-
近年来我国的养猪行业逐渐规模化、企业化,猪的出栏量以达世界最多[1]。养猪行业每年可产生大量的粪便,但其有效资源化利用率却不足50%[2]。我国每年产生大量的猪粪水,其中包括了粪便、尿液以及洗涤废水[3-4]。猪场废水在经过处理之前大多需要经过沼气池厌氧发酵过程,而将猪场沼液直接排放到江河中会引起水体富营养化等一系列环境问题[5-6]。因此,亟待研发出一种高效且低能耗的猪场沼液处理优化工艺[7]。目前常用的生化处理工艺有SBR工艺[8]、生物过滤器[9]、厌氧氨氧化技术[10]和缺氧/好氧工艺A/O工艺[11]等。A/O工艺前置缺氧池,可补充硝化池所需碱度,同时使反硝化池未完全处理的有机物得到进一步去除,降低运行费用[12-13];此外,A/O工艺因其运行成本低,故结合其他技术可以起到良好的处理效果,因而被广泛应用。陈锦良[14]基于A/O工艺的微电解耦合反硝化污泥深度处理猪场沼液,出水水质中COD、
${\rm{NH}}_{\rm{4}}^{\rm{ + }}$ -N、$ {\rm{NO}}_{\rm{3}}^{\rm{ - }}$ -N平均质量浓度分别为42.5、2.4、9.8 mg·L−1。LIU等[15]采用两级缺氧/好氧复合膜生物反应器A/O-A/O-MBR对垃圾填埋场产生的渗滤液进行了81 d的处理,对总氮以及氨氮的去除率达80.7%和99.3%。孙亚平等[16]利用两级A/O工艺以及人工湿地等工艺组合深度处理猪场废水,对${\rm{NH}}_{\rm{4}}^{\rm{ + }}$ -N的去除率为76.40%~98.41%,TP的去除率维持在83.92%~99.84%,COD的去除率则为89.26%~98.62%。有研究结果[17]表明,沉水植物对水体中营养物质的吸收要大于漂浮植物和挺水植物。金树权等[18]通过研究发现,水体生物修复中的微生物与植物修复效果之间存在密切联系,虽然沉水植物直接吸收氮磷比例占水质中氮磷比例不高,但通过促进植物体吸附、改善环境提高水体微生物转化等增效作用较为明显。狐尾藻是沉水植物中常见的一种,其对水体中氮磷等营养物质具有较强的吸收能力[19],植物根系对有机碳的释放有助于提高低C/N污水的总氮去除效率,收割后的狐尾藻还可作为湿地景观观赏以及作为饲料使用[20-21]。吴晓梅等[22]利用狐尾藻处理猪场沼液,结果表明,当水力停留时间为40 d 时对沼液的处理效果最好,沼液中COD以及
${\rm{NH}}_{\rm{4}}^{\rm{ + }}$ -N去除率分别为65.99%和59.54%。近年来人们提出了运用填料与A/O工艺相结合的污水处理方法[23]。晁雷等[24]运用3种不同填料对比了强化A/O工艺处理炼化废水,结果表明,弹性填料对炼化废水中COD、${\rm{NH}}_{\rm{4}}^{\rm{ + }}$ -N和TN的去除效果相对较好,去除率分别为80.6%、95%、75%。弹性填料因其结构具备弹性可保持稳定性,可使填料表层吸附微生物并进行正常的新陈代谢,在好氧池中可减少对微生物的冲击作用,因此,弹性填料的加入有助于微生物更好生长繁殖[25],在一定程度上可强化A/O工艺。本研究中采用对A/O工艺进行方法的优化,在池中加挂弹性填料仿生水草的同时在表面种植狐尾藻,监测了其水质指标变化并调整了运行参数,同时设置对照组观察,对比探讨了A/O工艺和改良A/O工艺对猪场沼液常规污染物质去除能力的优化效果,以期为强化A/O工艺处理猪场沼液提供参考。
加挂填料种植狐尾藻提升A/O工艺处理猪场沼液的效果
Treatment effect of piggery biogas slurry by improved A/O process with adding packing and planting myriophylla
-
摘要: 为提升A/O工艺对猪场沼液中污染物的去除效果,实现高效率且低成本的运行模式,通过对A/O工艺加挂弹性填料种植狐尾藻来优化工艺。结果表明:当进水COD、TN和
${{\rm{NH}}_{\rm{4}}^{\rm{ + }}}$ -N分别为441~948、401~1 579和369~1 594 mg·L−1时,改良A/O工艺系统出水COD、TN和${{\rm{NH}}_{\rm{4}}^{\rm{ + }}}$ -N去除率分别为42.5%~97.4%、36.9%~88.3%和94.2%~99.4%,均优于A/O工艺的去除效果且具有显著提升。综合考虑对污染物的去除效果以及企业运行成本,在水力停留时间为10 d时,改良A/O工艺出水水质达到最优,出水COD平均去除率可达75.3%,对${{\rm{NH}}_{\rm{4}}^{\rm{ + }}}$ -N平均去除率为96.2%~99.5%,TN的出水质量浓度为70~296 mg·L−1。此外,可结合多级改良A/O工艺和组合工艺进一步优化出水水质。除微生物同化作用以及硝化反硝化途径外,系统中含氮类物质还可通过狐尾藻植物去除。改良A/O工艺中狐尾藻植物能够大量生长,含水量为88.8%~89.0%,TP和TN质量分数分别为3.4~5.2 g·kg−1和51.4~53.8 g·kg−1,TN质量分数要远高于普通富营养化水体栽培的狐尾藻,这说明狐尾藻在改良A/O工艺中能够更好的吸收污染水体中的含氮物质。以上结果可为改良A/O工艺对猪场沼液的优化处理提供参考。Abstract: In order to improve the removal efficiency of pollutants from piggery biogas slurry by traditional A/O system and realize the operation mode of high efficiency and low cost, the process was optimized by adding elastic packing to A/O system and planting myriophylla. The results showed that when the influent COD, TN and${\rm{NH}}_{\rm{4}}^{\rm{ + }}$ -N were 441~948, 401~1 597 and 369~1 594 mg·L−1, the removal rates of COD, TN and${\rm{NH}}_{\rm{4}}^{\rm{ + }}$ -N were 42.5%~97.4%, 36.9%~88.3% and 94.2%~99.4% respectively, which were better than those of A/O system and had a significant improvement. In addition, the effluent quality can be further optimized by combining multi-stage improved A/O system and combined system. Considering the removal efficiency of pollutants and the operation cost of the enterprise, the HRT of 10 d was most suitable for the actual operation of the improved A/O system, the average removal rate of COD in the effluent was 75.3%, the average removal rate of${\rm{NH}}_{\rm{4}}^{\rm{ + }}$ -N was 96.2%~99.5%, and the effluent concentration of TN was 70~296 mg·L−1. In addition to microbial assimilation and nitrification and denitrification, nitrogen-containing substances in the system could also be removed by myriophylla. In the improved A/O system, myriophylla could grow in large quantities with water content of 88.8%~89.0%, TP and TN contents of 3.4~5.2 g·kg−1 and 51.4~53.8 g·kg−1, respectively, and the concentration of TN was much higher than that of myriophylla in eutrophic water, which showed that myriophylla in the improved A/O system had better absorption performance toward nitrogen in the polluted water. The above results provide a reference for the optimization of piggery biogas slurry treatment by improved A/O system.-
Key words:
- piggery biogas slurry /
- improved A/O system /
- elastic packing /
- myriophylla
-
表 1 猪场沼液中各污染物的质量浓度
Table 1. Concentrations of pollutants in biogas slurry of pig farm
mg·L−1 数值类型 COD -N${\rm{NH}}_{\rm{4}}^{\rm{ + }}$ TN -N$ {\rm{NO}}_{\rm{3}}^{\rm{ - }}$ -N$ {\rm{NO}}_{\rm{2}}^ - $ 浓度范围 441~948 369~1 594 401~1 597 0.13~8.62 0.03~2.53 平均值 676±122 672±284 699±283 2.16±1.96 0.51±0.50 表 2 A/O工艺中狐尾藻植物的各项指标
Table 2. Indexes of myriophylla in A/O process
不同池中狐尾藻 湿质量/g 干质量/g TN/(g·kg−1) TP/(g·kg−1) 含水量/% A池中狐尾藻 560.2 61.4 53.8 5.2 89.1 O池中狐尾藻 95.1 10.7 51.4 3.4 88.8 -
[1] 涂敏. 规模化养猪场粪污处理与综合利用综述[J]. 安徽农学通报, 2019, 25(15): 139-143. doi: 10.3969/j.issn.1007-7731.2019.15.055 [2] ZHANG M M, LUO P, LIU F, et al. Nitrogen removal and distribution of ammonia-oxidizing and denitrifying genes in an integrated constructed wetland for swine wastewater treatment[J]. Ecological Engineering, 2017, 104: 30-38. doi: 10.1016/j.ecoleng.2017.04.022 [3] MIYOKO W, TOMOKO Y, YASUYUKI F, et al. Treatment of swine wastewater in continuous activated sludge systems under different dissolved oxygen conditions: Reactor operation and evaluation using modelling[J]. Bioresource Technology, 2018, 250: 574-582. doi: 10.1016/j.biortech.2017.11.078 [4] ZHANG D, WANG X X, ZHOU Z G. Impacts of small-scale industrialized swine farming on local soil, water and crop qualities in a hilly red soil region of subtropical China[J]. International Journal of Environmental Research and Public Health, 2017, 14(12): 1524. doi: 10.3390/ijerph14121524 [5] XU Z C, SONG X Y, LI Y, et al. Removal of antibiotics by sequencing-batch membrane bioreactor for swine wastewater treatment[J]. Science of the Total Environment, 2019, 684: 23-30. doi: 10.1016/j.scitotenv.2019.05.241 [6] LI X, LI Y Y, LI Y, et al. Enhanced nitrogen removal and quantitative analysis of removal mechanism in multistage surface flow constructed wetlands for the large-scale treatment of swine wastewater[J]. Journal of Environmental Management, 2019, 246: 575-582. [7] LUO P, LIU F, ZHANG S N, et al. Nitrogen removal and recovery from lagoon-pretreated swine wastewater by constructed wetlands under sustainable plant harvesting management.[J]. Bioresource Technology, 2018, 258: 247-254. doi: 10.1016/j.biortech.2018.03.017 [8] 郑效旭, 李慧莉, 徐圣君, 等. SBR串联生物强化稳定塘处理养猪废水工艺优化[J]. 环境工程学报, 2020, 14(6): 1503-1511. doi: 10.12030/j.cjee.201902016 [9] MCKIE M J, BERTOIA C, EDMONDS L T, et al. Andrews. Pilot-scale comparison of cyclically and continuously operated drinking water biofilters: Evaluation of biomass, biological activity and treated water quality[J]. Water Research, 2019, 149: 488-495. doi: 10.1016/j.watres.2018.11.033 [10] 王欢, 李旭东, 曾抗美. 猪场废水厌氧氨氧化脱氮的短程硝化反硝化预处理研究[J]. 环境科学, 2009, 30(1): 114-119. doi: 10.3321/j.issn:0250-3301.2009.01.020 [11] JIA S J, CHEN X Q, SUENAGA T, et al. Spatial and daily variations of nitrous oxide emissions from biological reactors in a full-scale activated sludge anoxic/oxic process.[J]. Journal of Bioscience and Bioengineering, 2019, 127(3): 333-339. doi: 10.1016/j.jbiosc.2018.08.003 [12] WANG Q B, CHEN Q W. Simultaneous denitrification and denitrifying phosphorus removal in a full-scale anoxic-oxic process without internal recycle treating low strength wastewater[J]. Journal of Environmental Sciences, 2016, 39(1): 175-183. [13] 晏广, 邱兆富, 曹国民, 等. A/O系统处理低C/N奶牛场废水中的抗生素[J]. 环境工程学报, 2020, 14(7): 1817-1826. doi: 10.12030/j.cjee.201909163 [14] 陈锦良. 基于A/O工艺的微电解耦合反硝化污泥深度处理猪场沼液研究[D]. 广州: 广东工业大学, 2018. [15] LIU J B, ZHANG P Y, TIAN Z Y, et al. Pollutant removal from landfill leachate via two-stage anoxic/oxic combined membrane bioreactor: Insight in organic characteristics and predictive function analysis of nitrogen-removal bacteria[J]. Bioresource Technology, 2020, 317: 69-76. [16] 孙亚平, 林运通, 梁瑜海, 等. 组合工艺对高浓度猪场废水的深度处理[J]. 环境科学与技术, 2018, 41(S2): 169-174. [17] 张洪刚, 洪剑明. 人工湿地中植物的作用[J]. 湿地科学, 2006, 4(2): 146-154. doi: 10.3969/j.issn.1672-5948.2006.02.012 [18] 金树权, 周金波, 包薇红, 等. 5种沉水植物的氮、磷吸收和水质净化能力比较[J]. 环境科学, 2017, 38(1): 156-161. [19] LIU F, ZHANG S N, LUO P, et al. Purification and reuse of non-point source wastewater via Myriophyllum-based integrative biotechnology: A review[J]. Bioresource Technology, 2018, 248: 3-11. doi: 10.1016/j.biortech.2017.07.181 [20] 钟爱文, 曹特, 张萌, 等. 光照和黑暗条件下苦草和穗花狐尾藻对铵态氮的吸收[J]. 湖泊科学, 2013, 25(2): 289-294. doi: 10.3969/j.issn.1003-5427.2013.02.017 [21] 孙宏, 李宁, 汤江武, 等. 狐尾藻在养殖污水净化中的作用原理及相关应用进展[J]. 中国畜牧杂志, 2020, 56(3): 37-42. [22] 吴晓梅, 叶美锋, 吴飞龙, 等. 狐尾藻净化生猪养殖场沼液的研究[J]. 农业环境科学学报, 2018, 37(4): 796-803. doi: 10.11654/jaes.2017-1188 [23] 赵宪章, 董文艺, 王宏杰, 等. 组合填料强化多级AO工艺处理低温污水脱氮效果[J]. 环境工程, 2018, 36(3): 49-53. [24] 晁雷, 孟佳, 王焕书, 等. 三种填料改良A/O工艺处理炼化废水的对比研究[J]. 水处理技术, 2019, 45(8): 103-107. [25] FENG L J, YANG G F, ZHU L, et al. Enhancement removal of endocrine-disrupting pesticides and nitrogen removal in a biofilm reactor coupling of biodegradable Phragmites communis and elastic filler for polluted source water treatment[J]. Bioresource Technology, 2015, 187: 331-337. doi: 10.1016/j.biortech.2015.03.095 [26] 傅金祥, 陈东宁, 李微, 等. 水力负荷对A/O生物滤池处理生活污水的影响[J]. 沈阳建筑大学学报(自然科学版), 2008, 24(3): 447-450. [27] 李海华, 金艳艳, 刘保, 等. HRT及有机负荷对厌氧+好氧UF组合工艺处理养猪场粪污的试验研究[J]. 河南农业大学学报, 2012, 46(6): 691-694. doi: 10.3969/j.issn.1000-2340.2012.06.019 [28] 李倩, 全天秀, 李祖明, 等. 狐尾藻营养活性成分的研究[J]. 食品工业科技, 2019, 40(11): 318-322. [29] 余红兵, 肖润林, 杨知建, 等. 五种水生植物生物量及其对生态沟渠氮、磷吸收效果的研究[J]. 核农学报, 2012, 26(5): 798-802. [30] XU W W, HU W P, DENG J C, et al. Effects of harvest management of Trapa bispinosa on an aquatic macrophyte community and water quality in a eutrophic lake[J]. Ecological Engineering, 2014, 64: 120-129. doi: 10.1016/j.ecoleng.2013.12.028 [31] 郑焕春, 周青. 微生物在富营养化水体生物修复中的作用[J]. 中国生态农业学报, 2009, 17(1): 197-202.