-
静电除尘器(ESP)是一种能够有效去除颗粒物的装置,是集除尘效率高、运行阻力小和较强的适用性等多种优点于一身的处理装置,并在发电、水泥、冶金等行业生产过程中的颗粒物处理阶段得到广泛应用[1-5],其总体除尘效率可达99%[6-8]。但是,传统静电除尘器对荷电量低、受离子风流场影响强烈的微细颗粒物的收集效果远不如大粒径颗粒物,而且尺寸较小的颗粒更倾向于与烟气一起运动而被排放到空气中,这些细微颗粒物极可能被人体吸入肺部而引发各种呼吸道疾病[9-11]。
目前,已有大量研究以对传统静电除尘器的电极设计改造为出发点[12-14],设计了网电极板、孔电极板、C型板、S型板、H型板等异型收尘极板以及芒刺线、星型线、十字针刺线等新型高压电极[15-19],使微细颗粒物去除效率有所提高,排放浓度得以降低。但是,许多成果[20-27]均须重新设计收尘极板或者高压电极,存在改造工程量大,投入成本高等不足之处。
针对上述问题,本研究在传统线-板除尘装置的基础上,结合课题组所研制的新型除尘结构(发明专利:ZL201510238547.X)并利用本课题组发明的流体模拟手段(发明专利:ZL201310263782.3),重新设计极板排布方式——错位板排布,以求用最小的改造成本,获得更大的应用价值,达到令人满意的除尘效果;利用FLUENT软件探究了错位板结构下,电晕放电空间产生的离子风流场对微细颗粒物在放电空间运动的影响,从而更好地体现错位板的改造优势;主要针对低浓度、超微细粉尘在电流体场中的运动规律,通过对空间电场分布、流速以及主流风速与离子风流场之间的相互作用的分析,证明了极板错位排布的可行性,为除尘器的进一步改造提供参考。
新型错位板对静电除尘器流场影响的数值模拟
Numerical simulation of the influence of a new type of dislocation plate on the flow field of the electrostatic precipitator
-
摘要: 为降低现有除尘器的改造成本,提高微细粉尘的收集效率,在现有除尘器的基础上,对阳极板排布方式进行调整,设计错位排布方式,最大化地利用原有除尘器的资源,以最小的改造成本,达到较满意的除尘效果。利用目前应用广泛的FLUENT仿真软件进行数值模拟,观察分析了其电势分布和气流分布。数值模拟结果表明:当主流风速小于0.5 m·s−1时,离子风对流场的影响较大;当主流风速达到0.8 m·s−1以上,主流风成为影响空间流场分布的主要因素,离子风的影响被削弱,但此时的离子风团仍会促进气流流入错位极板背部达到收集目的。错位板间隙设计可以削弱离子风对阳极板的冲刷作用,证明了错位板排布有利于改善离子风对粉尘收集的负面影响,有效提高对微细粉尘的收集效率。数值模拟的结果对静电除尘器的设计与改进有一定的参考意义。Abstract: In order to reduce the upgrading cost of the existing precipitator and improve its collection efficiency of fine dust, on the basis of the existing precipitator, the arrangement of the anode plates was adjusted. The dislocation arrangement was designed to maximize the use of the original precipitator resources, minimize upgrading cost, and achieve a satisfactory dust removal effect. The widely used FLUENT simulation software at present was used to perform numerical simulation, and the electric potential distribution and airflow distribution were observed and analyzed. Numerical simulation results showed that when the mainstream wind speed was lower than 0.5 m·s−1, the ion wind had a greater impact on the flow field; when the mainstream wind speed was over 0.8 m·s−1, the mainstream wind became the main factor affecting the spatial flow field distribution. The impact of ion wind was weakened, but the ion wind group at this time still promoted the airflow to flow into the back of the misplaced plate and completed the collection. The gap design of the dislocation plate could weaken the scouring effect of the ion wind on the anode plate, which proved that the arrangement of the dislocation plate was beneficial to conteract the negative influence of the ion wind on the dust collection and effectively improved the collection efficiency of fine dust. The result of numerical simulation has a certain reference significance for the design and improvement of electrostatic precipitator.
-
Key words:
- ionic wind /
- flow field /
- primary air flow /
- dislocation plate gap /
- fine dust
-
[1] 张文. 中国大范围雾霾期间空气污染空间分布特征研究[D]. 兰州: 西北师范大学, 2015. [2] 沈欣军. 电除尘器内细颗粒物的运动规律及其除尘效率研究[D]. 杭州: 浙江大学, 2015. [3] 段璐. 电袋除尘器颗粒物脱除理论和实验研究进展[J]. 粉煤灰综合利用, 2019(4): 97-101. doi: 10.3969/j.issn.1005-8249.2019.04.025 [4] 孙振龙, 顾珊, 刘茂省, 等. 针刺电晕线在线-管式静电除尘器中的放电特性应用研究[J]. 电力学报, 2018, 33(4): 353-358. [5] KOHEI A, RYOTA T, AKINORI Z, et al. Simulation and measurement of charged particle trajectory with ionic flow in a wire-to-plate type electrostatic precipitator-ScienceDirect[J]. Journal of Electrostatics, 2020, 107: 103488-103497. doi: 10.1016/j.elstat.2020.103488 [6] OHENOJA K, WIGREN V, VALTER W, et al. Fly ash classification efficiency of electrostatic precipitators in fluidized bed combustion of peat, wood, and forest residues[J]. Journal of Environmental Management, 2018, 206: 607-614. [7] 张建平, 高鹏飞, 徐达成, 等. 不同烟气流速下线板式电除尘器中磁场效应验证[J]. 环境工程学报, 2020, 14(11): 3121-3127. doi: 10.12030/j.cjee.201906006 [8] 方梦祥, 柳佳佳, 岑建孟, 等. 高温静电除尘技术研究进展及应用前景[J]. 高电压技术, 2019, 45(4): 1108-1117. [9] 陈熙勐, 张皓旻, 顾万清, 等. 我国PM25主要成分及对人体健康危害研究进展[J]. 中华保健医学杂志, 2019, 21(1): 83-85. doi: 10.3969/.issn.1674-3245.2019.01.026 [10] 郝毅仁, 孟超, 刘坤坤. 工业大气污染治理技术发展分析[J]. 中国资源综合利用, 2020, 38(6): 132-134. doi: 10.3969/j.issn.1008-9500.2020.06.041 [11] 柴发合. 我国大气污染治理历程回顾与展望[J]. 环境与可持续发展, 2020, 45(3): 5-15. [12] 冯启琨, 黄磊, 刘荻帆, 等. 针-板与棒-板电极结构在不同温度下的负电晕放电特性[J]. 高电压技术, 2021, 47(5): 1847-1856. [13] 李庆, 刘晓娃, 剧晓晨, 等. 针-板电极负电晕放电下离子分布状态的影响因素[J]. 高电压技术, 2017, 43(5): 1700-1706. [14] ZHU J B, ZHAO Q X, YAO Y P, et al. Effects of high-voltage power sources on fine particle collection efficiency with an industrial electrostatic precipitator[J]. Journal of Electrostatics, 2012, 70(3): 285-291. doi: 10.1016/j.elstat.2012.03.009 [15] ANATOL J, ANDRZEJ K, TADEUSZ C. Modern electrostatic devices and methods for exhaust gas cleaning: A brief review[J]. Journal of Electrostatics, 2006, 65(3): 133-155. [16] 邓云峰, 刘功智, 张国权. 宽间距长芒刺静电除尘技术的应用[J]. 中国安全科学学报, 2003, 13(10): 45-48. doi: 10.3969/j.issn.1003-3033.2003.10.013 [17] 常玉锋, 李梦玲, 叶罗威, 等. 线-管式双极预荷电器的极间电场分布模型[J]. 江汉大学学报(自然科学版), 2019, 47(6): 507-513. [18] 王翔, 常景彩, 徐纯燕, 等. 线-板式静电除尘器芒刺电晕线放电特性[J]. 高电压技术, 2017, 43(2): 533-540. [19] WANG X, CHANG J C, XU C Y, et al. Discharge characteristic of barbed electrodes in wire-plate electrostatic precipitator[J]. High Voltage Engineering, 2017, 43(2): 533-540. [20] 吴华, 杨春振, 董力, 等. 空气环境下线板电除尘器RS芒刺的放电特性[J]. 能源科技, 2020, 18(3): 42-48. [21] 曾宇翾, 沈欣军, 章旭明, 等. 电除尘器中离子风的实验研究[J]. 浙江大学学报(工学版), 2013, 47(12): 2208-2211. [22] 龙正伟, 冯壮波, 姚强. 静电除尘器数值模拟[J]. 化工学报, 2012, 63(11): 3393-3401. doi: 10.3969/j.issn.0438-1157.2012.11.003 [23] 李海英, 多鹏, 王茹. 离子风对ESP气流分布和除尘效率影响的数值模拟[J]. 环境科学与技术, 2017, 40(9): 136-142. [24] 胡建华, 潘洋洋. 电除尘器中离子风对除尘效果的影响[J]. 装备环境工程, 2018, 15(3): 76-80. [25] PODLINSKI J, NIEWULIS A. Electrohydrodynamic flow and particle collection efficiency of a spike-plate type electrostatic precipitator[J]. Journal of Electrostatics, 2009, 67(2/3): 99-104. [26] DEKOWSKI J, KOCIK M. Measurement of the flow velocity field in multi-field wire-plate electrostatic precipitator[J]. Czechoslovak Journal of Physics, 2004, 54: 922-930. doi: 10.1007/BF03166509 [27] YAMAMOTO T, VELKOFF H R. Electrohydrodynamics in an electrostatic precipitator[J]. Journal of Fluid Mechanics, 1981, 108: 1-18. doi: 10.1017/S002211208100195X [28] 李庆, 王利, 杨青, 等. 板-袋收尘极板对微细粉尘收集效果的影响分析[J]. 高电压技术, 2016, 42(2): 361-367. [29] 李庆, 李海凤, 孙晓荣, 等. 电晕放电电流体状态实验研究与数值模拟[J]. 高电压技术, 2010, 36(11): 2739-2744.