-
微生物燃料电池(microbial fuel cells ,MFCs)是一种利用产电微生物分解废水中有机物, 将有机物中的化学能转变成电能的新型装置[1-2]。然而,由于微生物燃料电池输出功率密度较低、使用寿命短,极大地限制了其发展及大规模使用。阳极作为微生物载体,决定了微生物的负载量、微生物燃料电池的运行稳定性,以及电极/微生物间的电子传递速率,对MFCs的产电性能及使用寿命有重要影响。因此,开发高性能的阳极材料是解决以上问题的有效途径之一。
碳布、碳纸、碳毡等传统碳基材料的价格便宜、导电性优良,已被广泛用于微生物燃料电池中[3]。虽然这些阳极具有较高的电导率,但其活性表面积低,在表面形成的生物膜有限,使得MFCs的电压输出较低[4]。因此,碳材料的表面改性成为提高MFCs产电性能的关键。MFCs阳极的修饰方法主要包括阳极表面处理、导电聚合物修饰和金属及其氧化物修饰等[5-6]。如用金、钯等贵金属纳米颗粒修饰碳材料来增加电极表面的亲水性,进而提高MFCs的输出电压。然而,贵金属产量稀少、价格昂贵,不利于MFCs的应用[7]。ZHU等[8]将易被腐蚀的铜作为微生物燃料电池的阳极,发现MFCs的输出电流仅稳定在0.30×10−2 mA,输出最大功率密度仅为2 mW·m−2。尽管腐蚀的铜电极增大了电极表面积,但由于其毒性,铜并不适宜作为微生物燃料电池的阳极。过渡金属氧化物多变和可控的微观形貌有助于形成比表面积大的多孔结构[9],有利于微生物附着,并为微生物生物膜的生长提供足够的三维空间[10]。近年来,通过各种结构工程制备的三维过渡金属化合物修饰电极已成为MFCs阳极的热门材料。DUAN等[11]采用简易电泳沉积法将纳米SnO2修饰在碳纳米管上制备出三维CNTs-SnO2复合阳极,产生的最大电流密度为2.21 mA·m−2,显著提高了MFCs产电效率。JIA等[12]以TiO2纳米线修饰的碳布作为阳极,使得MFCs的最大功率密度为392 mW·m−2,远高于未修饰碳布作阳极的功率密度。这是由于TiO2纳米线在碳布表面形成了三维互通结构,这为外膜c-型细胞素提供了巨大的接触面积,从而增加了生物电的产生。LV等[13]将RuO2纳米层涂覆在碳毡上作为微生物燃料电池的阳极,产生的最大功率密度为3 080 mW·m−2,高出无涂层阳极数倍。以上研究虽通过形成三维结构来增大电极的比表面积,促进细菌附着,但自身缺少可有效调控的多孔结构,适当大小的孔径是促进微生物在电极表面附着的关键[14],因此阻碍了此类材料对MFCs性能的提升。
本课题组采用一步液相合成法在碳布表面生长ZIF-67纳米片前驱体,以高温热解前驱体的方式合成碳布负载的四氧化三钴多孔纳米片阵列电极(Co3O4/CC)[15]。Co3O4是典型的p型半导体,金属空位形成能级提供空穴,且价格相对廉价,化学稳定性好,具有特殊的光电特性等,使其在太阳能转换、传感、光催化、锂离子电池等领域应用广泛[16]。Co3O4在常见过渡金属氧化物中表现出优异的电化学性能,这归因于其可调的纳米孔结构,包括可稳定形成的大比表面积、良好的可逆氧化还原性能和长期耐腐蚀稳定性[17]。本研究利用Co3O4比表面积高、金属活性位点多及孔隙率高的优点来提高MFCs的产电性能,采用SEM、XRD、FTIR及XPS等方法对Co3O4/CC进行表征,考察Co3O4/CC电极对MFCs产电性能的影响,并探讨其促进产电作用的机制,为多孔过渡金属氧化物修饰阳极在微生物燃料电池中的应用提供参考。
碳布负载的Co3O4纳米片阵列阳极对微生物燃料电池产电性能的影响
Effect of carbon cloth-loaded Co3O4 nanosheet array anode on the power generation performance of microbial fuel cell
-
摘要: 微生物燃料电池(MFCs)是一种在处理废水的同时产生电能的新型装置,阳极作为产电微生物富集、电子产生和传递的区域对提高MFCs的性能具有至关重要的作用。以碳布负载的四氧化三钴多孔纳米片阵列(Co3O4/CC)作为阳极,探究了可调控的纳米片孔缺陷对MFCs产电性能的影响。结果表明:Co3O4/CC阳极的产电性能显著优于碳布,且正比于Co3O4纳米片的孔隙率;液固界面处的电荷传递电阻(Rct)由729.20 Ω降至43.48 Ω,所获得的最大功率密度由1275 mW·m−2增加至1547 mW·m−2。本研究开发了一种孔结构可控的金属氧化物负载碳布策略,所制备的高性能阳极材料可为MFCs的性能提升提供参考。Abstract: Microbial Fuel cells (MFCs) are new devices that can generate electric energy while treating wastewater. The anode is the area where microbial enrichment, electron generation and transmission happen, which plays a crucial role in improving the performance of MFCs. In this paper, the effects of controllable pore defects on the electrical performance of MFCs were investigated by using carbon cloth loaded porous cobalt tetroxide nanosheet array (Co3O4/CC) as the anode. The results showed that the electrical performance of Co3O4/CC anode was significantly better than that of carbon cloth, and it was proportional to the porosity of Co3O4 nanosheets. The charge transfer resistance (Rct) at the liquid-solid interface decreased from 729.20 Ω to 43.48 Ω, and the maximum power density obtained increased from 1 275 mW•m-2 to 1 547 mW•m-2. In this work, a strategy of metal oxide loaded carbon cloth with controllable pore structure was developed, and the prepared high performance anode material provided a new idea for the development of MFCs.
-
表 1 运行后阳极材料EIS阻抗拟合值
Table 1. Impedance fitting values of EIS anode materials after operation
样品 Rs(Ω) Rct(Ω) CC 30.30 729.20 Co3O4-350 29.97 174.80 Co3O4-450 29.80 43.48 -
[1] LOGAN B E, REGAN J M. Electricity-producing bacterial communities in microbial fuel cells[J]. Trends in Microbiology, 2006, 14(12): 512-518. doi: 10.1016/j.tim.2006.10.003 [2] RABAEY K, ROZENDAL R A. Microbial electrosynthesis - Revisiting the electrical route for microbial production[J]. Nature Reviews Microbiology, 2010, 8(10): 706-716. doi: 10.1038/nrmicro2422 [3] LOGAN B E. Microbial fuel cells: methodology and technology.[J]. Environmental Science & Technology, 2006, 40(17): 5181-5192. [4] LOGAN B E, REGAN J M. Microbial fuel cells-challenges and applications.[J]. Environmental Science & Technology, 2006, 40(17): 5172-80. [5] 周俊, 王秀军. 微生物燃料电池阳极改性修饰最新研究进展[J]. 化学工业与工程技术, 2014, 35(1): 56-60. [6] SCOTT K, RIMBU G A, KATURI K P, et al. Application of Modified Carbon Anodes in Microbial Fuel Cells[J]. Process Safety & Environmental Protection, 2007, 85(5): 481-488. [7] 钟登杰, 刘雅琦, 廖新荣, 等. 金属及其化合物修饰微生物燃料电池阳极的研究进展[J]. 环境化学, 2017, 36(7): 208-219. [8] ZHU X, LOGAN B E, et al. Copper anode corrosion affects power generation in microbial fuel cells[J]. Journal of Chemical Technology & Biotechnology, 2014, 89(3): 471-474. [9] PENG L, PAN X, LU M, et al. Holey two-dimensional transition metal oxide nanosheets for efficient energy storage[J]. Nature Communications, 2017, 8: 15139. doi: 10.1038/ncomms15139 [10] 杨杰男, 付乾, 李俊, 张亮, 等. 3D打印微生物燃料电池阳极及其性能特性[J]. 化工进展, 2020, 39(10): 3987-3994. [11] DUAN T G, CHEN Y, WEN Q, et al. Three-dimensional macroporous CNT-SnO2 composite monolith for electricity generation and energy storage in microbial fuel cells[J]. RSC Advances, 2016, 64(6): 59610-59618. [12] JIA X Q, HE Z H, ZHANG X J, et al. Carbon paper electrode modified with TiO2 nanowires enhancement bioelectricity generation in microbial fuel cell[J]. Synthetic Metals, 2016, 215: 170-175. doi: 10.1016/j.synthmet.2016.02.015 [13] LV Z, XIE D, YUE X, et al. Ruthenium oxide-coated carbon felt electrode: A highly active anode for microbial fuel cell applications[J]. Journal of Power Sources, 2012, 210(Jul.15): 26-31. [14] ANITHA V C, LEE J H, LEE J, et al. Biofilm formation on a TiO2 nanotube with controlled pore diameter and surface wettability[J]. Nanotechnology, 2015, 26(6): 065102-065102. doi: 10.1088/0957-4484/26/6/065102 [15] YUAN L, BD A, YI C, et al. Nanostructured Co3O4 for achieving high-performance supercapacitor[J]. Materials Letters, 2020: 285. [16] 张一江, 倪洁, 张利芳, 等. 多孔过渡金属氧化物材料在能源环境中的应用进展[J]. 中国陶瓷, 2017(2): 1-12. [17] DONDERS M E, KNOOPS H, KESSELS W, et al. Co3O4 as anode material for thin film micro-batteries prepared by remote plasma atomic layer deposition[J]. Journal of Power Sources, 2012, 203(Apr.1): 72-77. [18] LIM G, LIU X, GUAN C, et al. Co/Zn bimetallic oxides derived from metal organic frameworks for high performance electrochemical energy storage[J]. Electrochemical Acta, 2018, 291: 177-187. doi: 10.1016/j.electacta.2018.08.105 [19] SINGH D, KUNDU V S, MAAN A S, et al. Structural, morphological and gas sensing study of palladium doped tin oxide nanoparticles synthesized via hydrothermal technique[J]. Journal of Molecular Structure, 2015, 1100: 562-569. doi: 10.1016/j.molstruc.2015.08.009 [20] XU X, CAO R, JEONG S, et al. Spindle-like Mesoporous α-Fe2O3 Anode Material Prepared from MOF Template for High-Rate Lithium Batteries[J]. Nano Letters, 2012, 12(9): 4988-4991. doi: 10.1021/nl302618s [21] REDDY A, GOWDA S R, SHAIJUMON M M, et al. Hybrid nanostructures for energy storage applications.[J]. Advanced Materials, 2012, 24(37): 5045-5064. doi: 10.1002/adma.201104502 [22] ARTERO V, CHAVAROT-KERLIDOU M, FONTECAVE M. ChemInform Abstract: Splitting Water with Cobalt[J]. ChemInform, 2011, 42(51). [23] 彭新红, 于宏兵, 王鑫, 等. 碳纤维毡表面改性对微生物燃料电池性能的影响[J]. 环境工程学报, 2013, 7(10): 4139-4143. [24] YANG Z, ZHOU X, NIE H, et al. Facile construction of manganese oxide doped carbon nanotube catalysts with high activity for oxygen reduction reaction and investigations into the origin of their activity enhancement.[J]. Acs Applied Material & Interfaces, 2011, 3(7): 2601-2606. [25] LI B J, HUA Q, et al. Co3O4@graphene Composites as Anode Materials for High-Performance Lithium-Ion Batteries[J]. Inorganic Chemistry, 2011, 50(5): 1628-1632. doi: 10.1021/ic1023086 [26] XU L, JIANG Q, XIAO Z, LI X, HUO J, WANG S, et al. Plasma Engraved Co3O4 nanosheets with oxygen vacancies and high surface area for the oxygen evolution reaction[J]. Angewandte Chemie-International Edition, 2016, 55(17): 5277-5281. doi: 10.1002/anie.201600687 [27] WANG Y, ZHOU T, JIANG K, DA P, PENG Z, TANG J, Et al. Reduced mesoporous Co3O4 nanowires as efficient water oxidation electrocatalysts and supercapacitor electrodes[J]. Advanced Energy Materials, 2014, 4(16): 1400696. doi: 10.1002/aenm.201400696 [28] TAO H, CHEN D, JIAO X, ET al. Solubility-controlled synthesis of high-quality Co3O4 nanocrystals[J]. Chemistry of Materials, 2005, 17(15): 4023-4030. doi: 10.1021/cm050727s [29] XU R, ZENG H C, ET al. Self-generation of tiered surfactant superstructures for one-pot synthesis of Co3O4 nano cubes and their close- and non-close-packed organizations[J]. Langmuir, 2004, 20(22): 9780-9790. doi: 10.1021/la049164+ [30] ZHANG S, WEI N, YAO Z, et al. Oxygen vacancy-based ultrathin Co3O4 nanosheets as a high-efficiency electrocatalyst for oxygen evolution reaction[J]. International Journal of Hydrogen Energy, 2020, 46(7): 5286-5295. [31] GROSS A F, SHERMAN E, VAJO J J, et al. Aqueous room temperature synthesis of cobalt and zinc sodalite zeolitic imidazolate frameworks[J]. Dalton Transactions, 2012, 41(18): 5458-5460. doi: 10.1039/c2dt30174a [32] FANG G, ZHOU J, LIANG C, et al. MOFs nanosheets derived porous metal oxide-coated three-dimensional substrates for lithium-ion battery applications[J]. Nano Energy, 2016, 26: 57-65. doi: 10.1016/j.nanoen.2016.05.009 [33] XUE H, KAI T, DING W, et al. Design of a porous cobalt sulfide nanosheet array on Ni foam from zeolitic imidazolate frameworks as an advanced electrode for supercapacitors[J]. Nanoscale, 2018, 10(6): 2735-2741. doi: 10.1039/C7NR07931A [34] WANG D C, HUANG N B, SUN Y, et al. GO clad Co3O4 (Co3O4@GO) as ORR catalyst of anion exchange membrane fuel cell[J]. International Journal of Hydrogen Energy, 2017, 42(31): 20216-20223. doi: 10.1016/j.ijhydene.2017.05.236 [35] SURAJA P V, YAAKOB Z, BINITHA N N, et al. Photocatalytic degradation of dye pollutant over Ti and Co doped SBA-15: Comparison of activities under visible light[J]. Chemical Engineering Journal, 2011, 176: 265-271. [36] YUAN Y, ZHOU S, YI L, et al. Nanostructured Macroporous Bioanode Based on Polyaniline-Modified Natural Loofah Sponge for High-Performance Microbial Fuel Cells[J]. Environmental Science & Technology, 2013, 47(24): 14525-14532. [37] LIU C, LI J, ZHU X, et al. Effects of brush lengths and fiber loadings on the performance of microbial fuel cells using graphite fiber brush anodes[J]. International Journal of Hydrogen Energy, 2013, 38(35): 15646-15652. doi: 10.1016/j.ijhydene.2013.03.144 [38] BARANITHARAN E, KHAN M R, PRASAD D, et al. Effect of biofilm formation on the performance of microbial fuel cell for the treatment of palm oil mill effluent[J]. Bioprocess & Biosystems Engineering, 2015, 38(1): 15-24. [39] BONANNI P S, SCHROTT G D, ROBUSCHI L, et al. Charge accumulation and electron transfer kinetics in Geobacter sulfurreducens biofilms[J]. Energy & Environmental Science, 2012, 5(3): 6188-6195.