[1] |
LOGAN B E, REGAN J M. Electricity-producing bacterial communities in microbial fuel cells[J]. Trends in Microbiology, 2006, 14(12): 512-518. doi: 10.1016/j.tim.2006.10.003
|
[2] |
RABAEY K, ROZENDAL R A. Microbial electrosynthesis - Revisiting the electrical route for microbial production[J]. Nature Reviews Microbiology, 2010, 8(10): 706-716. doi: 10.1038/nrmicro2422
|
[3] |
LOGAN B E. Microbial fuel cells: methodology and technology.[J]. Environmental Science & Technology, 2006, 40(17): 5181-5192.
|
[4] |
LOGAN B E, REGAN J M. Microbial fuel cells-challenges and applications.[J]. Environmental Science & Technology, 2006, 40(17): 5172-80.
|
[5] |
周俊, 王秀军. 微生物燃料电池阳极改性修饰最新研究进展[J]. 化学工业与工程技术, 2014, 35(1): 56-60.
|
[6] |
SCOTT K, RIMBU G A, KATURI K P, et al. Application of Modified Carbon Anodes in Microbial Fuel Cells[J]. Process Safety & Environmental Protection, 2007, 85(5): 481-488.
|
[7] |
钟登杰, 刘雅琦, 廖新荣, 等. 金属及其化合物修饰微生物燃料电池阳极的研究进展[J]. 环境化学, 2017, 36(7): 208-219.
|
[8] |
ZHU X, LOGAN B E, et al. Copper anode corrosion affects power generation in microbial fuel cells[J]. Journal of Chemical Technology & Biotechnology, 2014, 89(3): 471-474.
|
[9] |
PENG L, PAN X, LU M, et al. Holey two-dimensional transition metal oxide nanosheets for efficient energy storage[J]. Nature Communications, 2017, 8: 15139. doi: 10.1038/ncomms15139
|
[10] |
杨杰男, 付乾, 李俊, 张亮, 等. 3D打印微生物燃料电池阳极及其性能特性[J]. 化工进展, 2020, 39(10): 3987-3994.
|
[11] |
DUAN T G, CHEN Y, WEN Q, et al. Three-dimensional macroporous CNT-SnO2 composite monolith for electricity generation and energy storage in microbial fuel cells[J]. RSC Advances, 2016, 64(6): 59610-59618.
|
[12] |
JIA X Q, HE Z H, ZHANG X J, et al. Carbon paper electrode modified with TiO2 nanowires enhancement bioelectricity generation in microbial fuel cell[J]. Synthetic Metals, 2016, 215: 170-175. doi: 10.1016/j.synthmet.2016.02.015
|
[13] |
LV Z, XIE D, YUE X, et al. Ruthenium oxide-coated carbon felt electrode: A highly active anode for microbial fuel cell applications[J]. Journal of Power Sources, 2012, 210(Jul.15): 26-31.
|
[14] |
ANITHA V C, LEE J H, LEE J, et al. Biofilm formation on a TiO2 nanotube with controlled pore diameter and surface wettability[J]. Nanotechnology, 2015, 26(6): 065102-065102. doi: 10.1088/0957-4484/26/6/065102
|
[15] |
YUAN L, BD A, YI C, et al. Nanostructured Co3O4 for achieving high-performance supercapacitor[J]. Materials Letters, 2020: 285.
|
[16] |
张一江, 倪洁, 张利芳, 等. 多孔过渡金属氧化物材料在能源环境中的应用进展[J]. 中国陶瓷, 2017(2): 1-12.
|
[17] |
DONDERS M E, KNOOPS H, KESSELS W, et al. Co3O4 as anode material for thin film micro-batteries prepared by remote plasma atomic layer deposition[J]. Journal of Power Sources, 2012, 203(Apr.1): 72-77.
|
[18] |
LIM G, LIU X, GUAN C, et al. Co/Zn bimetallic oxides derived from metal organic frameworks for high performance electrochemical energy storage[J]. Electrochemical Acta, 2018, 291: 177-187. doi: 10.1016/j.electacta.2018.08.105
|
[19] |
SINGH D, KUNDU V S, MAAN A S, et al. Structural, morphological and gas sensing study of palladium doped tin oxide nanoparticles synthesized via hydrothermal technique[J]. Journal of Molecular Structure, 2015, 1100: 562-569. doi: 10.1016/j.molstruc.2015.08.009
|
[20] |
XU X, CAO R, JEONG S, et al. Spindle-like Mesoporous α-Fe2O3 Anode Material Prepared from MOF Template for High-Rate Lithium Batteries[J]. Nano Letters, 2012, 12(9): 4988-4991. doi: 10.1021/nl302618s
|
[21] |
REDDY A, GOWDA S R, SHAIJUMON M M, et al. Hybrid nanostructures for energy storage applications.[J]. Advanced Materials, 2012, 24(37): 5045-5064. doi: 10.1002/adma.201104502
|
[22] |
ARTERO V, CHAVAROT-KERLIDOU M, FONTECAVE M. ChemInform Abstract: Splitting Water with Cobalt[J]. ChemInform, 2011, 42(51).
|
[23] |
彭新红, 于宏兵, 王鑫, 等. 碳纤维毡表面改性对微生物燃料电池性能的影响[J]. 环境工程学报, 2013, 7(10): 4139-4143.
|
[24] |
YANG Z, ZHOU X, NIE H, et al. Facile construction of manganese oxide doped carbon nanotube catalysts with high activity for oxygen reduction reaction and investigations into the origin of their activity enhancement.[J]. Acs Applied Material & Interfaces, 2011, 3(7): 2601-2606.
|
[25] |
LI B J, HUA Q, et al. Co3O4@graphene Composites as Anode Materials for High-Performance Lithium-Ion Batteries[J]. Inorganic Chemistry, 2011, 50(5): 1628-1632. doi: 10.1021/ic1023086
|
[26] |
XU L, JIANG Q, XIAO Z, LI X, HUO J, WANG S, et al. Plasma Engraved Co3O4 nanosheets with oxygen vacancies and high surface area for the oxygen evolution reaction[J]. Angewandte Chemie-International Edition, 2016, 55(17): 5277-5281. doi: 10.1002/anie.201600687
|
[27] |
WANG Y, ZHOU T, JIANG K, DA P, PENG Z, TANG J, Et al. Reduced mesoporous Co3O4 nanowires as efficient water oxidation electrocatalysts and supercapacitor electrodes[J]. Advanced Energy Materials, 2014, 4(16): 1400696. doi: 10.1002/aenm.201400696
|
[28] |
TAO H, CHEN D, JIAO X, ET al. Solubility-controlled synthesis of high-quality Co3O4 nanocrystals[J]. Chemistry of Materials, 2005, 17(15): 4023-4030. doi: 10.1021/cm050727s
|
[29] |
XU R, ZENG H C, ET al. Self-generation of tiered surfactant superstructures for one-pot synthesis of Co3O4 nano cubes and their close- and non-close-packed organizations[J]. Langmuir, 2004, 20(22): 9780-9790. doi: 10.1021/la049164+
|
[30] |
ZHANG S, WEI N, YAO Z, et al. Oxygen vacancy-based ultrathin Co3O4 nanosheets as a high-efficiency electrocatalyst for oxygen evolution reaction[J]. International Journal of Hydrogen Energy, 2020, 46(7): 5286-5295.
|
[31] |
GROSS A F, SHERMAN E, VAJO J J, et al. Aqueous room temperature synthesis of cobalt and zinc sodalite zeolitic imidazolate frameworks[J]. Dalton Transactions, 2012, 41(18): 5458-5460. doi: 10.1039/c2dt30174a
|
[32] |
FANG G, ZHOU J, LIANG C, et al. MOFs nanosheets derived porous metal oxide-coated three-dimensional substrates for lithium-ion battery applications[J]. Nano Energy, 2016, 26: 57-65. doi: 10.1016/j.nanoen.2016.05.009
|
[33] |
XUE H, KAI T, DING W, et al. Design of a porous cobalt sulfide nanosheet array on Ni foam from zeolitic imidazolate frameworks as an advanced electrode for supercapacitors[J]. Nanoscale, 2018, 10(6): 2735-2741. doi: 10.1039/C7NR07931A
|
[34] |
WANG D C, HUANG N B, SUN Y, et al. GO clad Co3O4 (Co3O4@GO) as ORR catalyst of anion exchange membrane fuel cell[J]. International Journal of Hydrogen Energy, 2017, 42(31): 20216-20223. doi: 10.1016/j.ijhydene.2017.05.236
|
[35] |
SURAJA P V, YAAKOB Z, BINITHA N N, et al. Photocatalytic degradation of dye pollutant over Ti and Co doped SBA-15: Comparison of activities under visible light[J]. Chemical Engineering Journal, 2011, 176: 265-271.
|
[36] |
YUAN Y, ZHOU S, YI L, et al. Nanostructured Macroporous Bioanode Based on Polyaniline-Modified Natural Loofah Sponge for High-Performance Microbial Fuel Cells[J]. Environmental Science & Technology, 2013, 47(24): 14525-14532.
|
[37] |
LIU C, LI J, ZHU X, et al. Effects of brush lengths and fiber loadings on the performance of microbial fuel cells using graphite fiber brush anodes[J]. International Journal of Hydrogen Energy, 2013, 38(35): 15646-15652. doi: 10.1016/j.ijhydene.2013.03.144
|
[38] |
BARANITHARAN E, KHAN M R, PRASAD D, et al. Effect of biofilm formation on the performance of microbial fuel cell for the treatment of palm oil mill effluent[J]. Bioprocess & Biosystems Engineering, 2015, 38(1): 15-24.
|
[39] |
BONANNI P S, SCHROTT G D, ROBUSCHI L, et al. Charge accumulation and electron transfer kinetics in Geobacter sulfurreducens biofilms[J]. Energy & Environmental Science, 2012, 5(3): 6188-6195.
|