Processing math: 100%

OHO-MBR组合工艺处理实际焦化废水的可行性

孙晓雪, 韦聪, 罗培, 杨兴舟, 叶国杰, 韦朝海, 彭亚环, 邱光磊, 平武臣. OHO-MBR组合工艺处理实际焦化废水的可行性[J]. 环境工程学报, 2021, 15(8): 2759-2769. doi: 10.12030/j.cjee.202104025
引用本文: 孙晓雪, 韦聪, 罗培, 杨兴舟, 叶国杰, 韦朝海, 彭亚环, 邱光磊, 平武臣. OHO-MBR组合工艺处理实际焦化废水的可行性[J]. 环境工程学报, 2021, 15(8): 2759-2769. doi: 10.12030/j.cjee.202104025
SUN Xiaoxue, WEI Cong, LUO Pei, YANG Xingzhou, YE Guojie, WEI Chaohai, PENG Yahuan, QIU Guanglei, PING Wuchen. Feasibility test of OHO-MBR combined process for actual coking wastewater treatment[J]. Chinese Journal of Environmental Engineering, 2021, 15(8): 2759-2769. doi: 10.12030/j.cjee.202104025
Citation: SUN Xiaoxue, WEI Cong, LUO Pei, YANG Xingzhou, YE Guojie, WEI Chaohai, PENG Yahuan, QIU Guanglei, PING Wuchen. Feasibility test of OHO-MBR combined process for actual coking wastewater treatment[J]. Chinese Journal of Environmental Engineering, 2021, 15(8): 2759-2769. doi: 10.12030/j.cjee.202104025

OHO-MBR组合工艺处理实际焦化废水的可行性

    作者简介: 孙晓雪(1996—),女,硕士研究生。研究方向:焦化废水膜处理技术。E-mail:sunxx1121@126.com
    通讯作者: 邱光磊(1984—),男,博士,副教授。研究方向:污水膜/生物处理技术。E-mail:qiugl@scut.edu.cn
  • 基金项目:
    国家自然科学基金资助项目(51808297,U1901218);广东省科技计划项目(2018A050506009,2015B020235005);广州市科技计划项目(202002030340);广东省自然科学基金资助项目(2021A1515010494);广东省珠江人才计划项目(2019QN01L125)
  • 中图分类号: X703

Feasibility test of OHO-MBR combined process for actual coking wastewater treatment

    Corresponding author: QIU Guanglei, qiugl@scut.edu.cn
  • 摘要: 焦化废水因其生物毒性强、高腐蚀性及高COD/TN比的特点,对传统生物处理工艺提出了更高的挑战,故新型生物工艺的探索对于特殊水质达标可行性及工艺经济性具有重要意义。为此,构建了新型好氧-水解-好氧(OHO)-膜生物反应器(MBR)组合工艺用于焦化废水处理,利用实际焦化废水开展了现场小试研究,考察了焦化废水中典型污染物的去除效果,结合工艺运行参数和水质指标测定结果,解析了典型污染物在OHO-MBR工艺中的转化规律。在稳定运行情况下,焦化废水经OHO-MBR工艺处理的实际运行结果表明:当总停留时间设定为56 h时,进水COD、TN、NH+4-N、SCN-N的平均值分别为3 063、146、27.3、85.1 mg·L−1的条件下,组合工艺即使在环境温度偏低(10~20 ℃)的情况下仍能实现对COD、TN、NH+4-N、SCN-N平均85.9%、65.4%、95.1%、98.6%的去除;在膜通量为20 L·(m2·h)−1的条件下,工艺运行90 d,跨膜压差维持在10 kPa以内,表明组合工艺处理实际焦化废水的初步可行性;在OHO的O2反应器中添加膜组件可去除焦化废水中的悬浮物及胶体组分,有效截留和富集常规工艺中不易增殖的特种功能微生物,提高反应器处理负荷与抗冲击能力。以上结果表明,在无需对基建设施进行大规模改造的前提下,OHO-MBR可以作为现有工艺提升出水水质的改进技术选择。
  • 人工湿地技术是通过过滤、吸附、沉淀、植物吸收和生物降解等过程,实现对城市生活污水的高效处理,其建设成本和能耗较低,环境美化效果好[1]。人工湿地中所含大量的养分负荷会刺激微生物生长代谢。与天然湿地相比,温室气体CH4[2]、N2O和CO2[3]的排放通量更高,因此,亟需探究如何规模化实现该工艺的温室气体减排。

    人工湿地实现污染物去除的主要部分为基质填料。填料材料通过物理、化学和生物的作用完成对污染物的去除。由于单一基质类型的人工湿地无法同时达到高效脱氮、除碳的目的[4]。组合填料所发挥的协同作用可高效去除污水中的多种污染物质[5],已被越来越多地运用到人工湿地中。然而,在实际运用中,组合填料的种类、填充方式、孔径和含碳量等条件均会影响湿地系统的复氧能力及微生物的代谢活动,从而间接影响系统污染物的去除能力[5]

    SHEN等[6]研究铁碳微电解填料时发现,以铁为阳极、碳为阴极会形成大量微观原电池,可将NO3/NO2直接还原为N2,因此,铁碳含量改变会影响NO3/NO2还原为N2过程的进行,进而影响N2O的排放。 WANG[7]等发现沸石具备良好的吸附功能,具有与普通材料相似的均一孔隙,故其性质与分子筛类物质相似,选择吸附性能优异。该材料可有效吸附系统产生的CH4,当沸石占比增大时,可能更加有利于减少CH4的减排。赵仲婧等[1]发现,采用铁碳和沸石作为基质组合填料的间歇曝气人工湿地系统可明显提高污水处理效率和温室气体减排效果。铁碳微电解材料与沸石的粒径、孔隙度均不相同,因此,当二者间填充顺序不同时,可通过影响溶解氧 (dissolved oxygen,DO) 环境来构成不同微生物群落结构,优化硝化、反硝化过程,以降低温室气体排放量。

    基于此,本研究以铁碳和沸石组合填料为研究对象,通过改变二者的填充顺序和填充配比,探究基质填充方式对人工湿地对污染物去除过程中温室气体减排效果的影响,以期为实现人工湿地技术的减污降碳目标提供参考。

    实实验装置位于西南大学某玻璃温室大棚。该装置具备良好的通风性,且自然照射充足。图1 为实验用到的仿真垂直潜流式人工湿地系统,采用 PVC材质制作的筒状容器,其底部直径30 cm,高60 cm,上部边缘设有3 cm的矩形水密封凹槽。中心有3个4 cm宽,60 cm长的 PVC穿孔管,最中间一根用于进水、虹吸排水和收集水样本,两侧2根内部装有和人工湿地系统相同且等高的填料,用于提取湿地基质及微生物。距装置底部5 cm处设置微孔曝气管。

    图 1  间歇曝气人工湿地装置
    Figure 1.  Schematic diagram of intermittent aeration constructed wetland

    装置中种植的植物为野生菖蒲 (Acorus calamus L.) ,取自北碚区某水库。菖蒲采回后,先将其根部清洗干净,放入有培养液的装置中,置于光照培养箱中进行驯化培养。培养温度为 (25±2) ℃,光照强度为 (3 000±300) lux,光暗时间比为12 h:12 h,每隔2 d更换一次进水,经过30 d的人工培育,将生长状况好、体形相似的植物移植到人工湿地设备中,栽种密度为每平方米30株。

    实验所选用的沸石是从河南景盈建材有限责任公司采购的斜发沸石,沸石颗粒的直径为5~10 mm。使用纯水清洗干净,经风干、称重后填入湿地装置之中。铁碳微电解填料主要由废铁屑和活性炭制成,粒径为10~30 mm,均由郑州众邦水处理有限公司提供。

    培养微生物所需接种的活性污泥取自北碚区污水处理厂二沉池,采用人工配制的污水进行驯化。驯化3周后将活性污泥接种到人工湿地系统中,接种污泥的质量浓度为1 000 mg·L−1

    实验装置按铁碳和沸石的填充方式分为2组。湿地组1铁碳填充在表层,沸石在底层;湿地组2沸石填充在表层,铁碳在底层。以添加100%沸石的人工湿地作为对照组。沸石、铁碳分别用F、T表示,且用xy表示沸石和铁碳的占比。每组设置3个装置,组1分别添加20%铁碳+80%沸石 (T2F8) 、40%铁碳+60%沸石 (T4F6) 、60%铁碳+40%沸石 (T6F4) ;组2分别添加20%沸石+80%铁碳 (F2T8) 、40%沸石+60%铁碳 (F4T6) 、60%沸石+40%铁碳 (T6F4) 。

    实验人工湿地系统设置水力停留时间 (hydraulic retention time,HRT) 为2 d,进水采用人工配置的模拟污水,固定进水的碳氮比 (COD/N) 为5:1,具体成分参照文献[7]。向模拟污水中投入蔗糖、NH4Cl 和KNO3提供碳源和氮源。模拟污水的 COD、NH4+-N和NO3-N分别为300、40和20 mg·L−1。其他盐类或物质(每升水中添加的量)为 :KH2PO4 (22.50 mg) 、MgSO4·7H2O (97.56 mg) 、CaCl2 (58.28 mg) 、蛋白胨 (10.00 mg) ,以及微量元素溶液1 mL。其中,微量元素溶液(每升中添加的量)中又包含盐类有:H3BO3 (0.17 mg) 、MnCl2·4H2O (0.11 mg) 、ZnSO4·7H2O (0.13 mg) 、CuSO4·5H2O (0.04 mg) 和H2MoO4·4H2O (0.004 9 mg) 。微量元素溶液的pH为 (7.09±0.01) 。

    该系统每天曝气2 h,采用机械式间歇曝气方式进行。时间段为每天00:00—01:00及12:00—13:00[8]进行。该系统中的DO控制为约3 mg·L−1。 湿地系统于2021年5月开始运行,并在5月进行第一次气体测定,运行180 d,在2021年11月停止运行。本研究选取5月、6月、7月这3个月的数据进行计算分析。

    (1) 水样的采集与测定。在系统正常运行后,每2 d进行一次常规水样收集并检测。取样时间为09:00—10:00。根据饮用水及污水的国家标准分析方法,对COD、NH4+-N、NO3-N、NO2-N和TN等指标进行测定。水样的原位指标包括DO、氧化还原电位 (oxidation-reduction potential,ORP) Eh、水温和pH,均利用多参数测定仪 (SG98型梅特勒-托利多,瑞士) 进行测定。

    (2) 气样的采集与测定。本研究中主要对CH4和N2O这两种气体进行采集分析。气体采样箱 (见图1上半部分) 是PVC材质的圆柱体,由顶箱 (直径30 cm,高50 cm) 和延长箱 (直径30 cm,高70 cm) 组成,延长箱可在植物生长高度超过50 cm时使用。采样箱内有2个轴流风扇。在人工湿地系统稳定运行期间,每月采气3~4次,采样时间为上午9:00—11:00。在每个周期内进行温室气体的采样,并分析其排放规律。在1个典型周期中,设定13个不同停留时间,分别为0、2、6、12、14、18、24、26、3、36、38、42和48 h。其中,在典型水力停留期间,对人工湿地的排放进行了模拟,并对其进行了采集与分析。

    气体样品的采集方式分3种:非曝气段采样、曝气段采样和溶解态CH4和 N2O的采集3种情况。其中,非曝气段的气体排放通量计算式[9]为式 (1) 。该公式是以气体样品中温室气体质量浓度随时间变化的速率计。

    F=H×273273+T×PP0×ρ×dcdt (1)

    曝气段的气体排放通量计算式[10]为式 (2) 。

    F=Q×ϕMPRTS (2)

    利用计算所得的气体排放通量根据内插累加法求得CH4和 N2O的累积排放量,计算式见式 (3)。

    A=n1i=1(Fi+Fi+12×d×24+Fj×24)+Fn×24 (3)

    溶解态温室气体的浓度计算式见式 (4) 。

    cdis=(K0RT+β)ωWPRT (4)

    式中:F为气体 (CH4和N2O) 排放通量,μg·(m2h)−1H为箱内高度,m;T为采样箱内平均气温,K;P即采样时的大气压力,Pa;P0是校准条件下的大气压力,Pa;ρ为某一被测气体的密度 (摩尔质量/标准状态下的气体摩尔体积,g·L−1) ;dc/dt为采样期间采样箱内某一被测气体的浓度变化速率,其中CH4的浓度变化速率单位为cm3·(m3h)−1;N2O体积浓度变化速率单位为mm3·(m3h)−1Q为人工湿地曝气量,L·min−1ϕ为测得气样中的气体体积分数,%;R表示理想气体常数,即8 308.65 L Pa·(mol·K)−1;M为气体摩尔质量,g·mol−1S为采气箱覆盖面积,m2cdis为单位体积水样中溶解的气体质量浓度,μg·L−1K0为 CH4或N2O的亨利常数,mol·(L1Pa)−1; β为取样瓶上部空间与水样的体积比;ω为测得的上部空间气体体积分数。

    基于全球增温潜能值 (Global Warming Potential,GWP) 的概念,通过比较各种人工湿地的温室气体排放情况,将CH4和N2O的排放量换算成CO2当量 (CO2-eq) 。各组人工湿地的综合GWP计算式[11]见 (5) 。

    GWP=28×CH4累积排放量+298×N2O累积排放量 (5)

    利用 Origin 8.5绘制数据图;显著性检验分析及相关性分析采用SPSS19.0软件;显著性检验采用One-way ANOVA方法 (P<0.05、P<0.01表示达到显著水平) 。

    每月对不同人造湿地的CH4排放情况进行统计,结果见表1。在系统稳定的工作状态下,对照组中F的CH4平均排放通量为 (0.33±0.02) g·(m2·h)−1。湿地组1中,T4F6和T6F4的CH4排放通量在添加铁碳后增加,仅有T2F8有减排效果,其CH4的排放通量相较于F减少了5.16% (P<0.05) 。湿地组2中,相较于对照组,F8T2、F6T4的CH4排放量分别减少了22.59%~42.86%、0~40% (P<0.05),而F4T6并无CH4减排效果。通过比较两组湿地的CH4月排放通量发现,沸石在上、铁碳在下填充基质的湿地组2更有利于CH4减排;且适当添加铁碳有利于CH4的减排作用,但铁碳的占比不宜超过沸石,沸石/铁碳为8:2的湿地对CH4减排效果会更加明显。

    表 1  不同湿地组各月份的CH4平均排放通量
    Table 1.  Average CH4 emission fluxes of constructed wetlands in different treatments by month mg·(m2·h)−1
    湿地组别填充方式5月6月7月月平均值
    1T2F80.362±0.0280.298±0.0310.277±0.0420.31±0.03
    1T4F60.647±0.0150.454±0.0280.203±0.0410.44±0.03
    1T6F40.917±0.0150.873±0.0240.570±0.0180.79±0.02
    2F8T20.154±0.0140.257±0.0210.251±0.0350.22±0.02
    2F6T40.242±0.1160.366±0.0250.181±0.0130.26±0.05
    2F4T60.613±0.0210.537±0.0510.396±0.0450.52±0.04
    对照组F0.407±0.0180.260±0.0240.320±0.0160.33±0.02
     | Show Table
    DownLoad: CSV

    以上现象表明,表面分子筛的孔隙结构可以对CH4进行吸收和储存,从而提高了装置内的氧气浓度,促使CH4氧化[12-13]。当系统中添加铁碳填料时,铁屑和活性炭颗粒充当电极材料,产生明显微电场,使系统更易形成微电解系统[14]。而这个铁碳微电解系统置于底部时,更加接近植物根系。在电解过程中,阳极产生的Fe2+、Fe3+会参与微生物生命活动的电子传递过程,从而提升根系微生物活力,进而使根系微生物与产甲烷菌竞争加剧,产甲烷菌将无法获得足够碳源与电子[15],从而活性受到抑制。另外,铁氧化物在根部厌氧体系中可能存在异化铁还原过程[16],异化铁还原菌和产甲烷菌之间存在底物竞争与热力学反应的优先顺序[17],当Fe3+质量浓度上升时,有利于体系中异化铁还原过程的进行,使产甲烷菌活性被抑制。

    两组人工湿地中N2O平均排放通量如表2所示。在系统稳定运行期间,对照组F的N2O平均排放通量为 (651.51±88.53) μg·(m2h)−1。在湿地组1中,,与F相比,湿地组1中的T2F8、T4F6的N2O排放量分别减少了26.22%~70.62%、26.32%~56.62%、8.49%~42.30% (P<0.05) 。在湿地组2中,湿地组2中的F8T2、F6T4和F4T6相较于F分别减少了61.33%~84.29%、52.98%~75.61%、0~16.87% (P<0.05) 。以上结果表明,添加铁碳有利于N2O的减排。两组湿地的N2O月排放通量均随着铁碳占比的降低而明显减少;当铁碳-沸石体积比为2:8时减排效果最佳。通过进一步对湿地组1和2的N2O月平均排放通量进行比较,湿地组2的N2O减排效果优于湿地组1。

    表 2  不同湿地组各月份的NO2平均排放通量
    Table 2.  Average NO2 emission fluxes of artificial wetlands in different treatments for each month μg·(m2·h)−1
    湿地组别填充方式5月6月7月月平均值
    1T2F8467.26±66.43216.95±104.5264.67±126.3316.29±99.08
    1T4F673.41±13.2226.10±53.2154.18±74.2367.90±46.87
    1T6F4931.50±65.7293.18±53.2365.01±95.2529.90±71.37
    2F8T2215.69±105187.03±32.498.08±14.6166.93±50.67
    2F6T4412.80±65.4133.12±33.4121.67±27.3222.53±42.03
    2F4T6898.87±47.3265.36±125.4355.37±153.2506.53±108.63
    对照组F1047.48±68.2508.14±107.9398.91±89.5651.51±88.53
     | Show Table
    DownLoad: CSV

    分析其原因可能是,N2O既是硝化反应副产物,亦为反硝化反应的中间体[18]。随着铁碳填料增多,铁碳微电解填料中存在的高水平Fe3+可能会抑制N2O还原酶的活性,使得N2O 作为中间产物逸出。另外,铁碳的存在会改变系统溶解氧环境,铁碳占比更少的湿地系统DO更高,氨氧化细菌 (ammonia-oxidizing bacteria,AOB) 的好氧反硝化过程被抑制,会进一步减少N2O的释放[1],且有利于N2O还原为N2;铁碳的加入会导致环境中氧化还原电位Eh升高,且随着铁碳占比减少Eh升高 (如图6) ,可能会降低硝酸还原酶的活性,从而减弱反硝化作用[19],减少N2O释放。当把铁碳填料置于底部时,能有效改善底层微生物的反应环境、促进其对碳源的利用,进而强化异养脱氮反应的效果,使得反硝化反应更顺利地进行;且将铁碳填料置于底层,会更加接近植物根系,能有效促进植物根系泌氧[20],为N2O还原酶提供好氧环境,使得一些细菌在一定氧浓度下能还原N2O[21]。此外,铁作为电子供体实现了微生物的自养反硝化[22],能减少N2O产生。

    图2展现了典型周期内两组人工湿地CH4瞬时排放通量。以48 h为一个典型周期,各湿地中的CH4排放通量在曝气阶段迅速升高,曝气结束后又迅速下降,且每一曝气时段CH4最低瞬时排放通量都出现在铁碳-沸石体积比为2:8的实验组。另外,当沸石/铁碳体积比相同、而沸石、铁碳的填充顺序不同时,湿地组2的CH4瞬时排放量明显低于湿地组1。

    图 2  典型周期内不同人工湿地CH4瞬时排放通量
    Figure 2.  Transient CH4 emission fluxes from different constructed wetlands in a typical cycle

    图3为典型周期内曝气段和非曝气段末端溶解态CH4的质量浓度,不同于CH4的排放通量,溶解态CH4质量浓度在非曝气条件下,要明显高于曝气段。在曝气阶段,CH4的质量浓度分别为14.53、23.26、30.68 μg·L−1,而在非曝气阶段,CH4的质量浓度分别达到了40.96、59.51、30.68 μg·L−1。然而,CH4的生成大多发生在厌氧段,该反应段的Eh通常低于−150 mV。此时,产甲烷菌的活力会显著提升,进而使得CH4的生成量增加。当湿地的Eh高于50 mV时,会停止产生CH4[23]。结合图4可知,两组湿地非曝气段最低Eh均低于−20 mV,曝气段Eh峰值均超过100 mV,在非曝气阶段时,随着湿地Eh降低,平均CH4排放通量会升高。湿地组1中的非曝气段最低Eh分别为−27.5、−36.3、−61.7 mV,曝气段Eh均超过100 mV;湿地组2中的非曝气段最低Eh分别为−26.5、−32.81、−40.9 mV,曝气段Eh均超过100 mV。

    图 3  典型周期内不同人工湿地溶解态CH4质量浓度的变化
    Figure 3.  Changes in CH4 fluxes and dissolved CH4 content in different constructed wetlands during the typical period
    图 4  不同周期内各人工湿地 中Eh和DO的变化
    Figure 4.  Changes in Eh and DO in each artificial wetland in different cycles

    上述结果表明,CH4的生成多发生在曝气段以外,曝气段会以曝气方式将CH4吹出[24]。在曝气段,湿地系统本身是不会产生CH4的,而是将之前积累的CH4排入大气,从而使系统出现CH4排放通量迅速增大,并达到高峰,最后在曝气段结束后又出现显著下降的现象。另外,使用不同孔隙率的人工湿地填料可改变其溶解氧供应,从而改善湿地溶解氧条件。铁碳微电解填充物主要对CH4的生成和CH4催化起主要作用。随着Fe3+的加入,系统中原有的大量铁氧体,即铁还原菌,会参与产甲烷菌的反应,从而会与其共同竞争有机酸或氢气等底物,最终对CH4产生起到阻碍的作用。沸石的添加则直接减少了产甲烷古菌的数量,阻碍了CH4产生[25-26]。此外,极高的氧化还原电位,使CH4更易实现厌氧氧化,做为唯一的电子供体且有合适的电子受体,CH4被氧化为CO2[27-29]。但铁碳/沸石比例过高时,过量铁屑可能会将Fe3+还原为Fe2+。CH4的电子受体减少使CH4转化为CO2过程受阻,导致CH4减排效果变差。

    图5 (a) 为典型周期内不同人工湿地N2O瞬时排放通量。以48 h为一个典型周期,湿地F在此周期内的N2O的累积排放量为 (100.04±18.84) μg·m−2。由表3可知与湿地F相比,湿地组1和湿地组2的N2O累积排放量均有下降,且湿地组2的N2O累计排放量低于湿地组1。当沸石/铁碳体积比相同但二者填充顺序不同时,铁碳在底层湿地组2比湿地组1的N2O减排效果更为明显。从铁碳-沸石填充体积比来看,铁碳占比越少,N2O减排效果越好。曝气段N2O排放通量明显高于非曝气段,各人工湿地系统中N2O排放通量和溶解态N2O均随着曝气次数的增加而逐渐降低。一方面,由于曝气吹脱作用把溶解态N2O排入大气环境中[1];同时,曝气段DO迅速上升会影响氧化亚氮还原酶(Nos)的活力,进而促使N2O生成并大量排放[30]

    表 3  典型周期内不同湿地组 累计排放量
    Table 3.  Cumulative NO2 emissions from different wetland groups in a typical cycle μg·m−2
    湿地组别填充方式NO2累计排放量
    1T2F857.70±5.38
    1T4F659.89±7.55
    1T6F467.39±12.17
    2F8T232.45±2.71
    2F6T440.22±3.69
    2F4T638.85±4.31
    对照组F100.04±18.84
     | Show Table
    DownLoad: CSV
    图 5  典型周期内不同人工湿地N2O排放通量和溶解态N2O浓度的变化
    Figure 5.  Changes in N2O fluxes and dissolved N2O content in different constructed wetlands during the typical period

    图5 (b) 为一个典型周期内的曝气和非曝气两阶段中N2O 的最终浓度变化。在循环初期和非曝气段,N2O的质量浓度均很高,但在反应进行8 h后,N2O的质量浓度出现明显降低。在4个人工湿地系统中,每个周期的前24 h,其溶解态N2O质量浓度均为(4.01-3.27)~(16.11-22.96)μg·L−1。而反应进行24 h后,N2O质量浓度则出现明显降低,仅为(0.84+0.18) ~(2.10+1.18)μg·L−1。总体来说,在曝气段N2O的质量浓度比非曝气段要低。这是因为在反应前期,微生物会发生好氧降解有机质的反应,该过程使系统内DO迅速降低,而NO3在此时被还原,从而导致NO2的累积,促进了溶解态N2O生成。由于系统内硝化与反硝化反应不断进行,从而使得底物的TN指标降低,曝气段N2O最高值和溶解态N2O质量浓度也不断降低。[1]

    全球增温潜能值 (GWP) 可反映温室气体对温室效应的强化能力[27]。如表4所示,从铁碳-沸石不同填充顺序来看,铁碳填充在底层湿地组2的GWP均明显低于铁碳填充在表层湿地1;从铁碳-沸石不同填充体积比来看,铁碳占比越少GWP越低。其中,GWP最低的是F8T2,比起对照组F的综合GWP降低了79.51% (P<0.05) ;而GWP最高的T6F4相较于F也下降了13.86% (P<0.05) 。N2O对综合GWP贡献显著大于CH4,达到了69.71%~88.92%,而CH4贡献率仅为11.08%~30.29%。由此可见,典型周期内铁碳在底层的湿地F8T2所排放的CH4和N2O均最少 (P<0.05) ,且综合GWP仅为 (16.94±1.45) g·m−2 (以CO2-eq计) ,其综合减排效果最好。

    表 4  典型周期内人工湿地CH4及N2O的排放量及综合GWP
    Table 4.  CH4 and N2O emissions and integrated GWP in the typical cycle
    湿地组名称填充方式CH4/(mg·m−2)GWP-CH4/(g·m−2)N2O/(mg·m−2)GWP-N2O/(g·m−2)GWP (CH4+N2O) /(g·m−2)
    1T2F8155.44±0.76d5.28±0.0399.05±3.27d29.52±0.0934.80±2.71
    2F8T2101.95±0.53f3.47±0.0245.21±1.35f13.47±0.0416.94±1.45f
    1T4F6164.73±0.87d5.60±0.03150.88±3.68c44.96±0.1150.56±3.04c
    2F6T4150.06±0.85ed5.10±0.0367.11±2.93e20.00±0.0825.10±2.14ed
    1T6F4440.05±0.97b14.96±0.04188.81±6.37b55.87±0.1971.23±2.46b
    2F4T6271.25±0.75c9.22±0.0271.20±4.83e21.22±0.1430.44±2.95d
    对照F559.41±1.09a19.02±0.04213.66±7.21a63.67±0.2182.69±3.17a
      注:各种温室气体的GWP以CO2当量 (CO2−eq) 计。
     | Show Table
    DownLoad: CSV

    在铁碳-沸石为基质的人工湿地中,铁碳在底层,沸石在顶层的填充顺序下,CH4和N2O减排效果均优于铁碳在表层,沸石在底层的湿地系统。在填充顺序一定的情况下,基质中沸石/铁碳的填充体积比对CH4和N2O减排有一定影响。当沸石与铁碳体积比为8:2时,综合GWP最低,湿地在水质净化与温室气体减排方面均有明显效果,为本实验中最佳组合人工湿地。

  • 图 1  OHO-MBR装置示意图

    Figure 1.  Schematic diagram of OHO-MBR device

    图 2  OHO-MBR反应装置中SCN-N随时间运行效果

    Figure 2.  Operation effect of SCN-N concentration over time in OHO-MBR reactor

    图 3  OHO-MBR中各单元对SCN-N去除的贡献情况

    Figure 3.  Contribution of each unit in OHO-MBR to SCN-N removal

    图 4  OHO-MBR反应装置中NH+4-N随时间运行效果

    Figure 4.  Operation effect of NH+4-N concentration over time in OHO-MBR reactor

    图 5  OHO-MBR反应装置中NO3-N随时间运行效果

    Figure 5.  Operation effect of NO3-N concentration over time in OHO-MBR reactor

    图 6  OHO-MBR反应装置中NO2-N随时间运行效果

    Figure 6.  Operation effect of NO2-N concentration over time in OHO-MBR reactor

    图 7  OHO-MBR反应装置中TN随时间运行效果

    Figure 7.  Operation effect of TN concentration over time in OHO-MBR reactor

    图 8  OHO-MBR中各单元对TN去除的贡献情况

    Figure 8.  Contribution of each unit in OHO-MBR to TN removal

    图 9  OHO-MBR反应装置中COD随时间运行效果

    Figure 9.  Operation effect of COD concentration over time in OHO-MBR reactor

    图 10  OHO-MBR中各单元对COD去除的贡献情况

    Figure 10.  Contribution of each unit in OHO-MBR to COD removal

    表 1  OHO-MBR各单元主要运行参数

    Table 1.  Main operating parameters of OHO-MBR.

    工艺单元HRT/hSRT/dMLSS/(mg·L−1)pHDO/(mg·L−1)
    O120204 000~6 0008.0~8.54~6
    H18903 000~5 0007.4~8.1<0.2
    O2-MBR18504 000~5 0007.9~8.24~6
    工艺单元HRT/hSRT/dMLSS/(mg·L−1)pHDO/(mg·L−1)
    O120204 000~6 0008.0~8.54~6
    H18903 000~5 0007.4~8.1<0.2
    O2-MBR18504 000~5 0007.9~8.24~6
    下载: 导出CSV

    表 2  不同工艺对焦化废水的处理性能

    Table 2.  Treatment performance of coking wastewater by different processes

    运行工艺进水COD/(mg·L−1)HRT/h回流比去除率/%来源
    CODNH+4-NTNSCN-N
    AO1 500~2 60016.75859783100[29]
    A2O960~1 40046586.597.9[30]
    OHO5 000~6 00064394.689.488.7100[31]
    A2O-MBR2 000~4 20048397.492.879[32]
    OHO-MBR2 600~3 477560.6685.995.165.498.6本研究
    运行工艺进水COD/(mg·L−1)HRT/h回流比去除率/%来源
    CODNH+4-NTNSCN-N
    AO1 500~2 60016.75859783100[29]
    A2O960~1 40046586.597.9[30]
    OHO5 000~6 00064394.689.488.7100[31]
    A2O-MBR2 000~4 20048397.492.879[32]
    OHO-MBR2 600~3 477560.6685.995.165.498.6本研究
    下载: 导出CSV
  • [1] MAITI D, ANSARI I, RATHER M A, et al. Comprehensive review on wastewater discharged from the coal-related industries-characteristics and treatment strategies[J]. Water Science and Technology, 2019, 79(11): 2023-2035. doi: 10.2166/wst.2019.195
    [2] PARK D, LEE D S, KIM Y M, et al. Bioaugmentation of cyanide-degrading microorganisms in a full-scale cokes wastewater treatment facility[J]. Bioresource Technology, 2008, 99(6): 2092-2096. doi: 10.1016/j.biortech.2007.03.027
    [3] TYAGI M, KUMARI N, JAGADEVAN S. A holistic Fenton oxidation-biodegradation system for treatment of phenol from coke oven wastewater: optimization, toxicity analysis and phylogenetic analysis[J]. Journal of Water Process Engineering, 2020, 37: 101475. doi: 10.1016/j.jwpe.2020.101475
    [4] PAL P, KUMAR R. Treatment of coke wastewater: A critical review for developing sustainable management strategies[J]. Separation and Purification Reviews, 2014, 43(2): 89-123. doi: 10.1080/15422119.2012.717161
    [5] FELFÖLDI T, NAGYMÁTÉ Z, SZÉKELY A J, et al. Biological treatment of coke plant effluents: From a microbiological perspective[J]. Biologia Futura, 2020, 71(4): 359-370. doi: 10.1007/s42977-020-00028-2
    [6] LI Y M, GU G W, ZHAO J F, et al. Treatment of coke-plant wastewater by biofilm systems for removal of organic compounds and nitrogen[J]. Chemosphere, 2003, 52(6): 997-1005. doi: 10.1016/S0045-6535(03)00287-X
    [7] KIM Y M, PARK D, LEE D S, et al. Inhibitory effects of toxic compounds on nitrification process for cokes wastewater treatment[J]. Journal of Hazardous Materials, 2008, 152(3): 915-921. doi: 10.1016/j.jhazmat.2007.07.065
    [8] SHI L, WANG D, CAO D, et al. Is A/A/O process effective in toxicity removal? case study with coking wastewater[J]. Ecotoxicology and Environmental Safety, 2017, 142: 363-368. doi: 10.1016/j.ecoenv.2017.04.034
    [9] 李媛媛, 潘霞霞, 邓留杰, 等. A/O1/H/O2工艺处理焦化废水硝化过程的实现及其抑制[J]. 环境工程学报, 2010, 4(6): 1231-1237.
    [10] MA J D, WU H Z, WANG Y X, et al. Material inter-recycling for advanced nitrogen and residual COD removal from bio-treated coking wastewater through autotrophic denitrification[J]. Bioresource Technology, 2019, 289: 121616. doi: 10.1016/j.biortech.2019.121616
    [11] WEI C H, LI Z M, PAN J X, et al. An oxic-hydrolytic-oxic process at the nexus of sludge spatial segmentation, microbial functionality, and pollutants removal in the treatment of coking wastewater[J]. ACS Environmental Science & Technology Water, 2021, 1(5): 1252-1262. doi: 10.1021/acsestwater.0c00316
    [12] 吕鹏飞, 刘雷, 吴海珍, 等. 焦化废水中总氮的构成及在生物工艺中的转化[J]. 环境工程学报, 2015, 9(10): 4789-4796. doi: 10.12030/j.cjee.20151027
    [13] 潘建新. 废水处理脱氮自调节模式[D]. 广州: 华南理工大学, 2018.
    [14] ZHENG X, ZHANG Z X, YU D W, et al. Overview of membrane technology applications for industrial wastewater treatment in China to increase water supply[J]. Resources, Conservation and Recycling, 2015, 105: 1-10. doi: 10.1016/j.resconrec.2015.09.012
    [15] YEO B J, GOH S, ZHANG J, et al. Novel MBRs for the removal of organic priority pollutants from industrial wastewaters: A review[J]. Journal of Chemical Technology & Biotechnology, 2015, 90(11): 1949-1967.
    [16] SUN F Q, SUN B, HU J, et al. Organics and nitrogen removal from textile auxiliaries wastewater with A2O-MBR in a pilot-scale[J]. Journal of Hazardous Materials, 2015, 286: 416-424. doi: 10.1016/j.jhazmat.2015.01.031
    [17] WANG Z X, XU X C, GONG Z, et al. Removal of COD, phenols and ammonium from Lurgi coal gasification wastewater using A2O-MBR system[J]. Journal of Hazardous Materials, 2012, 235-236: 78-84. doi: 10.1016/j.jhazmat.2012.07.012
    [18] ZHAO W T, HUANG X, LEE D. Enhanced treatment of coke plant wastewater using an anaerobic-anoxic-oxic membrane bioreactor system[J]. Separation and Purification Technology, 2009, 66(2): 279-286. doi: 10.1016/j.seppur.2008.12.028
    [19] 张玉秀, 尹莉, 李海波, 等. 焦化废水处理厂活性污泥对硫氰化物的降解机制[J]. 环境化学, 2016, 35(1): 118-124. doi: 10.7524/j.issn.0254-6108.2016.01.2015072901
    [20] 潘霞霞, 李媛媛, 黄会静, 等. 焦化废水中硫氰化物的生物降解及其与苯酚、氨氮的交互影响[J]. 化工学报, 2009, 60(12): 3089-3096.
    [21] PAN J X, WEI C H, FU B B, et al. Simultaneous nitrite and ammonium production in an autotrophic partial denitrification and ammonification of wastewaters containing thiocyanate[J]. Bioresource Technology, 2018, 252: 20-27. doi: 10.1016/j.biortech.2017.12.059
    [22] 黄会静. 焦化废水处理的硫氰化物降解功能菌特性研究[D]. 广州: 华南理工大学, 2011.
    [23] MOHAN S M, NAGALAKSHMI S. A review on aerobic self-forming dynamic membrane bioreactor: Formation, performance, fouling and cleaning[J]. Journal of Water Process Engineering, 2020, 37: 101541. doi: 10.1016/j.jwpe.2020.101541
    [24] LI Z M, WEI C H, CHEN Y, et al. Achieving nitritation in an aerobic fluidized reactor for coking wastewater treatment: Operation stability, mechanisms and model analysis[J]. Chemical Engineering Journal, 2021, 406: 126816. doi: 10.1016/j.cej.2020.126816
    [25] IM J, JUNG J, BAE H, et al. Correlation between nitrite accumulation and the concentration of AOB in a nitritation reactor[J]. Environmental Earth Sciences, 2014, 72(1): 289-297. doi: 10.1007/s12665-014-3285-7
    [26] HUNG C, PAVLOSTATHIS S G. Aerobic biodegradation of thiocyanate[J]. Water Research, 1997, 31(11): 2761-2770. doi: 10.1016/S0043-1354(97)00141-3
    [27] WEI C, WU H Z, KONG Q P, et al. Residual chemical oxygen demand (COD) fractionation in bio-treated coking wastewater integrating solution property characterization[J]. Journal of Environmental Management, 2019, 246: 324-333.
    [28] 曹臣, 韦朝海, 杨清玉, 等. 废水处理生物出水中COD构成的解析: 以焦化废水为例[J]. 环境化学, 2012, 31(10): 1494-1501.
    [29] KIM Y M, PARK D, JEON C O, et al. Effect of HRT on the biological pre-denitrification process for the simultaneous removal of toxic pollutants from cokes wastewater[J]. Bioresource Technology, 2008, 99(18): 8824-8832. doi: 10.1016/j.biortech.2008.04.050
    [30] ZHANG M, JOO H T, YI Q, et al. Comparison between anaerobic-anoxic-oxic and anoxic-oxic systems for coke plant wastewater treatment[J]. Journal of Environmental Engineering, 1997, 123(9): 876-883. doi: 10.1061/(ASCE)0733-9372(1997)123:9(876)
    [31] 易欣怡, 韦朝海, 吴超飞, 等. O/H/O生物工艺中焦化废水含氮化合物的识别与转化[J]. 环境科学学报, 2014, 34(9): 2190-2198.
    [32] WANG Z X, XU X C, GONG Z, et al. Removal of COD, phenols and ammonium from Lurgi coal gasification wastewater using A2O-MBR system[J]. Journal of Hazardous Materials, 2012, 235: 78-84.
    [33] SAHARIAH B P, ANANDKUMAR J, CHAKRABORTY S. Treatment of coke oven wastewater in an anaerobic-anoxic-aerobic moving bed bioreactor system[J]. Desalination and Water Treatment, 2016, 57: 14396-14402. doi: 10.1080/19443994.2015.1065448
  • 期刊类型引用(2)

    1. 王佳康,冯民权,何秋玫. 铁碳投加量对人工湿地温室气体排放的影响. 环境科学与技术. 2025(03): 169-176 . 百度学术
    2. 康得军,张芳,宋广清,刘勇丽,刘希平,夏训峰. 人工湿地温室气体排放影响因素及相关作用机制研究进展. 环境污染与防治. 2024(10): 1508-1514 . 百度学术

    其他类型引用(0)

  • 加载中
    Created with Highcharts 5.0.7访问量Chart context menu近一年内文章摘要浏览量、全文浏览量、PDF下载量统计信息摘要浏览量全文浏览量PDF下载量2024-052024-062024-072024-082024-092024-102024-112024-122025-012025-022025-032025-040Highcharts.com
    Created with Highcharts 5.0.7Chart context menu访问类别分布DOWNLOAD: 15.6 %DOWNLOAD: 15.6 %HTML全文: 67.4 %HTML全文: 67.4 %摘要: 17.0 %摘要: 17.0 %DOWNLOADHTML全文摘要Highcharts.com
    Created with Highcharts 5.0.7Chart context menu访问地区分布其他: 99.1 %其他: 99.1 %XX: 0.7 %XX: 0.7 %贵阳: 0.1 %贵阳: 0.1 %重庆: 0.1 %重庆: 0.1 %其他XX贵阳重庆Highcharts.com
图( 10) 表( 2)
计量
  • 文章访问数:  4451
  • HTML全文浏览数:  4451
  • PDF下载数:  77
  • 施引文献:  2
出版历程
  • 收稿日期:  2021-04-05
  • 录用日期:  2021-06-11
  • 刊出日期:  2021-08-10
孙晓雪, 韦聪, 罗培, 杨兴舟, 叶国杰, 韦朝海, 彭亚环, 邱光磊, 平武臣. OHO-MBR组合工艺处理实际焦化废水的可行性[J]. 环境工程学报, 2021, 15(8): 2759-2769. doi: 10.12030/j.cjee.202104025
引用本文: 孙晓雪, 韦聪, 罗培, 杨兴舟, 叶国杰, 韦朝海, 彭亚环, 邱光磊, 平武臣. OHO-MBR组合工艺处理实际焦化废水的可行性[J]. 环境工程学报, 2021, 15(8): 2759-2769. doi: 10.12030/j.cjee.202104025
SUN Xiaoxue, WEI Cong, LUO Pei, YANG Xingzhou, YE Guojie, WEI Chaohai, PENG Yahuan, QIU Guanglei, PING Wuchen. Feasibility test of OHO-MBR combined process for actual coking wastewater treatment[J]. Chinese Journal of Environmental Engineering, 2021, 15(8): 2759-2769. doi: 10.12030/j.cjee.202104025
Citation: SUN Xiaoxue, WEI Cong, LUO Pei, YANG Xingzhou, YE Guojie, WEI Chaohai, PENG Yahuan, QIU Guanglei, PING Wuchen. Feasibility test of OHO-MBR combined process for actual coking wastewater treatment[J]. Chinese Journal of Environmental Engineering, 2021, 15(8): 2759-2769. doi: 10.12030/j.cjee.202104025

OHO-MBR组合工艺处理实际焦化废水的可行性

    通讯作者: 邱光磊(1984—),男,博士,副教授。研究方向:污水膜/生物处理技术。E-mail:qiugl@scut.edu.cn
    作者简介: 孙晓雪(1996—),女,硕士研究生。研究方向:焦化废水膜处理技术。E-mail:sunxx1121@126.com
  • 1. 华南理工大学环境与能源学院,广州 510006
  • 2. 工业聚集区污染控制与生态修复教育部重点实验室,广州 510006
  • 3. 宝武集团韶关钢铁股份有限公司,韶关 512123
  • 4. 广州润达环保科技有限公司,广州 511455
基金项目:
国家自然科学基金资助项目(51808297,U1901218);广东省科技计划项目(2018A050506009,2015B020235005);广州市科技计划项目(202002030340);广东省自然科学基金资助项目(2021A1515010494);广东省珠江人才计划项目(2019QN01L125)

摘要: 焦化废水因其生物毒性强、高腐蚀性及高COD/TN比的特点,对传统生物处理工艺提出了更高的挑战,故新型生物工艺的探索对于特殊水质达标可行性及工艺经济性具有重要意义。为此,构建了新型好氧-水解-好氧(OHO)-膜生物反应器(MBR)组合工艺用于焦化废水处理,利用实际焦化废水开展了现场小试研究,考察了焦化废水中典型污染物的去除效果,结合工艺运行参数和水质指标测定结果,解析了典型污染物在OHO-MBR工艺中的转化规律。在稳定运行情况下,焦化废水经OHO-MBR工艺处理的实际运行结果表明:当总停留时间设定为56 h时,进水COD、TN、NH+4-N、SCN-N的平均值分别为3 063、146、27.3、85.1 mg·L−1的条件下,组合工艺即使在环境温度偏低(10~20 ℃)的情况下仍能实现对COD、TN、NH+4-N、SCN-N平均85.9%、65.4%、95.1%、98.6%的去除;在膜通量为20 L·(m2·h)−1的条件下,工艺运行90 d,跨膜压差维持在10 kPa以内,表明组合工艺处理实际焦化废水的初步可行性;在OHO的O2反应器中添加膜组件可去除焦化废水中的悬浮物及胶体组分,有效截留和富集常规工艺中不易增殖的特种功能微生物,提高反应器处理负荷与抗冲击能力。以上结果表明,在无需对基建设施进行大规模改造的前提下,OHO-MBR可以作为现有工艺提升出水水质的改进技术选择。

English Abstract

  • 焦化废水是炼焦工业中煤气净化及焦化产品制作回收等环节产生的混合工业废水[1]。焦化废水水质属性复杂多变,含有大量氨氮、苯酚、氰化物、硫氰化物等特征污染物,并且具有难降解、生物毒性强及生化性差等的特点[2-3]。工业水处理中常用的生物工艺有缺氧/好氧(A/O)工艺、厌氧/缺氧/好氧(A2/O)工艺[4-6]等,但这些工艺在处理焦化废水等高毒性的工业废水时,时常出现硝化失败的情况,其除碳脱氮效果不理想,出水水质不稳定[7-9]。针对上述问题,迫切需要开发更加先进高效的除碳脱氮工艺应用于毒性高的工业废水处理。

    好氧-水解-好氧(OHO)作为一种新型脱氮工艺,其原理方面的研究以及工业应用已经证明,该工艺可以很好地解决传统生物工艺除碳脱氮效果不理想、出水水质不稳定的问题[10-12]。OHO工艺具有功能明确的组成单元,与传统工艺相比,采用流化床的三泥法运行模式可以选择性富集微生物群落,并可实现良好的工艺稳定性,突破了高毒性及高COD/TN比废水处理的负荷瓶颈,而且节能降耗。OHO工艺采用基于流化床的三污泥法运行模式,通过回流与超越操作手段,可以实现污泥生物量的富集与微生物功能/丰度调控,活性污泥与焦化废水中的污染物完全混合并充分接触,高效的混合与传质克服了毒性抑制问题。O1单元中好氧微生物氧化去除氰化物、硫氰酸盐、硫化物、苯酚等还原性物质,可大幅度削减废水毒性,为后续工艺单元提供良好的水质条件。毒性降低的焦化废水在H单元进行高效的反硝化脱氮。H单元采用长时间停留,具有容纳毒性负荷的能力,超越比例的控制以H单元中的微生物活性不受进水抑制为基础,与传统工艺相比,降低了厌氧单元的毒性负荷,表现出OHO-MBR工艺的先进性。潘建新[13]发现,异养菌在O1单元富集,自养硝化菌在O2单元富集,O1单元中相对丰度最高的菌属Comamonas贡献有机物的去除,O2单元中AOB菌也具有相当高的相对丰度,贡献了O2单元的硝化,体现了OHO工艺在稳定处理焦化废水时具有的差异化优势。

    随着我国污/废水排放标准要求的不断提高,为实现废水零排放的目标,对焦化废水的有效处理、达标排放提出了更加严峻的挑战。膜生物反应器(membrane bioreactor, MBR)是生物处理与膜分离的有机结合,其优质的生物出水水质为后续的脱盐等深度处理营造了优越、稳定的水质条件,成为现有活性污泥处理工艺升级改造、实现废水零排放所优先考虑的生物处理工艺[14-15]。SUN等[16]采用厌氧-缺氧-好氧膜生物反应器(A2O-MBR)处理纺织助剂废水,在内循环比为1.5时,COD、NH+4-N和TN的平均去除率分别约为87%、96%和55%。WANG等[17]开发了实验室规模的A2O-MBR系统处理煤气化废水,COD、NH+4-N和酚类物质的最大去除率分别为97.4%、92.8%和99.7%。ZHAO等[18]采用实验室规模的厌氧-缺氧-好氧膜生物反应器(A2O-MBR)系统处理高负荷、高毒性的焦化废水,其结果表明,A2O-MBR系统在污染物和急性毒性降低方面比传统的厌氧-缺氧-好氧系统更有效和更可靠。以上所实现的单污泥工艺结合膜生物反应器虽然对污染物去除效果较好,但因负荷高而产生严重的膜污染,对富集硝化菌也不利,需要的停留时间没有明显缩短。

    基于上述研究结果,本研究以OHO新型生物处理工艺为基础[11],在二级好氧池内加装膜组件,构建了OHO-MBR组合工艺,研究了其处理实际焦化废水的可行性;通过分析工艺对COD、NH+4-N、NO2-N、NO3-N和TN等水质指标的转化关系及去除效果,考察了OHO-MBR工艺处理焦化废水的效能,分析了组合工艺的特点以及可能的技术应用方向。

  • 本研究的OHO-MBR系统进水采用宝武集团广东韶关钢铁有限公司焦化厂混凝预处理后的实际焦化废水。系统进水耗氧有机物(以COD计)质量浓度为2 600~3 477 mg·L−1,进水BOD为1 025~1 440 mg·L−1,进水SCN-N质量浓度为53~156 mg·L−1,进水TN质量浓度为56~144 mg·L−1,进水NH+4-N质量浓度为12~39 mg·L−1,进水NO3-N质量浓度为0.10~5.22 mg·L−1,进水NO2-N质量浓度为0.12~2.66 mg·L−1。预处理采用混凝/吸附的物化工艺,去除废水中的大部分油分、悬浮颗粒、酚类、硫化物及氰化物等污染物,降低生化单元的处理负荷,减轻毒性物质对微生物活性的抑制作用。焦化废水水质组分复杂,进水水质指标随厂区运行情况存在一定波动。

  • 实验所用连续流OHO-MBR小试装置如图1所示。OHO-MBR反应器槽体为矩形结构,尺寸为814 cm×250 cm×500 cm,总有效容积为56.8 L。该实验系统由O1、H、O2单元组成,采用连续流进水模式。其中O1为一级好氧单元,有效容积20.4 L,分离区5.3 L,通过进水泵调节进水流量,控制进出水平衡,设置曝气装置,保证曝气量在2~3 L·min−1;H为水解单元,有效容积为18.4 L,分离区为5.0 L,通过机械搅拌及水流提升作用,均匀单元水质,维持厌氧环境;O2为二级好氧膜分离单元,有效容积为18.0 L,分离区为4.7 L,调节进气口曝气器保证混合液均匀充氧,膜组件采用沉没式平板膜,有效膜面积为0.10 m2,孔径为0.10 μm,额定膜通量为20 L·(m2·h)−1。各单元主要运行参数见表1

    OHO-MBR反应器运行模式可以为推流、超越与回流及其结合的模式。33%的进水经蠕动泵抽取超越至H单元,回流泵从O2分离区吸取上清液至H单元,回流比R2为0.66。O1/H组合形成高效除碳氨化单元,焦化废水进水经O1好氧单元充分去除有机污染物,有机氮、氰化物和硫氰化物等的含氮化合物均被氧化降解释放出氨氮,随后进入H单元,在水解酸化作用下提升反应器内残余有机污染物的可生化性。H/O2形成一个高效生物脱氮体系,在反硝化作用下,降低废水中的总氮,MBR膜组件对好氧曝气处理后的废水污泥混合液进行高效固液分离,生物单元处理后的废水经膜组件过滤后排出。分别从O1、H、O2单元中定时采集水样,简单沉淀后,取上清液进行检测分析,分析COD、NH+4-N、TN及特征污染物在各单元中的去除及转化特征,进而考察组合工艺处理实际焦化废水的可行性。

  • 选取SCN-N、NH+4-N、NO3-N、NO2-N、TN和COD作为主要监测指标。SCN-N的测定采用硫氰酸铁分光光度法(GB/T 6609.15-1986);NH+4-N的测定采用纳氏试剂分光光度法(HJ 535-2009);NO3-N的测定采用紫外分光光度法(HJ/T 346-2007);NO2-N采用N-(1-萘基)-乙二胺分光光度法(GB 7493-1987);TN的测定采用过硫酸钾氧化紫外分光光度法(HJ 636-2012);COD的测定采用重铬酸钾消解滴定法(HJ 828-2017)。

  • 图2图3反映了OHO-MBR反应系统3个处理单元中SCN-N质量浓度及各单元对污染物去除的贡献情况。在OHO-MBR的进水SCN-N质量浓度为53.1~156 mg·L−1,除进水波动、DO不足的情况之外,系统出水SCN-N质量浓度在1.00 mg·L−1以下,表明系统对SCN-N具有高效的转化效率。

    进水SCN-N在一级好氧单元O1中经微生物作用氨化降解为NH+4-N。SCN-N占TN比例从58.7%下降为20.6%,NH+4-N占TN比例由18.6%上升到64.6%。在1~17 d,反应环境较为稳定,进水SCN-N为63.0~81.7 mg·L−1,O1单元对SCN-N去除的贡献率平均为59.6%。在37~39 d,O1单元对SCN-N去除贡献率降至6.16%,这是由于O1单元内DO含量下降至0.74 mg·L−1,SCN-N的好氧降解受到抑制。调节O1单元DO至5.75 mg·L−1后,SCN-N去除效果得到改善,O1单元SCN-N出水质量浓度由63.8 mg·L−1降至21.5 mg·L−1。在67~79 d,进水SCN-N质量浓度剧增,其中在67~69 d,O1单元对SCN-N去除的贡献率下降至25.2%,这是因为O1单元进水负荷增大,超过好氧降解能力的范围,但在70~79 d,O1单元平均去除贡献率上升至64.8%,展现出了O1单元对于SCN-N的良好的去除能力及抵抗高负荷进水的能力。

    在水解单元H中,缺氧条件下,SCN-N在水解酶的作用下完全降解。H单元中SCN-N来源于O1单元出水和超越至H单元的进水之和,由于O2单元回流硝化液会稀释H单元进水中SCN-N的质量浓度。在58~87 d,由于进水SCN-N质量浓度大幅增加,导致超越至H单元的SCN-N质量浓度增加,在回流体积不变的条件下,H单元中SCN-N质量浓度出现峰值。在系统进水负荷降低后,H单元出水SCN-N质量浓度由45.7 mg·L−1降至7.49 mg·L−1

    二级好氧单元O2中,NH+4-N及超越至H池的进水中的SCN-N被氧化为NO3-N。在57~93 d,前序单元对SCN-N去除效果不佳的情况下,O2单元出水SCN-N平均质量浓度为0.79 mg·L−1,最低可至0.00 mg·L−1。在OHO-MBR运行期间,O2单元对SCN-N有很好的降解效果。由于膜的截留作用,O2单元内活性污泥MLSS保持在4 000~5 000 mg·L−1,单元内硝化效率有所提高。

    SCN-N作为还原性物质在废水COD值测定中产生1.10的当量贡献,高浓度SCN-N为焦化废水的主要耗氧有机物(以COD计)来源,常与酚类和硫化物被称为焦化废水COD三大主要来源之一,故SCN-N去除效果直接影响出水水质[19-20]。有研究[21]表明,焦化废水中SCN-N有COS和CNO 2种生物降解途径,在不同菌属的作用下降解为相同的最终产物。黄会静[22]发现,20%接种量下SCN-N降解速率最为合适,且微生物降解难降解污染物质均有一个适应期,适应期的长短与污染物的初始浓度、菌种驯化周期、菌量及培养条件有关。这也解释了在系统启动初期O2单元出水SCN-N平均质量浓度为2.76 mg·L−1的原因。总体而言,SCN-N主要在OHO-MBR的好氧单元被转化,在稳定运行情况下,SCN-N平均去除率为98.5%,基本不构成对生物脱氮的毒性抑制。

  • 图4反映了OHO-MBR反应系统3个处理单元中NH+4-N质量浓度的变化情况。稳定运行情况下,OHO-MBR的进水NH+4-N为14.0~39.0 mg·L−1,O2单元出水质量浓度为0.00~16.5 mg·L−1,平均去除率高于95%。

    在好氧条件下,焦化废水中的NH+4-N经微生物的硝化作用去除。在一级好氧单元O1,焦化废水中有机氮化合物、氰化物及硫氰化物被大量降解,释放出NH+4-N,导致O1单元出水中NH+4-N质量浓度升高,NH+4-N表现为净生成。在7~17 d,O1单元出水NH+4-N平均质量浓度高达104 mg·L−1。其原因是O1单元内DO含量过低(0.85 mg·L−1),而DO含量充足是保证氨化反应顺利进行的必要条件之一,当DO调节至4.09 mg·L−1时,NH+4-N出水质量浓度下降至63.0 mg·L−1

    水解单元H中,有机氮化合物、氰化物及硫氰化物发生水解氨化作用,有利于后续生物脱氮的进行。稳定运行情况下,H单元NH+4-N平均增加量8.94 mg·L−1,其中SCN-N氨化对应的NH+4-N增加量为6.03 mg·L−1,有机氮化合物、氰化物等其他物质水解对应的NH+4-N增加量为2.91 mg·L−1。H单元中NH+4-N的变化趋势与O1单元基本相同,这是因为O2单元的回流液稀释了H单元中NH+4-N的质量浓度。

    前序单元进水中残留的NH+4-N在O2单元实现完全去除。在48~58 d,由于O1单元出现了DO降低及换泥的情况,导致进入O2单元的有机物浓度负荷升高,系统NH+4-N去除效果较差。在61~71 d,系统NH+4-N进水质量浓度从14.0 mg·L−1升高至39.0 mg·L−1,但是O2单元仍能将NH+4-N平均出水质量浓度维持在1.76 mg·L−1左右的水平,这是因为废水经O1和H单元处理后,毒性大大削减。此外,O2单元中膜组件对污泥的截留作用,保障了增殖较慢的硝化细菌在反应器内的有效增殖,使得硝化反应可以充分进行。OHO-MBR工艺中O1、O2双好氧单元的设置,即使在前置好氧单元O1受到进水负荷冲击的条件下也可以有效保障NH+4-N的高效去除。

    总体而言,NH+4-N主要在OHO-MBR工艺的O1、O2单元中经硝化作用去除。稳定运行情况下,NH+4-N去除率最高可达99.4%。好氧单元中硝化细菌为自养微生物,其生长速率较低,MBR可以在更长的SRT条件下运行,可以保留生长缓慢的硝化细菌[23]。因此,可通过延长SRT减少污泥的流失从而提高氨氮的硝化率。在工艺参数进一步优化的条件下,各单元去除效能仍有较大提升潜力。

  • 图5图6反映了OHO-MBR反应系统3个处理单元中NOx-N (NO3-N、NO2-N)的质量浓度变化情况。在稳定运行情况下,OHO-MBR的进水NO3-N质量浓度在0.10~4.12 mg·L−1,O2单元出水质量浓度在2.50~48.4 mg·L−1。进水中几乎不含NO2-N。焦化废水中的NO3-N在厌氧环境中经微生物的反硝化作用还原为N2,从而实现脱氮。33%进水超越至H单元,66%的进水推流进O1单元。在1~93 d,O1单元中进水NO3-N质量浓度为0.10~5.22 mg·L−1,出水NO3-N质量浓度维持在1.49~45.6 mg·L−1,O1单元中部分NH+4-N发生了硝化反应,转化为NO3-N。

    水解单元H是发生反硝化脱氮的主要场所。O1单元出水和O2单元回流液汇入H单元,为H单元提供了NO3-N,而超越至H单元的原水为反硝化提供了碳源或电子供体,反硝化菌在缺氧条件下将NO3-N还原为N2。在71~77 d的运行过程中,H单元出水NO3-N质量浓度上升至60.5 mg·L−1。其原因可能是,好氧单元进水混合液中含有残留毒性污染物,对反硝化作过程产生抑制作用,因此,出水中NO3-N质量浓度升高。

    O2是好氧硝化单元,废水中残余氰化物、硫氰化物、氨氮等污染物在好氧环境中充分降解。在1~3 d内,处于反应器启动初期,污染物在O1中即完成硝化作用,因此,O2单元出水中NO3-N质量浓度低于O1单元出水。在51~57 d内,由于O1单元更换污泥,在O1单元具有较好的生物活性,保证了硝化反应的进行,因此,O2单元出水中NO3-N质量浓度较低。

    NO2-N是硝化与反硝化过程的主要中间产物。NO2-N在硝化与反硝化过程中积累的现象也常见于一些文献报道[10,24]。本工艺中,O1、H、O2单元中均检测到NO2-N,即存在NO2-N积累的情况。H单元出水NO2-N平均质量浓度低于进水平均质量浓度,表观上看,H单元中NO2-N积累主要来源于不完全硝化过程。在整个工艺运行周期内,NO2-N积累在90%的运行时间内是由不完全硝化过程造成的,在剩余10%的运行时间内,H单元中不完全反硝化过程贡献了NO2-N的积累。硝化作用分为2个阶段,由氨氧化细菌(AOB)和亚硝酸盐氧化细菌(NOB)驱动,它们分别将NH+4-N氧化为NO2-N和将NO2-N氧化为NO3-N[25]。HUNG等[26]的研究也表明,SCN-N对硝化的2个阶段均有抑制作用,不完全硝化导致NO2-N在池体内的积累。在1~9 d内,O2单元出水NO2-N平均质量浓度系统达到8.79 mg·L−1,其原因是,SCN-N及残余有毒污染物对于亚硝酸盐氧化过程的抑制作用,造成了O2单元内NO2-N的积累。

    反硝化是一个涉及到多种酶参与、电子传递及能量转化的过程。本研究中O2到H单元的回流比为66%,可通过提高回流比R2的方式提高OHO-MBR工艺中的TN去除。

  • 图7图8反映了OHO-MBR反应系统3个处理单元中TN质量浓度及各单元对污染物去除的贡献情况。本研究中采用了较低的O2硝化液回流比(66%);但即使在低回流比条件下,TN平均去除率仍可达到65.4%。

    TN的去除途径有微生物同化作用和硝化-反硝化作用。好氧单元O1及O2去除TN在于微生物的同化作用;H单元去除TN在于反硝化作用,反硝化的程度决定了OHO-MBR工艺对的TN去除性能。一级好氧单元O1中,SCN-N降解为NH+4-N,同时有机含氮化合物降解释放出部分氨氮,碳元素以CO2形式释放(观察到大量的泡沫),氮的存在形式发生转化,NH+4-N是TN的主要来源。在O1单元中TN的去除主要源于微生物代谢活动中氮素的消耗。

    水解单元H中,回流的好氧硝化液在此单元内经反硝化作用达到脱氮的目标。稳定运行条件下,H单元对去除TN的贡献最高为84.05%。SCN-N、NH+4-N、NO3-N在TN中平均占比分别为31.3%、48.8%、18.1%。其中NO3-N作为反硝化作用的底物占比过少,导致反硝化程度较低,从而限制了系统的脱氮性能。

    在稳定运行状态下,二级好氧单元O2出水中TN平均质量浓度为47.3 mg·L−1,表明OHO-MBR工艺出水中仍含有一定量的TN。O2单元出水中NO3-N在TN中平均占比为73.1%。好氧单元中微生物的同化作用对TN的去除能力较弱。O2单元内以硝化反应为主,在硝化菌的作用下,含氮化合物的存在形式主要是由NH+4-N转化为NO3-N,为H单元反硝化作用的进行提供条件。作为初步的可行性探索,本研究采用的O2硝化液回流比为66%,即使在低回流比条件下,OHO-MBR工艺的TN去除率最高也达到了84.1%。若运行以TN去除为目标的工艺,则需要通过提高硝化液回流比或投加电子供体以实现更高的TN去除率。

  • 图9图10反映了OHO-MBR反应系统3个处理单元中COD的变化和各单元对COD的去除贡献。在稳定运行状态下,OHO-MBR的进水COD为2 711~3 477 mg·L−1,O2单元出水COD最低为297 mg·L−1。焦化废水耗氧有机物(以COD计)来源于水中的易生物降解物质和难生物降解物质。COD主要通过好氧条件对还原性物质的氧化及反硝化过程中对有机物的利用来去除。一级好氧单元O1在稳定运行条件下,O1单元出水中COD平均值为491 mg·L−1,O1单元对COD平均去除贡献为84.1%。进水中耗氧有机物(以COD计)主要由有机污染物、酚类、硫氰化物、氰化物、硫化物构成,易降解耗氧有机物(以COD计)在O1单元去除,削减了水中的COD。COD的去除率取决于污泥浓度、溶解氧与进水有机负荷。

    H单元通过反硝化过程中对碳源的利用实现对COD的去除。O1单元出水及超越至H单元的进水提供了反硝化所需碳源,O2单元好氧硝化液回流提供NO3-N。H单元将难降解有机物水解转化为易降解形态,废水B/C值由0.1左右提升到0.25~0.28,为后续的好氧降解提供了有利条件。H单元出水COD高于O1单元出水,这是因为进水超越33%带来一部分的复杂有机物在水解单元被降解,进而表现为COD升高。

    二级好氧单元O2在稳定运行条件下,进水COD平均值为1 135 mg·L−1,出水平均值为435 mg·L−1,O2单元对COD去除贡献平均为38.1%。O2单元接纳H单元出水,进一步氧化焦化废水中残留的有机物和还原性物质,从而实现对COD的去除。在47~49 d内,O2单元出水COD上升至1 016 mg·L−1,这是因为O1单元DO不足,导致对有机物的降解能力下降,超出O2单元的COD接纳负荷。MBR作为出水单元可去除悬浮组分及胶体组分,有效截留单元内的活性污泥。WEI等[27]发现,在焦化废水生物处理出水平均残余COD为168.8 mg·L−1的条件下,采用膜过滤(0.45 μm)工艺深度处理后的出水平均COD降为95.1 mg·L−1,膜过滤对生物处理出水COD的平均去除率为43.7%。在稳定运行状态下,经过OHO-MBR工艺处理后,出水COD最低为297 mg·L−1,对COD的最高去除率为89.8%。残余COD主要由可溶性有机物构成[28],可采用混凝沉淀、臭氧氧化或吸附等后物化处理工艺进一步去除,实现出水的排放标准或达到脱盐的入膜水质要求。

  • 表2所示为不同处理工艺对焦化废水的处理效能对比,其中AO、A2O、A2O-MBR为实验室规模,OHO-MBR为小试装置,OHO为工程应用。OHO设置双好氧单元,可以有效消除或减轻焦化废水的毒性抑制作用,以保证硝化反硝化反应的顺利进行,提高工艺脱氮效率。传统生物工艺如AO和A2O工艺虽然通过前置厌氧单元去除部分有机物,但高浓度的CN、SCN以及苯酚会严重抑制有机物的利用,在焦化废水的实际工程中表现为极度不稳定且难以控制,且受冲击后恢复时间较长等问题。结合OHO的MBR反应器可有效截留和富集不易增殖的微生物,解决稳定性问题。SAHARIAH等[33]采用A2O工艺处理焦化废水,实验结果表明,A单元对COD的去除率仅为2%。本工艺在稳定运行状态下,O1单元对COD平均去除贡献率可达84.1%。本研究作为OHO-MBR工艺的可行性初探,即使在偏低的硝化液回流(0.66)及低环境温度(10~20 ℃)条件下,仍可实现对污染物的良好去除,说明工艺处理效能有可进一步拓展提升的空间。

  • 1) OHO-MBR工艺能够稳定降解焦化废水中的有机物及毒性物质,实现脱氮除碳的目标。在总HRT为56 h、进水COD、TN、NH+4-N、SCN-N的平均质量浓度分别为3 063、146、27.3、85.1 mg·L−1的条件下,对COD、TN、NH+4-N、SCN-N的平均去除率分别达到85.9%、65.4%、95.1%、98.6%。

    2) O1单元可实现有机物质及毒性污染物的降解;H单元在反硝化脱氮的同时,亦可水解焦化废水中难降解有机物;O2单元实现完全硝化的同时,亦可实现对残余有机物及还原性无机物的最终氧化去除。

    3) OHO-MBR作为生物处理与膜分离的有机结合工艺,可有效截留和富集特种功能微生物,提高工艺污泥负荷和出水的分离效率,对焦化废水表现出良好的脱氮除碳效果,同时系统具备抵抗冲击负荷的能力,可为后续的脱盐等深度处理营造优越、稳定的水质条件。OHO-MBR可作为负荷增强、提高水质的备选技术,在不增加新的构筑物条件下,可用于现有工程的升级改造。

参考文献 (33)

返回顶部

目录

/

返回文章
返回