃并煅烧1 h(空气气氛),结束后冷却至室温即可得到催化剂。

    2)实验仪器。本研究使用Quanta FEG, 250场发射扫描电子显微镜(FESEM)观察催化剂的微观形貌,使用Rigaku Ultimate IV型X射线衍射仪(XRD)进行催化剂晶相分析,利用Thermo Fisher K-Alpha型X射线光电子能谱(XPS)分析催化剂反应前后其组分价态环境变化,V-sorb 2800P型孔径分析仪分析催化剂的比表面积,使用Bruker EMXmicro-6/1电子顺磁共振(EPR)鉴别体系中的活性氧物种的类型,使用Nicolet iS50型傅里叶红外光谱仪分析PMS在催化剂表面的吸附行为 (ATR-FTIR)。催化剂活化PMS过程的电化学行为通过电化学工作站(CHI660E)进行分析,分析过程采用三电极模式。其中饱和甘汞电极作为参比电极,铂电极作为对电极,碳玻电极作为工作电极,电解质采用100 mmol·L−1硫酸钠溶液。

    3)BPA降解实验。BPA降解实验在100 mL玻璃烧杯中进行,反应前,首先使用HNO3(0.1 mol·L−1)或NaOH(0.1 mol·L−1)将BPA溶液pH调节至6.5。将不同投加量的催化剂加入到BPA溶液的烧杯中,放入超声清洗器中超声分散10~15 s,使催化剂完全均匀分散于溶液。然后向溶液中加入PMS激发氧化反应,反应过程中采用磁力搅拌器缓慢搅拌,搅拌速率约120 r·min−1。在预设的时间间隔进行取样,每次取样量为1 mL,使用0.22 μm滤膜过滤样品,而后加入1.5 mL高效液相色谱取样瓶中,并立即用0.5 mL甲醇进行淬灭。常规实验中,反应过程均在水浴中完成,反应温度为(25±0.5) ℃,BPA浓度为40 μmol·L−1,PMS浓度为0.4 mmol·L−1,催化剂投加量为0.1 g·L−1,初始pH为6.5±0.1。影响因素分析实验中,仅改动单个反应条件并保持其他条件相同,以分析其对最终结果的影响。

    所取水样在2 h内使用超高效液相色谱进行测定,流动相采用水和乙腈混合液(乙腈体积比为40%),流速为0.2 mL·min−1,检测波长为278 nm,柱温控制为35 ℃。表观降解动力学常数由式(1)计算获得。

    式中:C0为初始浓度,μmol·L−1Ctt时刻浓度,μmol·L−1t为时间,min;kapp为表观动力学常数。

  • 使用FESEM对所制备Mn/Fe-MOFs和煅烧所得催化剂的形貌和基本组分进行分析。由图1(a)可以看出,所制备Mn/Fe-MOFs具有纺锤状微观形貌,尺寸不均一,常见尺寸为2~6 μm。通过热处理得到的催化剂形貌如图1(b)所示,可见通过热处理后,Mn/Fe-MOFs的微观形貌发生了很大的变化,其纺锤结构保留度较低,形成了大量针状催化剂。这表明,在Mn/Fe-MOFs的煅烧过程中,其中的碳组分在空气中氧分子的存在下转化为二氧化碳,使得MOFs中残余的金属离子转化为氧化物。EDX-mapping分析结果表明,催化剂中Mn、Fe元素较为均匀地分布于材料表面,且Mn、Fe元素分布与O元素高度重叠,表明形成了锰铁复合氧化物。此外,EDX-mapping分析结果也表明,催化剂中残余有少量的C元素,说明450 ℃没有使MOFs中的碳元素完全燃烧。

    使用XRD分析进一步确认了合成催化材料的物相,结果如图2(a)所示。所制备催化剂在2θ为17.99°、30.02°的衍射峰对应MnFe2O4的(111)和(202)晶面,42.52°、56.19°、64.79°的衍射峰分别对应MnFe2O4的(400)、(511)和(531)晶面。此外,基于XRD衍射信号还可分析出Fe2O3的存在。因此,可推断所制备催化剂主要成分为MnFe2O4与Fe2O3(MnFeO)。能谱分析结果进一步确认了MnFeO中各元素的原子浓度,其中氧、碳、锰和铁原子浓度分别为43.05%、10.75%、10.70%和32.51%,表明催化剂中金属元素均已氧化物形式存在,这与XRD分析结果高度一致。N2吸附/脱附分析结果表明,所制备催化剂BET表面积为33.9 m2·g−1,平均孔径为16.2 nm,孔体积为0.092 cm3·g−1

  • 1)催化剂投加量的影响。由图3(a)可知,在无PMS投加情况下(T为(25±0.5) ℃、BPA为40 μmol·L−1、PMS为0.4 mmol·L−1、MnFeO投加量为0.1 g·L−1、pH0为6.5±0.1),约有18.2%的BPA被去除,这表明MnFeO具有一定的BPA吸附性能。在PMS存在情况下,当MnFeO投加量为0.05 g·L−1时,60 min内BPA降解率为75%。而随着MnFeO投加量增加,BPA的催化效果显著增强。该现象是由于催化剂投加量的增加显著提升了反应体系中催化活性位点的丰度,使得催化剂对PMS的吸附性能增强,该过程强化了催化剂与PMS的接触几率,从而使体系产生的氧化性物种数量显著增加[18-19]。而当催化剂的用量增加到0.5 g·L−1, BPA在20 min内达到完全降解。使用一级动力学(式(1))反应分析不同投加量下的表观反应动力学常数,可以发现表观反应速率常数kapp随着催化剂浓度的增加而增加,当催化剂投加量为0.05、0.1、0.2和0.5 g·L−1时(其他条件不变),对应的表观动力学常数kapp分别为0.023 8、0.061 9、0.082 8和0.224 2 min−1。通过反应速率常数与催化剂投加量相关性分析可以发现,反应速率与投加量(d)之间存在kapp=0.431 7d - 0.006 4的关系,且拟合度(R2)达到0.988 1。这表明催化剂投加量与催化反应效率提升之间的直接相关。此外,以0.1 g·L−1为投加量的MnFeO金属离子溶出液为研究对象,通过溶出液直接活化PMS对反应过程的非均相途径贡献进行了分析。结果表明,相同条件下仅9%的BPA被溶出液降解,表明MnFeO/PMS降解BPA的过程为PMS非均相活化过程。由ICP分析结果可见,该条件下MnFeO的锰离子溶出量仅为37.2 μg·L−1。而在MnFeO/PMS体系中,60 min后锰离子溶出量为61.7 μg·L−1,这表明PMS存在下的弱酸性环境会加速锰离子的溶出。

    2) PMS投加量的影响。通过不同PMS投加浓度,分析相同催化剂投加下的氧化性能表现,对PMS适宜浓度的选择具有较好的参考价值。本研究考察了PMS投加量为0.2~2.0 mmol·L−1对BPA降解效果的影响(T为(25±0.5) ℃、BPA为40 μmol·L−1、MnFeO投加量为0.1g·L−1、pH0为6.5±0.1)。如图3(c)所示,控制PMS浓度对BPA的降解行为具有明显的影响。当PMS浓度由0.2 mmol·L−1增至0.4 mmol·L−1时,一级动力学常数k值由0.032 5 min−1升至0.061 9 min−1,表明PMS浓度的增加强化了传质推动力,使更多的PMS被吸附到催化剂表面并进行了活化,体系的氧化性得到了大幅的提升。通过该结论可以预测,当PMS浓度进一步升高时,其氧化性能会得到更高的提升。然而,进一步研究发现,当PMS浓度提升至0.8 mmol·L−1时,其反应速率并未得到上升,反而有了显著的下降(kapp=0.054 9 min−1)的趋势。相反,当PMS进一步提升至2.0 mmol·L−1时,反应速率反而降至0.036 7 min−1,与PMS为0.2 mmol·L−1时氧化性能的表现基本相同。该结果表明,体系中存在过量PMS时,对反应具有显著的抑制作用[19]。进一步分析发现,过量的PMS会淬灭催化剂表面已经产生的·OH和SO4· (式(2)和式(3)),生成氧化性较弱的SO5·,使氧化性物种产生了一定量的消耗,导致了污染物降解性能的显著降低[20]。因此,选择适宜的PMS浓度具有非常重要的实际意义。

    3)初始pH影响。pH是化学反应过程中的一个重要参数,本研究考察了初始pH在4.0,6.5和10.0时MnFeO/PMS体系对BPA的降解情况(T=(25±0.5) ℃、BPA为40 μmol·L−1、PMS为0.4 mmol·L−1、MnFeO投加量为0.1 g·L−1)。由于PMS与催化剂的反应会使溶液pH发生显著变化,因此,首先通过对照实验分析了不同初始pH下,反应体系pH随着PMS活化反应的变化。实验结果表明,在不同初始pH下,MnFeO/PMS体系的pH在经历初期的迅速下降以后变得比较平缓(图3(e))。其中,初始pH为4.0和6.5时,体系pH在30 min后稳定在3.5和4.9。而初始pH为10.0时,30 min后pH降为8.1,为弱碱性。BPA降解实验结果表明(图3(d))),催化剂在较宽pH范围内均展现出了的较强降解效果。但通过总结可以发现,体系对污染物的降解性能随着体系初始pH的提高而升高。在初始pH为4.0、6.5、10.0时,去除率依次为85.2% (60 min)、97.8% (60 min)和98.8% (40 min),对应的反应速率常数kapp依次为0.029 3、0.061 9和0.085 7 min−1。MnFeO的零电荷点(pHzpc)为6.8[17]。当体系pH<6.8时,催化剂表面带正电,可强化其对PMS的吸附;相反,当体系pH>6.8时,催化剂表面负电点位逐步增多。而HSO5-离子的解离常数(pKa)为9.4[21]。在极酸条件下存在形式为H2SO5,在碱性条件下其存在形式为SO25。有研究[22]表明,在酸性条件下H+的活度显著增加,会淬灭反应体系中的SO4·和·OH (式(4)和式(5)),从而造成活性物种的消耗,进而对有机物的降解起到抑制作用。同时,也有研究[23]表明,在酸性介质条件下,PMS具有较高的稳定性,难以被活化;而在弱碱性条件下,SO25更易被活化产生氧化性物种,从而提升有机物降解效率。另有研究[24]表明,弱碱性的条件,如适宜浓度的OHHCO3均可独立活化PMS,使体系氧化性能得到显著的增加。因此,适当提高反应体系的初始pH,可显著促进体系的催化反应速率,强化污染物的降解。此外,对不同pH条件下MnFeO的锰离子溶出量做了进一步分析。上述结果表明,当pH为4.0时,锰离子溶出量为91.7 μg·L−1,高于中性时的37.2 μg·L−1,表明适度增强的酸性条件会导致催化剂稳定性的轻微降低;而在pH为10.0时,溶液中无法检测到锰离子,表明催化剂在弱碱性条件下非常稳定。

    催化剂的循环利用性能,是其能否持续高效降解有机物的关键指标,本研究对所制备MnFeO催化剂的循环利用性能进行了综合分析。每轮反应条件保持相同,其中,温度为(25±0.5) ℃,BPA浓度为40 μmol·L−1,PMS浓度为0.4 mmol·L−1,MnFeO投加量为0.1 g·L−1,初始pH为6.5±0.1;每次反应结束后,使用0.45 μm滤膜分离催化剂并在60 ℃下烘干备用。如图3(f)所示,可以发现在逐轮的使用过程中,催化剂的PMS活化性能有轻微的衰减,在第2轮中污染物的降解效率为96%,在第3轮中下降至80%。这可能是由于催化剂在使用过程中形成的表面羟基吸附了污染物以及中间产物,造成了活性位点的覆盖,导致活性位点无法与PMS接触。因此,对使用后的催化剂在450 ℃条件下进行了再次煅烧。实验结果表明,再次热处理后催化剂的PMS活化性能得到了有效的恢复,BPA降解效率在煅烧后恢复到98.1%,与首轮使用性能基本一致,表明催化剂具有良好的循环利用性能。

  • 由前述讨论可知,体系中可能存在的氧化性物种有SO4·、HO·和1O2[25]。因此,使用顺磁共振对反应体系中的活性物种进行了鉴定。通过5,5-二甲基-1-吡咯啉-N-氧化物(5,5-dimethyl-1-pyrroline N-oxide,DMPO)作为自旋捕获剂,可以有效观察到羟基自由基和硫酸根自由基的信号,表明MnFeO活化PMS过程中存在自由基途径(图4(a))。通过2,2,6,6-四甲基哌啶(2,2,6,6-tetramethylpiperidine, TEMP)作为自旋捕获剂,可直接观察到1O2的特征峰(图4(b))。根据峰强度随反应时间的变化可以看出,自由基信号随着反应时间的增加而增强,而1O2的信号强度在反应过程中也随着反应时间的增加显著增强,表明在PMS活化过程中不断产生自由基与1O2。此外,通过淬灭实验对反应体系过程机制做了进一步分析。叔丁醇(TBA)与SO4·的反应速率为4~9.1×105 L·mol−1s−1,与HO·的反应速率为3.8~7.6×108 L·(mol·s)−1;由于甲醇包含1个α-H,使其可以快速的与SO4·和HO·反应,其与SO4·的反应速率为3.2×106 L·(mol·s)−1,与HO·的反应速率为9.7×108 L·(mol·s)−1[25]。因此,分别使用甲醇和叔丁醇作为淬灭剂并对照污染物降解效果,可初步确定SO4·与HO·对污染物降解的贡献。结果表明,甲醇表现出了强于叔丁醇的淬灭效应,表明在自由基途径中SO4·与HO·共同对污染物的降解起到了作用(图5(a)),且SO4起主要作用。此外,在L-组氨酸作为淬灭剂条件下,初步分析了体系中1O2的对污染物的降解行为。结果表明,低浓度L-组氨酸的共存可显著抑制BPA的降解,表明1O2对BPA降解的贡献度不可被忽略。

    在PMS活化过程中,PMS需要首先吸附到催化剂表面,进而通过PMS的断裂产生对应的氧化性物种。ATR-FTIR分析可明显观察到PMS的S—O及S=O特征键(图5(b))。然而,当PMS与MnFeO接触后,可观察到对应特征键的波数发生了蓝移。其中,S=O从1 101.64 cm−1移动到1 111.76 cm−1,而S—O从1 244.84 cm−1移动到了1 251.57 cm−1。特征波数的蓝移通常是由于PMS被吸附在MnFeO表面,导致其特征键的振动方式发生了变化。对于PMS的活化,自由基的产生通常需要催化剂供出电子,实现PMS中过氧键O—O的断裂[26]。因此,使用电化学工具对体系中催化剂、PMS以及BPA 3个组分之间的作用关系做了了进一步分析。开路电位(OCP)分析结果(图6(a))表明,PMS浓度的增加,使催化剂-PMS复合体的电位有了显著提升,且电位提升效果随着PMS浓度的升高而升高。该结果表明,溶液中的PMS被MnFeO吸附,吸附态PMS为后续的活化提供了先决条件,这与ATR-FTIR分析的结果一致。线型伏安(LSV)分析结果表明,在相同的外电势下,体系中PMS的投加大幅提高了体系的电流密度,表明催化剂与吸附态PMS之间存在电子传递过程,这可能是PMS活化的主要原因(图6(b))。而BPA在MnFeO/PMS体系中的额外引入,使得体系的电流密度有了一定程度的减弱,表明BPA与MnFeO-PMS复合体之间存在直接电子传递过程。该现象可能是由于MnFeO/PMS复合体较高的电位具有更强的电子获得能力,导致吸附态BPA中的电子直接传递到MnFeO-PMS复合体中,实现了BPA的降解。该过程被I-t曲线的分析结果进一步验证。由图6(c)可见,PMS的投加使催化剂界面的电流密度显著降低,而后续BPA的投加有效降低了电流密度,导致电子从BPA向MnFeO-PMS复合体的传递,进而对BPA的降解做出了显著贡献。

    基于上述电化学过程分析结果,使用X射线光电子能谱(XPS)对反应前后催化剂中的元素价态变化进行了直接分析。结果表明,反应前MnFeO中锰元素的价态形式主要为Mn2+、Mn3+和Mn4+,相对含量约为30.48%、46.19%和23.32%(图6(d));铁元素的价态主要为八面体位Fe2+、八面体位Fe3+与四面体位Fe3+,其相对含量分别为31.34%、32.49%和36.17%(图6(e))。而反应后,金属元素的价态分布发生了显著的变化,其中Mn2+的相对含量显著提升至51.29%,而Mn3+的相对含量显著降低。此外,Fe(II)的总体含量降低至13.32%,这表明MnFeO中少量的Fe(II)也参与了PMS的活化过程;同时,反应后表面羟基的含量显著增加。基于此,可总结出该体系反应机理如下。MnFeO在PMS溶液中首先发生表面羟基化过程(式(6)),而后羟基化位点吸附溶液中的PMS,通过催化剂向PMS的电子传递,形成过氧键的断裂,并生成SO4(式(7)~式(8))。反应过程中伴随催化剂中低价态锰(Mn2+和Mn3+)向高态锰的转化(Mn3+和Mn4+)。需要注意的是,反应体系中Mn3+/Mn2+的电极电位为1.71 V,HSO5/SO5·的电极电位为1.1 V[27]。因此。在催化体系中,Mn3+可以与HSO5直接反应生成SO5·,且将Mn3+还原为Mn2+,实现了催化剂中锰元素价态的II-III-II循环(式(9)),保证了催化体系中自由基途径的持续进行。催化剂表面局部的OH浓度升高导致PMS分解形成1O2,从而解释了通过1O2 实现BPA降解的途径。此外,吸附态PMS与催化剂共同形成的高电位复合体,会激活与BPA之间的直接电子传递,也对污染物的降解起到了一定的作用[28]。值得注意的是,由于Fe3+/Fe2+的电极电位过低(0.8 V)[29],导致Fe3+在体系中无法被还原为Fe2+。因此,铁元素价态的II-III-II循环无法在该体系中显著实现,使得铁元素直接活化PMS的贡献度较低,但由于其易水解特性,可能对表面羟基的形成以及对有机物和PMS的吸附有一定的促进作用[17]

  • 1)所制备MnFeO催化剂在氧化降解水中BPA的过程中表现出了较强的PMS活化性能,BPA降解率随着催化剂投加量的增加而升高。

    2) PMS的浓度对体系的氧化性能影响较大,高于0.8 mmol·L−1的PMS会触发自淬灭效应,从而导致体系氧化性能降低。

    3)体系在不同pH下均表现出良好的PMS活化性能,弱碱性条件有利于体系氧化性能的提高;催化剂在连续使用下催化性能有微弱的衰减,通过简单的煅烧可完全实现催化剂活化性能的恢复。

    4)锰元素供出电子生成的SO4·以及后续形成的HO·是主要的活性组分,同时过程中伴随着1O2的形成;有机物与吸附态PMS之间存在直接电子传递过程并同时实现了有机物的非自由基途径降解,该现象在类似体系中值得深入探索。

参考文献 (29)

返回顶部

目录

/

返回文章
返回