[1] |
王培京, 胡明, 孙德智, 等. 再生水补给河道中内分泌干扰物壬基酚变化特征分析[J]. 环境工程学报, 2019, 13(7): 1645-1652. doi: 10.12030/j.cjee.201901182
|
[2] |
吕琳, 董梦琪, 秦占芬. 低剂量双酚A影响哺乳动物神经发育研究现状及争议[J]. 中国环境科学: 1-14[2021-06-03]. https://doi.org/10.19674/j.cnki.issn1000-6923.20210324.007.
|
[3] |
STAPLES C A, DOME P B, KLECKA G M, et al. A review of the environmental fate, effects, and exposures of bisphenol A[J]. Chemosphere, 1998, 36(10): 2149-2173. doi: 10.1016/S0045-6535(97)10133-3
|
[4] |
毕薇薇, 陈娅, 马晓雁, 邓靖, 等. 磁性有序介孔碳的制备及其对水中双酚A的吸附[J]. 中国环境科学, 2020, 40(11): 4762-4769. doi: 10.3969/j.issn.1000-6923.2020.11.015
|
[5] |
童浩, 王荣昌, 夏四清, 等. 膜分离技术处理水中内分泌干扰物的研究进展[J]. 中国给水排水, 2009, 25(2): 509.
|
[6] |
程爱华, 雷昕钰. 聚铁硅盐掺杂羟基氧化铁类芬顿催化氧化苯酚[J]. 环境工程学报, 2021, 15(3): 817-825. doi: 10.12030/j.cjee.202006053
|
[7] |
殷洪晶, 崔康平. 微电解/芬顿/蒸发/AO工艺处理丙硫菌唑农药废水[J]. 中国给水排水, 2021, 37(6): 112-116.
|
[8] |
张泽宇, 鲁智礼, 张堯, 等. 多相芬顿催化剂表面生物膜对去除双酚A的影响及其微生物群落表征[J]. 环境工程学报, 2020, 14(12): 3372-3380. doi: 10.12030/j.cjee.202002093
|
[9] |
孙雪, 方迪, 周立祥. 热活化过二硫酸盐改善污泥-餐厨垃圾厌氧消化物脱水性能[J/OL], 环境工程学报, 2021(4): 1417-1423.
|
[10] |
钟美娥, 李季, 龚道新, 等. 均相Co(Ⅱ)/PMS体系对二氯喹啉酸的降解特性研究[J]. 中国环境科学, 2015, 35(11): 3282-3287. doi: 10.3969/j.issn.1000-6923.2015.11.011
|
[11] |
ESLAMI A, HASHEMI M, GHANBARI F. Degradation of 4-chlorophenol using catalyzed peroxymonosulfate with nano-MnO2/UV irradiation: Toxicity assessment and evaluation for industrial wastewater treatment[J]. Journal of Cleaner Production, 2018, 195(SEP. 10): 1389-1397.
|
[12] |
黄丽坤, 李哲, 王广智, 等. 紫外催化过硫酸盐深度处理垃圾焚烧厂渗滤液[J]. 中国环境科学, 2021, 41(1): 161-168. doi: 10.3969/j.issn.1000-6923.2021.01.018
|
[13] |
ANTONIOU M G, CRUZ A A D L, DIONYSIOU D D. Degradation of microcystin-LR using sulfate radicals generated through photolysis, thermolysis and e − transfer mechanisms[J]. Applied Catalysis B Environmental, 2010, 96(3/4): 290-298.
|
[14] |
韩文亮, 陈海明, 陈兴童. 改性零价铁降解多溴二苯醚的研究进展[J]. 环境化学, 2017, 36(7): 1474-1483. doi: 10.7524/j.issn.0254-6108.2017.07.2016110801
|
[15] |
陈炜, 张宇东, 蔡珺晨, 等. 壳聚糖负载磺化酞菁钴催化过硫酸盐降解甲基橙的研究[J]. 中国环境科学, 2019, 39(1): 157-163. doi: 10.3969/j.issn.1000-6923.2019.01.017
|
[16] |
王一凡, 李小蝶, 侯美茹, 等. 锰基氧化物活化过硫酸盐降解水中有机污染物的研究进展[J/OL]. 环境科学研究: 1-13[2021-06-03]. https://doi.org/10.13198/j.issn.1001-6929.2021.04.02.
|
[17] |
HUANG G X, WANG C Y, YANG C W, et al. Degradation of bisphenol A by peroxymonosulfate catalytically activated with Mn1.8Fe1.2O4 nanospheres: Synergism between Mn and Fe[J]. Environmental Science & Technology, 2017, 51(21): 12611-12618.
|
[18] |
QI F, CHU W, XU B. Ozonation of phenacetin in associated with a magnetic catalyst CuFe2O4: The reaction and transformation[J]. Chemical Engineering Journal, 2015, 262: 552-562. doi: 10.1016/j.cej.2014.09.068
|
[19] |
DU J, BAO J, LIU Y, et al. Efficient activation of peroxymonosulfate by magnetic Mn-MGO for degradation of bisphenol A[J]. Journal of Hazardous Materials, 2016, 320(15): 150-159.
|
[20] |
WANG L, XU H, JIANG N, et al. Trace ctupric species triggered decomposition of peroxymonosulfate and degradation of organic pollutants: Cu(III) being the primary and selective intermediate oxidant[J]. Environmental Science & Technology, 2020, 54: 4686-4694.
|
[21] |
BERHANE T M, LEVY J, KREKELER M P S, et al. Adsorption of bisphenol A and ciprofloxacin by palygorskite-montmorillonite: Effect of granule size, solution chemistry and temperature[J]. Applied Clay Science, 2016, 132-133: 518-527. doi: 10.1016/j.clay.2016.07.023
|
[22] |
HUANG Y H, HUANG Y F, HUANG C I, et al. Efficient decolorization of azo dye reactive black B involving aromatic fragment degradation in buffered Co2+/PMS oxidative processes with a ppb level dosage of Co2+-catalyst[J]. Journal of Hazardous Materials, 2009, 170(2-3): 1110-1118. doi: 10.1016/j.jhazmat.2009.05.091
|
[23] |
HUANG Y F, HUANG Y H. Behavioral evidence of the dominant radicals and intermediates involved in Bisphenol A degradation using an efficient Co2+/PMS oxidation process[J]. Journal of Hazardous Materials, 2009, 167(1/2/3): 418-426.
|
[24] |
QI C, LIU X, MA J, et al. Activation of peroxymonosulfate by base: Implications for the degradation of organic pollutants[J]. Chemosphere, 2016, 151: 280-288. doi: 10.1016/j.chemosphere.2016.02.089
|
[25] |
XU Y, AI J, ZHANG H. The mechanism of degradation of bisphenol A using the magnetically separable CuFe2O4/peroxymonosulfate heterogeneous oxidation process[J]. Journal of Hazardous Materials, 2016, 309: 87-96. doi: 10.1016/j.jhazmat.2016.01.023
|
[26] |
NIE C, DAI Z, LIU W, et al. Criteria of active sites in nonradical persulfate activation process from integrated experimental and theoretical investigations: boron–nitrogen-co-doped nanocarbon-mediated peroxydisulfate activation as an example[J]. Environmental Science: Nano, 2020, 7: 1899-1911. doi: 10.1039/D0EN00347F
|
[27] |
YAO Y, CAI Y, WU G, et al. Sulfate radicals induced from peroxymonosulfate by cobalt manganese oxides (CoxMn3−xO4) for Fenton-Like reaction in water[J]. Journal of Hazardous Materials, 2015, 296(oct. 15): 128-137.
|
[28] |
DING D, ZHOU L, KANG F, et al. Synergistic adsorption and oxidation of ciprofloxacin by biochar derived from metal-enriched phytoremediation plants: Experimental and computational insights[J]. ACS Applied Materials & Interfaces, 2020, 12: 53788-53798.
|
[29] |
LI X, WANG Z, ZHANG B, et al. FexCo3−xO4 nanocages derived from nanoscale metal-organic frameworks for removal of bisphenol A by activation of peroxymonosulfate[J]. Applied Catalysis B: Environmental, 2016, 181: 788-799. doi: 10.1016/j.apcatb.2015.08.050
|