Processing math: 100%

加挂填料种植狐尾藻提升A/O工艺处理猪场沼液的效果

张泽, 孙亚平, 钟铭君, 崔理华. 加挂填料种植狐尾藻提升A/O工艺处理猪场沼液的效果[J]. 环境工程学报, 2021, 15(8): 2770-2777. doi: 10.12030/j.cjee.202102089
引用本文: 张泽, 孙亚平, 钟铭君, 崔理华. 加挂填料种植狐尾藻提升A/O工艺处理猪场沼液的效果[J]. 环境工程学报, 2021, 15(8): 2770-2777. doi: 10.12030/j.cjee.202102089
ZHANG Ze, SUN Yaping, ZHONG Mingjun, CUI Lihua. Treatment effect of piggery biogas slurry by improved A/O process with adding packing and planting myriophylla[J]. Chinese Journal of Environmental Engineering, 2021, 15(8): 2770-2777. doi: 10.12030/j.cjee.202102089
Citation: ZHANG Ze, SUN Yaping, ZHONG Mingjun, CUI Lihua. Treatment effect of piggery biogas slurry by improved A/O process with adding packing and planting myriophylla[J]. Chinese Journal of Environmental Engineering, 2021, 15(8): 2770-2777. doi: 10.12030/j.cjee.202102089

加挂填料种植狐尾藻提升A/O工艺处理猪场沼液的效果

    作者简介: 张泽(1996—),男,硕士研究生。研究方向:猪场废水治理。E-mail:453655903@qq.com
    通讯作者: 崔理华(1963—),男,博士,教授。研究方向:水污染控制工程等。E-mail:lihcui@scau.edu.cn
  • 中图分类号: X705

Treatment effect of piggery biogas slurry by improved A/O process with adding packing and planting myriophylla

    Corresponding author: CUI Lihua, lihcui@scau.edu.cn
  • 摘要: 为提升A/O工艺对猪场沼液中污染物的去除效果,实现高效率且低成本的运行模式,通过对A/O工艺加挂弹性填料种植狐尾藻来优化工艺。结果表明:当进水COD、TN和NH+4-N分别为441~948、401~1 579和369~1 594 mg·L−1时,改良A/O工艺系统出水COD、TN和NH+4-N去除率分别为42.5%~97.4%、36.9%~88.3%和94.2%~99.4%,均优于A/O工艺的去除效果且具有显著提升。综合考虑对污染物的去除效果以及企业运行成本,在水力停留时间为10 d时,改良A/O工艺出水水质达到最优,出水COD平均去除率可达75.3%,对NH+4-N平均去除率为96.2%~99.5%,TN的出水质量浓度为70~296 mg·L−1。此外,可结合多级改良A/O工艺和组合工艺进一步优化出水水质。除微生物同化作用以及硝化反硝化途径外,系统中含氮类物质还可通过狐尾藻植物去除。改良A/O工艺中狐尾藻植物能够大量生长,含水量为88.8%~89.0%,TP和TN质量分数分别为3.4~5.2 g·kg−1和51.4~53.8 g·kg−1,TN质量分数要远高于普通富营养化水体栽培的狐尾藻,这说明狐尾藻在改良A/O工艺中能够更好的吸收污染水体中的含氮物质。以上结果可为改良A/O工艺对猪场沼液的优化处理提供参考。
  • 近年来,随着经济建设的高速发展,城镇人口急剧增加,污水排放量和污染负荷不断增大,从而导致污水处理厂出水排放的受纳水体水质不断恶化[1-3]。2015年4月,国务院印发的《水污染行动防治计划》中明确要求,敏感区域城镇污水处理设施应全面达到一级A排放标准[4]。因此,提标改造已成为污水处理厂满足愈发严格的出水排放标准的必然选择之一[5]。然而,在实际污水处理厂提标改造过程中,由于对运行参数变化导致的运行效率改变机制认识不清,盲目选择微生物种群结构作为响应指标,导致在提标改造关键参数及工艺的选择上也存在一定的盲目性[6-7]。因此,明确运行参数变化对运行效率产生影响的根本原因,对目前污水处理厂提标改造具有重要的理论意义。

    从污染物降解途径来看,限速酶是物质转化最根本的原因之一。如在氮素转化过程中,氨单加氧酶(AMO)和羟胺氧化还原酶(HAO)是硝化反应的限速酶[8],硝酸盐原酶(NR)和亚硝酸盐还原酶(NIR)是反硝化反应的限速酶[9-11]。一直以来,关于生物脱氮过程中关键酶的研究主要集中在酶的纯化和反应机理上[12-14],近年来,对于酶活性在污水处理过程中的作用才逐步展开。LI等[15]初步分析了与TN去除相关的关键酶种类;CALDERON等[16]阐述了酶活性水平与运行参数变化之间的关系;PAN等[17]探讨了污水处理系统脱氮过程中NR和NIR的特性。然而,这些研究主要集中在实验室小试规模。事实上,实际污水处理厂运行过程比实验室小试装置更加复杂。因此,有必要对实际污水处理厂关键酶活性与污染物去除率之间的关系进行深入研究。

    氧化沟是城市污水处理的3大典型工艺之一[18],在中国,从20世纪80年代以来,氧化沟工艺一直被广泛采用[19]。本研究以Orbal氧化沟为研究对象,分析2种运行模式下活性污泥中微生物种群结构、功能微生物含量、关键酶活性及污染物去除效率,并对其相互关系进行了探讨,目的是揭示影响实际污水处理厂污染物去除率的根本原因,以期为实际污水处理厂提标改造提供参考。

    PCR产物回收纯化试剂盒、实时荧光定量PCR反应试剂盒;磷酸钾(K3PO4)、硫酸铵((NH4)2SO4)、细胞色素C(C42H52FeN8O6S2)、醋酸钠(CH3COONa)、羟胺(NH2OH)、甲基紫(C24H28N3)、硝酸钠(NaNO3)、双对氯苯基三氯乙烷((ClC6H4)2CH(CCl3))均为分析纯。

    核酸自动提取仪(Tanbead,北京九宇金泰生物技术有限公司);聚丙烯酰胺凝胶电泳仪(Bio-Rad,伯乐生命医学产品(上海)有限公司);凝胶成像系统(Bio-Rad,伯乐生命医学产品(上海)有限公司);测序仪(ABI 3730XL,爱普拜斯应用生物系统贸易(上海)有限公司);实时荧光定量PCR仪(SteponePlus,爱普拜斯应用生物系统贸易(上海)有限公司);冷冻离心机(Biofuge Stratos,赛默飞世尔科技(中国)有限公司);溶氧仪(CellOx325,德国WTW中国技术服务中心);pH计(SenTix 41-3,德国WTW中国技术服务中心);温度计(WTW-Multi 340i,德国WTW中国技术服务中心);紫外可见分光光度计(UV-1700,岛津企业管理(中国)有限公司)。

    本实验在河南省某市的一个实际污水处理厂进行,该污水厂主体采用Orbal氧化沟工艺,污水处理量为4×104 m3·d−1,水力停留时间为10 h,污泥龄为12 d。实验分别在2种模式下进行,每种模式的运行周期为1年,进水水质如表1所示。2种运行模式的主要区别在于沟道内转刷开启数量不同,模式I的外、中、内沟道转刷开启数量分别为6、4、4个;模式Ⅱ的沟道转刷开启数量分别为4、4、4个。2种模式下的污泥浓度、污泥负荷、COD负荷及NH+4-N负荷均相近,模式I的污泥浓度、污泥负荷、COD负荷及NH+4-N负荷分别为3 015 mg·L−1、0.13 kg·(kg·d)−1、0.35 kg·(m3·d)−1和3.80×10−2 kg·(m3·d)−1;模式Ⅱ的污泥浓度、污泥负荷、COD负荷及NH+4-N负荷分别为2 965 mg·L−1、0.13 kg·(kg·d)−1、0.34 kg·(m3·d)−1和3.80×10−2 kg·(m3·d)−1。每周监测不同模式下进出水水质及沟道内溶解氧变化,测试位置如图1所示(包括转刷后1 m和下一个转刷前1 m)。同时,在每年6月和12月,分别采集沟道内活性污泥样品,用于微生物种群、功能微生物含量及关键酶活性分析。

    表 1  Orbal氧化沟的进水水质
    Table 1.  Influent quality of Orbal oxidation ditch
    模式 COD/(mg·L−1) NH+4-N/(mg·L−1) TN/(mg·L−1) TP/(mg·L−1) SS/(mg·L−1) pH
    I 492~734 35.25~48.52 42.56~61.25 2.25~4.15 100~325 6.80~7.20
    II 490~684 36.75~47.56 45.75~60.25 2.65~4.75 120~280 6.70~7.20
     | Show Table
    DownLoad: CSV
    图 1  采集及测试位点示意图
    Figure 1.  Schematic diagram of sites for sampling and testing in Orbal oxidation ditch

    分别采用PCR-DGGE技术、实时荧光定量PCR技术定性、定量分析不同运行模式下活性污泥微生物种群结构及功能微生物含量[20-23];采用分光光度法测定不同运行模式下关键酶活性,一个单位的酶活性(U)定义为:1 g活性污泥中,1 h转化1 mg催化底物所需酶的量[24-26];采用文献中的方法[27]测定不同运行模式下污水厂的进出水水质[27]

    在2种运行模式下,该厂进出水中COD、NH+4-N和TN的监测结果见图2。从图2可以看出,在模式I和模式Ⅱ下,COD的平均去除率分别为(94.28±2.19)%和(91.79±2.77)%;NH+4-N的平均去除率分别为(72.80±7.07)%和(69.36±8.45)%;TN的平均去除率分别为(25.50±6.83)%和(44.67±10.96)%。同时,图2中结果表明,除冬季外,其余季节在模式Ⅱ运行条件下,COD、NH+4-N和TN的去除率均明显高于模式I。在4—10月,模式I和模式Ⅱ的COD的平均去除率分别为(96.08±0.87)%和(94.17±0.73)%;NH+4-N的平均去除率分别为(81.38±3.47)%和(80.59±1.39)%,TN的平均去除率分别为(31.77±5.41)%和(59.81±5.33)%。

    图 2  2种模式下污水处理厂COD、NH+4-N和TN的去除率
    Figure 2.  Removal efficiencies of COD, NH+4-N and TN under two modes

    在2种运行模式下,分别对Orbal氧化沟3个沟道不同位置处DO浓度进行测定,结果见图3。可以看出,DO浓度在转刷前和转刷后有明显不同,特别是在外侧沟道。模式I条件下,转刷后1 m处,外渠道的DO浓度为(2.28±0.3) mg·L−1,在下一个转刷前1 m处,外渠道的DO浓度为(0.80±0.1) mg·L−1。在模式Ⅱ条件下,转刷后1 m处外渠道的DO浓度为(2.03±0.4) mg·L−1,在下一个转刷前1 m处,外渠道的DO浓度为(0.16±0.1) mg·L−1

    图 3  2种模式下不同沟道转刷前后溶解氧浓度变化
    Figure 3.  Variation of DO concentration before and after RB in different channels under two modes

    在2种运行模式下,DGGE图谱见图4。可以看出,各沟道内的微生物种群结构基本类似(图4(a))。夏季时,模式I外、中、内沟道香农指数分别为3.76、3.79和3.83,模式Ⅱ外、中、内沟道香农指数分别为3.81、3.97和3.97。冬季时,模式I外、中、内沟道香农指数分别为3.01、3.11和3.15,模式Ⅱ外、中、内沟道香农指数分别为3.05、3.02和3.11。并且,在2种模式下各个沟道中均有主条带W4~W19存在。比对结果显示,所有测得序列97%~100%程度上均与先前确定的16S rRNA基因序列具有同源性,分别隶属于拟杆菌门、变形杆菌门、绿弯菌门和厚壁菌门[28-30](图4(b))。

    图 4  不同沟道活性污泥中细菌种群
    Figure 4.  Bacterial population of activated sludge in different channels

    功能微生物氨氧化菌AOB和硝化细菌NOB定量检测结果见图5。可以看出,无论夏季还是冬季,总细菌、AOB和NOB的含量在模式I和模式Ⅱ下均呈现相似趋势。夏季时,在模式I下,Orbal氧化沟外、中、内沟道中总细菌含量分别为6.70×1010、5.80×1010、5.96×1010 cells·g−1(以干污泥含量计),AOB含量分别为8.98×105、1.02×106、2.52×106 cells·g−1(以干污泥含量计),NOB含量分别为4.89×102、8.88×102、1.02×103 cells·g−1(以干污泥含量计);而在模式Ⅱ下,外、中、内沟道中总细菌含量分别为5.84×1010、6.19×1010、5.88×1010 cells·g−1(以干污泥含量计),AOB含量分别为6.25×105、9.88×105、1.80×106 cells·g−1(以干污泥含量计),NOB含量分别为3.96×102、7.69×102、1.66×103 cells·g−1(以干污泥含量计)。冬季时,Orbal氧化沟3个沟道内总细菌、AOB、NOB含量均略低于夏季。在模式I下,外、中、内沟道中总细菌含量分别为5.58×1010、5.21×1010、5.07×1010 cells·g−1(以干污泥含量计),AOB含量分别为4.25×105、8.85×105、9.26×105 cells·g−1(以干污泥含量计),NOB含量分别为3.10×102、3.23×102、4.15×102 cells·g−1(以干污泥含量计);而在模式Ⅱ下,外、中、内沟道中总细菌含量分别为5.26×1010、5.61×1010、5.12×1010 cells·g−1(以干污泥含量计),AOB含量分别为4.23×105、5.26×105、7.68×105 cells·g−1(以干污泥含量计),NOB含量分别为2.26×102、4.21×102、8.52×102 cells·g−1(以干污泥含量计)。从AOB和NOB在总细菌中所占的相对比例来看,模式I和模式Ⅱ条件下也呈现相似结果。在模式I下,AOB和NOB的比例分别是7.62×10−6~4.23×10−5和8.19×10−9~1.71×10−8;在模式Ⅱ下,AOB和NOB的比例分别是9.38×10−6~3.06×10−5和7.50×10−9~2.82×10−8

    图 5  2种模式下不同沟道内总细菌、AOB和NOB的含量
    Figure 5.  Quantity of total bacteria, AOB and NOB in different channels under two modes

    理论上,活性污泥中的微生物种群会随着污水处理运行参数的变化而发生变化。因此,微生物种群结构变化常用来解释运行参数调节后污水处理效果发生变化这一现象[31]。本实验是在一个实际污水处理厂展开,水质监测结果发现,当外沟道转刷开启数量减少后,污水处理厂TN去除效率明显提升。然而,2种运行模式下微生物种群结构和功能微生物含量却呈现高度相似现象。这与HASHIMOTO等[32]提出的活性污泥中细菌群落结构在实际污水处理系统中是相对稳定的这一结论是相符的。当然,本实验在同一污水处理厂展开,进水水质的稳定也是2种运行模式下细菌种群结构未发生明显改变的重要原因之一,而这一结论也与ZHOU等[33]在实际污水处理厂的研究结果相符。因此,在实际污水处理厂中,仅选取微生物种群来解释运行参数变化引起运行效率提升的原因是远远不够的。

    在夏季和冬季,分别采集2种运行模式下3个沟道内活性污泥样品,进行关键酶HAO和NR的活性分析。结果显示,在同一运行模式下,与中、内沟道相比,HAO活性在外沟道中最低。相反,NR活性在外沟道中最高。并且,HAO和NR的酶活性在夏季都高于冬季。外沟道中,在模式Ⅱ条件下NR活性明显高于模式Ⅰ。在模式Ⅰ下,夏季和冬季的NR活性(以羟胺计)分别为1.58 mg·(g·h)−1和0.80 mg·(g·h)−1;而模式Ⅱ下,夏季和冬季的NR活性分别为2.27 mg·(g·h)−1和1.07 mg·(g·h)−1。内沟道中,模式I和模式Ⅱ条件下的HAO活性并无明显区别。在模式I下,夏季和冬季的HAO活性(以羟胺计)分别为2.17 mg·(g·h)−1和1.56 mg·(g·h)−1;而在模式Ⅱ下,夏季和冬季的HAO活性分别为2.05 mg·(g·h)−1和1.42 mg·(g·h)−1。分析结果表明,外侧沟道转刷开启数量的减少,直接对其中关键酶NR的活性产生了影响。在模式Ⅱ下,冬季和夏季外侧沟道内NR活性分别比模式I下提高了25%和30%。与此同时,该水厂出水中TN的去除率也由模式I的(25.50±6.83)%提高到了模式Ⅱ的(44.67±10.96)%。综合分析关键限速酶HAO、NR与TN、NH+4-N去除的关系,结果表明,HAO和NR活性与NH+4-N和TN的去除均呈正相关关系,斯皮尔曼相关系数r分别为0.99(P=0.01)和0.88(P=0.12)(图6)。也就是说,改变污水厂运行参数,生物处理单位中关键酶活性随之发生变化,进而改变污染物的去除率。进一步深入分析发现,减少Orbal氧化沟外侧沟道转刷开启数量,其沟道中缺氧或厌氧区段明显延长。供氧量的减少直接改变了外侧沟道局部的微环境条件。而这种微环境条件的改变,在不影响其微生物种群结构的前提下,直接提升了沟道内关键酶活性,进而提升了污水出水水质。这与赵群英等[34]关于DO含量变化对污水出水水质具有明显影响的研究结论是一致的。也就是说,在实际污水处理厂中,改变运行参数后,相对于微生物种群结构和功能微生物含量而言,关键酶活性的响应更为快速灵敏。然而,本研究对关键酶活性的分析仅仅是酶粗提取物的分析,并且仅在一家污水处理厂进行。如要将该研究结果用于解析实际污水处理厂运行参数变化对处理效率影响的机制时,需要进行更为精准且全面的研究。例如,结合更多实际污水处理厂的研究,综合分析多种运行参数变化后其关键酶的响应过程;同时,设计小型批量研究实验,对提取的关键酶进行纯化,进而分析不同运行参数条件下关键酶的响应关系。

    图 6  HAO、NR活性与NH+4-N,TN去除率之间的关系
    Figure 6.  Relationship between HAO and NR activities and removal rates of NH+4-N and TN

    1)减少Orbal氧化沟外侧沟道转刷开启数量,可有效地提高实际污水处理厂TN的去除率。

    2)转刷开启数量减少后,Orbal氧化沟外侧沟道内溶解氧含量降低,缺氧或厌氧区明显延长,局部微环境发生改变。

    3)在此过程中,微生物种群及功能微生物含量保持稳定,未发生明显变化。关键酶NR活性随转刷开启数量的减少而升高。并且关键酶NR活性与TN去除效率呈正相关关系。本研究为实际污水处理厂提标改造参数及工艺选择提供了参考。

  • 图 1  A/O工艺装置示意图

    Figure 1.  Device diagram of the A/O system

    图 2  对比A/O系统与改良A/O系统中COD的变化

    Figure 2.  Comparison of COD changes between A/O system and improved A/O system

    图 3  对比A/O系统与改良A/O系统中NH+4-N的变化

    Figure 3.  Comparison of NH+4-N changes between A/O system and improved A/O system

    图 4  对比A/O系统与改良A/O系统中NO3-N的变化

    Figure 4.  Comparison of NO3-N changes between A/O system and improved A/O system

    图 5  对比A/O系统与改良A/O系统中TN的变化

    Figure 5.  Comparison of TN changes between A/O system and improved A/O system

    表 1  猪场沼液中各污染物的质量浓度

    Table 1.  Concentrations of pollutants in biogas slurry of pig farm mg·L−1

    数值类型CODNH+4-NTNNO3-NNO2-N
    浓度范围441~948369~1 594401~1 5970.13~8.620.03~2.53
    平均值676±122672±284699±2832.16±1.960.51±0.50
    数值类型CODNH+4-NTNNO3-NNO2-N
    浓度范围441~948369~1 594401~1 5970.13~8.620.03~2.53
    平均值676±122672±284699±2832.16±1.960.51±0.50
    下载: 导出CSV

    表 2  A/O工艺中狐尾藻植物的各项指标

    Table 2.  Indexes of myriophylla in A/O process

    不同池中狐尾藻湿质量/g干质量/gTN/(g·kg−1)TP/(g·kg−1)含水量/%
    A池中狐尾藻560.261.453.85.289.1
    O池中狐尾藻95.110.751.43.488.8
    不同池中狐尾藻湿质量/g干质量/gTN/(g·kg−1)TP/(g·kg−1)含水量/%
    A池中狐尾藻560.261.453.85.289.1
    O池中狐尾藻95.110.751.43.488.8
    下载: 导出CSV
  • [1] 涂敏. 规模化养猪场粪污处理与综合利用综述[J]. 安徽农学通报, 2019, 25(15): 139-143. doi: 10.3969/j.issn.1007-7731.2019.15.055
    [2] ZHANG M M, LUO P, LIU F, et al. Nitrogen removal and distribution of ammonia-oxidizing and denitrifying genes in an integrated constructed wetland for swine wastewater treatment[J]. Ecological Engineering, 2017, 104: 30-38. doi: 10.1016/j.ecoleng.2017.04.022
    [3] MIYOKO W, TOMOKO Y, YASUYUKI F, et al. Treatment of swine wastewater in continuous activated sludge systems under different dissolved oxygen conditions: Reactor operation and evaluation using modelling[J]. Bioresource Technology, 2018, 250: 574-582. doi: 10.1016/j.biortech.2017.11.078
    [4] ZHANG D, WANG X X, ZHOU Z G. Impacts of small-scale industrialized swine farming on local soil, water and crop qualities in a hilly red soil region of subtropical China[J]. International Journal of Environmental Research and Public Health, 2017, 14(12): 1524. doi: 10.3390/ijerph14121524
    [5] XU Z C, SONG X Y, LI Y, et al. Removal of antibiotics by sequencing-batch membrane bioreactor for swine wastewater treatment[J]. Science of the Total Environment, 2019, 684: 23-30. doi: 10.1016/j.scitotenv.2019.05.241
    [6] LI X, LI Y Y, LI Y, et al. Enhanced nitrogen removal and quantitative analysis of removal mechanism in multistage surface flow constructed wetlands for the large-scale treatment of swine wastewater[J]. Journal of Environmental Management, 2019, 246: 575-582.
    [7] LUO P, LIU F, ZHANG S N, et al. Nitrogen removal and recovery from lagoon-pretreated swine wastewater by constructed wetlands under sustainable plant harvesting management.[J]. Bioresource Technology, 2018, 258: 247-254. doi: 10.1016/j.biortech.2018.03.017
    [8] 郑效旭, 李慧莉, 徐圣君, 等. SBR串联生物强化稳定塘处理养猪废水工艺优化[J]. 环境工程学报, 2020, 14(6): 1503-1511. doi: 10.12030/j.cjee.201902016
    [9] MCKIE M J, BERTOIA C, EDMONDS L T, et al. Andrews. Pilot-scale comparison of cyclically and continuously operated drinking water biofilters: Evaluation of biomass, biological activity and treated water quality[J]. Water Research, 2019, 149: 488-495. doi: 10.1016/j.watres.2018.11.033
    [10] 王欢, 李旭东, 曾抗美. 猪场废水厌氧氨氧化脱氮的短程硝化反硝化预处理研究[J]. 环境科学, 2009, 30(1): 114-119. doi: 10.3321/j.issn:0250-3301.2009.01.020
    [11] JIA S J, CHEN X Q, SUENAGA T, et al. Spatial and daily variations of nitrous oxide emissions from biological reactors in a full-scale activated sludge anoxic/oxic process.[J]. Journal of Bioscience and Bioengineering, 2019, 127(3): 333-339. doi: 10.1016/j.jbiosc.2018.08.003
    [12] WANG Q B, CHEN Q W. Simultaneous denitrification and denitrifying phosphorus removal in a full-scale anoxic-oxic process without internal recycle treating low strength wastewater[J]. Journal of Environmental Sciences, 2016, 39(1): 175-183.
    [13] 晏广, 邱兆富, 曹国民, 等. A/O系统处理低C/N奶牛场废水中的抗生素[J]. 环境工程学报, 2020, 14(7): 1817-1826. doi: 10.12030/j.cjee.201909163
    [14] 陈锦良. 基于A/O工艺的微电解耦合反硝化污泥深度处理猪场沼液研究[D]. 广州: 广东工业大学, 2018.
    [15] LIU J B, ZHANG P Y, TIAN Z Y, et al. Pollutant removal from landfill leachate via two-stage anoxic/oxic combined membrane bioreactor: Insight in organic characteristics and predictive function analysis of nitrogen-removal bacteria[J]. Bioresource Technology, 2020, 317: 69-76.
    [16] 孙亚平, 林运通, 梁瑜海, 等. 组合工艺对高浓度猪场废水的深度处理[J]. 环境科学与技术, 2018, 41(S2): 169-174.
    [17] 张洪刚, 洪剑明. 人工湿地中植物的作用[J]. 湿地科学, 2006, 4(2): 146-154. doi: 10.3969/j.issn.1672-5948.2006.02.012
    [18] 金树权, 周金波, 包薇红, 等. 5种沉水植物的氮、磷吸收和水质净化能力比较[J]. 环境科学, 2017, 38(1): 156-161.
    [19] LIU F, ZHANG S N, LUO P, et al. Purification and reuse of non-point source wastewater via Myriophyllum-based integrative biotechnology: A review[J]. Bioresource Technology, 2018, 248: 3-11. doi: 10.1016/j.biortech.2017.07.181
    [20] 钟爱文, 曹特, 张萌, 等. 光照和黑暗条件下苦草和穗花狐尾藻对铵态氮的吸收[J]. 湖泊科学, 2013, 25(2): 289-294. doi: 10.3969/j.issn.1003-5427.2013.02.017
    [21] 孙宏, 李宁, 汤江武, 等. 狐尾藻在养殖污水净化中的作用原理及相关应用进展[J]. 中国畜牧杂志, 2020, 56(3): 37-42.
    [22] 吴晓梅, 叶美锋, 吴飞龙, 等. 狐尾藻净化生猪养殖场沼液的研究[J]. 农业环境科学学报, 2018, 37(4): 796-803. doi: 10.11654/jaes.2017-1188
    [23] 赵宪章, 董文艺, 王宏杰, 等. 组合填料强化多级AO工艺处理低温污水脱氮效果[J]. 环境工程, 2018, 36(3): 49-53.
    [24] 晁雷, 孟佳, 王焕书, 等. 三种填料改良A/O工艺处理炼化废水的对比研究[J]. 水处理技术, 2019, 45(8): 103-107.
    [25] FENG L J, YANG G F, ZHU L, et al. Enhancement removal of endocrine-disrupting pesticides and nitrogen removal in a biofilm reactor coupling of biodegradable Phragmites communis and elastic filler for polluted source water treatment[J]. Bioresource Technology, 2015, 187: 331-337. doi: 10.1016/j.biortech.2015.03.095
    [26] 傅金祥, 陈东宁, 李微, 等. 水力负荷对A/O生物滤池处理生活污水的影响[J]. 沈阳建筑大学学报(自然科学版), 2008, 24(3): 447-450.
    [27] 李海华, 金艳艳, 刘保, 等. HRT及有机负荷对厌氧+好氧UF组合工艺处理养猪场粪污的试验研究[J]. 河南农业大学学报, 2012, 46(6): 691-694. doi: 10.3969/j.issn.1000-2340.2012.06.019
    [28] 李倩, 全天秀, 李祖明, 等. 狐尾藻营养活性成分的研究[J]. 食品工业科技, 2019, 40(11): 318-322.
    [29] 余红兵, 肖润林, 杨知建, 等. 五种水生植物生物量及其对生态沟渠氮、磷吸收效果的研究[J]. 核农学报, 2012, 26(5): 798-802.
    [30] XU W W, HU W P, DENG J C, et al. Effects of harvest management of Trapa bispinosa on an aquatic macrophyte community and water quality in a eutrophic lake[J]. Ecological Engineering, 2014, 64: 120-129. doi: 10.1016/j.ecoleng.2013.12.028
    [31] 郑焕春, 周青. 微生物在富营养化水体生物修复中的作用[J]. 中国生态农业学报, 2009, 17(1): 197-202.
  • 加载中
图( 5) 表( 2)
计量
  • 文章访问数:  3605
  • HTML全文浏览数:  3605
  • PDF下载数:  50
  • 施引文献:  0
出版历程
  • 收稿日期:  2021-02-19
  • 录用日期:  2021-05-11
  • 刊出日期:  2021-08-10
张泽, 孙亚平, 钟铭君, 崔理华. 加挂填料种植狐尾藻提升A/O工艺处理猪场沼液的效果[J]. 环境工程学报, 2021, 15(8): 2770-2777. doi: 10.12030/j.cjee.202102089
引用本文: 张泽, 孙亚平, 钟铭君, 崔理华. 加挂填料种植狐尾藻提升A/O工艺处理猪场沼液的效果[J]. 环境工程学报, 2021, 15(8): 2770-2777. doi: 10.12030/j.cjee.202102089
ZHANG Ze, SUN Yaping, ZHONG Mingjun, CUI Lihua. Treatment effect of piggery biogas slurry by improved A/O process with adding packing and planting myriophylla[J]. Chinese Journal of Environmental Engineering, 2021, 15(8): 2770-2777. doi: 10.12030/j.cjee.202102089
Citation: ZHANG Ze, SUN Yaping, ZHONG Mingjun, CUI Lihua. Treatment effect of piggery biogas slurry by improved A/O process with adding packing and planting myriophylla[J]. Chinese Journal of Environmental Engineering, 2021, 15(8): 2770-2777. doi: 10.12030/j.cjee.202102089

加挂填料种植狐尾藻提升A/O工艺处理猪场沼液的效果

    通讯作者: 崔理华(1963—),男,博士,教授。研究方向:水污染控制工程等。E-mail:lihcui@scau.edu.cn
    作者简介: 张泽(1996—),男,硕士研究生。研究方向:猪场废水治理。E-mail:453655903@qq.com
  • 华南农业大学资源环境学院,广州 510642

摘要: 为提升A/O工艺对猪场沼液中污染物的去除效果,实现高效率且低成本的运行模式,通过对A/O工艺加挂弹性填料种植狐尾藻来优化工艺。结果表明:当进水COD、TN和NH+4-N分别为441~948、401~1 579和369~1 594 mg·L−1时,改良A/O工艺系统出水COD、TN和NH+4-N去除率分别为42.5%~97.4%、36.9%~88.3%和94.2%~99.4%,均优于A/O工艺的去除效果且具有显著提升。综合考虑对污染物的去除效果以及企业运行成本,在水力停留时间为10 d时,改良A/O工艺出水水质达到最优,出水COD平均去除率可达75.3%,对NH+4-N平均去除率为96.2%~99.5%,TN的出水质量浓度为70~296 mg·L−1。此外,可结合多级改良A/O工艺和组合工艺进一步优化出水水质。除微生物同化作用以及硝化反硝化途径外,系统中含氮类物质还可通过狐尾藻植物去除。改良A/O工艺中狐尾藻植物能够大量生长,含水量为88.8%~89.0%,TP和TN质量分数分别为3.4~5.2 g·kg−1和51.4~53.8 g·kg−1,TN质量分数要远高于普通富营养化水体栽培的狐尾藻,这说明狐尾藻在改良A/O工艺中能够更好的吸收污染水体中的含氮物质。以上结果可为改良A/O工艺对猪场沼液的优化处理提供参考。

English Abstract

  • 近年来我国的养猪行业逐渐规模化、企业化,猪的出栏量以达世界最多[1]。养猪行业每年可产生大量的粪便,但其有效资源化利用率却不足50%[2]。我国每年产生大量的猪粪水,其中包括了粪便、尿液以及洗涤废水[3-4]。猪场废水在经过处理之前大多需要经过沼气池厌氧发酵过程,而将猪场沼液直接排放到江河中会引起水体富营养化等一系列环境问题[5-6]。因此,亟待研发出一种高效且低能耗的猪场沼液处理优化工艺[7]。目前常用的生化处理工艺有SBR工艺[8]、生物过滤器[9]、厌氧氨氧化技术[10]和缺氧/好氧工艺A/O工艺[11]等。A/O工艺前置缺氧池,可补充硝化池所需碱度,同时使反硝化池未完全处理的有机物得到进一步去除,降低运行费用[12-13];此外,A/O工艺因其运行成本低,故结合其他技术可以起到良好的处理效果,因而被广泛应用。陈锦良[14]基于A/O工艺的微电解耦合反硝化污泥深度处理猪场沼液,出水水质中COD、NH+4-N、NO3-N平均质量浓度分别为42.5、2.4、9.8 mg·L−1。LIU等[15]采用两级缺氧/好氧复合膜生物反应器A/O-A/O-MBR对垃圾填埋场产生的渗滤液进行了81 d的处理,对总氮以及氨氮的去除率达80.7%和99.3%。孙亚平等[16]利用两级A/O工艺以及人工湿地等工艺组合深度处理猪场废水,对NH+4-N的去除率为76.40%~98.41%,TP的去除率维持在83.92%~99.84%,COD的去除率则为89.26%~98.62%。

    有研究结果[17]表明,沉水植物对水体中营养物质的吸收要大于漂浮植物和挺水植物。金树权等[18]通过研究发现,水体生物修复中的微生物与植物修复效果之间存在密切联系,虽然沉水植物直接吸收氮磷比例占水质中氮磷比例不高,但通过促进植物体吸附、改善环境提高水体微生物转化等增效作用较为明显。狐尾藻是沉水植物中常见的一种,其对水体中氮磷等营养物质具有较强的吸收能力[19],植物根系对有机碳的释放有助于提高低C/N污水的总氮去除效率,收割后的狐尾藻还可作为湿地景观观赏以及作为饲料使用[20-21]。吴晓梅等[22]利用狐尾藻处理猪场沼液,结果表明,当水力停留时间为40 d 时对沼液的处理效果最好,沼液中COD以及NH+4-N去除率分别为65.99%和59.54%。近年来人们提出了运用填料与A/O工艺相结合的污水处理方法[23]。晁雷等[24]运用3种不同填料对比了强化A/O工艺处理炼化废水,结果表明,弹性填料对炼化废水中COD、NH+4-N和TN的去除效果相对较好,去除率分别为80.6%、95%、75%。弹性填料因其结构具备弹性可保持稳定性,可使填料表层吸附微生物并进行正常的新陈代谢,在好氧池中可减少对微生物的冲击作用,因此,弹性填料的加入有助于微生物更好生长繁殖[25],在一定程度上可强化A/O工艺。

    本研究中采用对A/O工艺进行方法的优化,在池中加挂弹性填料仿生水草的同时在表面种植狐尾藻,监测了其水质指标变化并调整了运行参数,同时设置对照组观察,对比探讨了A/O工艺和改良A/O工艺对猪场沼液常规污染物质去除能力的优化效果,以期为强化A/O工艺处理猪场沼液提供参考。

  • 实验装置如图1所示。2套实验装置均由反硝化池、硝化池组成,池与池之间由PVC管连接,装置均由单个容积200 L的塑料桶制成。运行过程中添加的沼液均为实际废水,通过水泵的作用将沼液抬升自流到反硝化池和硝化池;外接曝气装置,同时在反硝化池内安装推流器,并控制进水量、曝气量以及回流量;好氧池中溶解氧控制在2.0~4.0 mg·L−1,外回流比控制为50%,硝化液回流比为1∶1,污泥龄控制为20 d。通过添加弹性填料仿生水草强化微生物处理技术,种植狐尾藻增强对水体中污染物质的去除能力,提升植物微生物共生系统的处理效果;在硝化池与反硝化池中均悬挂弹性填料仿生水草并在池表面种植狐尾藻,仿生水草在池内的填充量为50%,狐尾藻种植面积覆盖池表面的75%;同时,设置空白组作为水质排放指标的对照。

    本实验在广东省惠州市某猪场内进行,系统运行前期通过接种猪场废水处理厂中的沉淀污泥启动反应器,将沼液曝气培养驯化微生物,进水沼液各项指标参见表1

  • A/O工艺系统运行前期进行15 d污泥驯化,每日早晚各进实际废水沼液1 h,通过添加碳酸氢钠调节池中pH。水力停留时间测试分为3个时间阶段:第1~70天水力停留时间20 d,每日计划进水20 L;第70~130天水力停留时间13 d,每日计划进水30 L;第130~190天水力停留时间10 d,每日计划进水40 L。每7 d测1次水样,分别测定进水沼液、反硝化池和硝化池出水中NH+4-N、NO3-N、NO2-N、COD、TN、SS、MLSS、DO等水质指标,通过对比A/O工艺以及改良A/O工艺中NH+4-N、NO3-N、COD、TN的去除率以及出水的质量浓度,以此来对比两者去除效果的差异。实验结束后保留植物样本,称量狐尾藻的湿重和干重以此计算植物含水量;同时,测试植物中N、P的积累量,观察植物吸收猪场沼液中氮磷的情况。

  • 水质测定方法:COD采用重铬酸钾消解法;总氮(TN)采用碱性过硫酸钾消解-紫外分光光度法;铵态氮(NH+4-N)采用纳氏试剂分光光度法;硝态氮(NO3-N)采用酚二磺酸分光光度法;亚硝酸盐氮(NO2-N)采用N-(1-奈基)-乙二胺光度法;污泥质量浓度(MLSS)和挥发性污泥质量浓度(MLVSS)使用标准称量法测定;溶解氧(DO)使用便携式溶解氧仪测定;pH使用雷诺pH计测定。植物指标的测定方法:植物含水量采用烘箱法;植物中全氮(TN)采用TN-H2SO4-H2O2消煮-奈氏比色法;植物中全磷(TP)采用TP-H2SO4-H2O2消煮-钼睇抗比色法。

  • 图2所示,猪场沼液进水COD值为441~948 mg·L−1,A/O工艺对COD的去除率为32.9%~90.3%,改良A/O工艺对COD的去除率为42.5%~97.4%,改良A/O工艺COD平均去除率较A/O工艺提升17%。A/O工艺耗氧有机污染物(以COD计)出水质量浓度为86~571 mg·L−1,改良A/O工艺出水质量浓度为37~475 mg·L−1。改良A/O工艺中耗氧有机污染物(以COD计)出水浓度明显低于A/O工艺出水浓度,但由于沼液进水COD值波动较大,从而导致出水浓度以及去除率的变化较大,故当沼液进水耗氧有机污染物(以COD计)浓度过高时,改良A/O工艺未能充分将耗氧有机物分解,出水浓度未能完全满足排放标准。因此,后续应用中可设置多级改良A/O工艺,从而实现进一步对耗氧有机污染物(以COD计)的去除[16]。A/O工艺水力停留时间过长并不利于对猪场沼液中耗氧有机污染物的去除,而且还会增加运行成本,因此,A/O工艺加挂弹性填料种植狐尾藻在水力停留时间为10 d时最符合实际运行的情况,耗氧有机污染物(以COD计)的平均去除率和出水质量浓度分别为75.3%和162 mg·L−1

  • 图3所示,猪场沼液NH+4-N的进水质量浓度为369~1 594 mg·L−1,波动范围较大。A/O工艺对NH+4-N的去除率为39.2%~99.2%,改良A/O工艺对NH+4-N的去除率为94.2%~99.4%,平均去除率提升至97.2%。A/O工艺和改良A/O工艺NH+4-N的出水质量浓度分别为4~523 mg·L−1和2~49 mg·L−1,改良A/O工艺NH+4-N的出水质量浓度均小于50 mg·L−1,满足国家排放标准。改良A/O工艺中因悬挂仿生水草,因而强化了微生物对NH+4-N的去除效果[24],仿生水草表面的生物膜能够提高系统硝化菌的数量;狐尾藻对一定浓度的沼液中NH+4-N具有较强的吸收作用,同时,植物结合微生物对NH+4-N去除能力具有增强效果[18]。综上所述,改良A/O工艺对沼液中NH+4-N去除能力显著。改良A/O工艺在水力停留时间20 d时对NH+4-N的去除效果较差,平均去除率和出水质量浓度分别为94.6%和48 mg·L−1;在水力停留时间为10 d时,平均去除率和出水质量浓度分别为98.4%和7 mg·L−1,去除效果较优于水力停留时间13 d的98.3%和10 mg·L−1。当水力停留时间为20 d时,O池对NH+4-N的去除能力大大减弱,水力停留时间过长导致A池和O池的NH+4-N出水浓度均有所增加,对O池中硝化作用去除NH+4-N能力的削弱尤为明显。由于水力停留时间过长,导致负荷过小,仅为0.3 m3·(m2·d)−1,远低于傅金祥等[26]在A/O工艺运用中的最佳负荷1 m3·(m2·d)−1,而污泥自身发生氧化导致污泥越来越少从而降低硝化反硝化途径处理效果,进而削弱了好氧硝化细菌将NH+4-N转化为NO3-N和NO2-N的能力。综上可知,改良A/O工艺对NH+4-N的去除效果更优,并随着水力停留时间的减少,对NH+4-N去除能力不断增强,且在水力停留时间为10 d时去除效果达到最佳。这与李海华等[27]的研究结果相近。

    图4所示,当进水沼液NO3-N质量浓度为0.1~9 mg·L−1时,改良A/O工艺A池NO3-N出水质量浓度在1~98 mg·L−1,O池出水的NO3-N质量浓度为27~310 mg·L−1。可见,改良A/O工艺平均出水质量浓度比A/O工艺平均出水质量浓度低78 mg·L−1,有明显改善。O池出水质量浓度波动较大的原因是,由于进水沼液污染物浓度波动较大,当进水沼液NH+4-N质量浓度过高时,NH+4-N在O池中硝化菌作用下转化为NO3-N的质量浓度也随之升高。在水力停留时间20 d时A池和O池中NO3-N浓度过高,水力停留时间过长导致营养物质缺乏不利于硝化池和反硝化池中微生物的生长,降低反硝化菌将NO3-N转化为N2的效率。此外,低C/N比废水也会降低脱氮的效率,导致A池中NO3-N浓度过高,进而影响O池中的NO3-N出水浓度。当减少水力停留时间时,A池与O池中NO3-N浓度均有不同程度的下降,改良A/O工艺在水力停留时间为13 d时,排放质量浓度均值最低,达到135 mg·L−1

    图5所示,沼液进水TN质量浓度为401~1 597 mg·L−1,波动范围较大。A/O工艺TN的出水质量浓度为115~502 mg·L−1,TN的去除率为22.3%~88.3%;改良A/O工艺TN的质量浓度为70~402 mg·L−1,TN的去除率为36.9%~89.0%,TN平均去除率提升至67.1%,去除效果具有明显改善。受进水沼液中TN浓度的影响,导致改良A/O工艺出水的TN的质量浓度和去除率波动较为明显,后续可通过多级改良A/O工艺结合组合工艺进一步降低TN的出水浓度。改良A/O工艺TN的出水质量浓度在水力停留时间20、13和10 d时的均值分别为281、175和183 mg·L−1。可见,水力停留时间过长同样不利于TN的去除,NH+4-N和NO3-N出水质量浓度的增加影响TN的变化,负荷过小不利于植物微生物结合的共生系统对污染物质的去除。当水力停留时间在13 d时,改良A/O工艺TN的出水质量浓度达到最低值,为95~330 mg·L−1,同时TN去除率达到最高值,为72.2%。

  • 改良A/O工艺中测得狐尾藻各项指标结果见表2。一般而言,改良A/O工艺中种植狐尾藻的含水量要略低于常规富营养化水体中生长狐尾藻的含水量[28]。本实验中,A池和O池种植狐尾藻TN的含量远高于常规富营养化水体环境下种植狐尾藻10.5~20.7 g·kg−1的TN含量,TP含量则略高于常规富营养化水体中1.7~3.4 g·kg−1的TP含量[29]。有研究表明,沉水植物净化增效作用大于本身直接吸收作用[30],在一定浓度范围内, 水生植物的净化率随水体中氮、磷等物质的含量增加而加大[31],这说明狐尾藻在改良A/O工艺中能够更好的吸收水体中的含氮物质。此外,A池中狐尾藻的湿质量和干质量都远大于O池,且A池中狐尾藻的TN、TP和含水量含量也高于O池中的含量。由此可知,A池中的狐尾藻要比O池中的狐尾藻生长更加旺盛,更有利于对猪场沼液中污染物的去除,这可能是由于A池中的共生环境更利于狐尾藻的生长。以上结果均表明,在一定条件下改良A/O工艺种植狐尾藻能够大量生长且能充分吸收其中的含氮物质。

  • 1)在A/O工艺中加挂弹性填料以及种植狐尾藻均对猪场沼液中COD和氮素均有明显的去除效果。其中,COD的去除率为42.5%~97.4%,较对照组中COD平均去除率提升了17%;NH+4-N的去除率为97.2%,较对照组平均去除率提升了16%,满足排放标准;A池中NO3-N出水质量浓度为1~98 mg·L−1,O池出水的NO3-N质量浓度为27~310 mg·L−1;改良A/O工艺中TN的去除率为36.9%~89.0%,较A/O工艺具有明显改善。后续可通过多级改良A/O工艺结合组合工艺进一步优化出水水质。

    2)当改良A/O工艺水力停留时间为10 d时,出水水质最符合实际排放要求。其中,耗氧有机污染物(以COD计)的排放质量浓度为57~307 mg·L−1,去除率可达75.3%;NH+4-N排放质量浓度为2~15 mg·L−1,去除率为96.2%~99.5%,平均去除率可高达98.4%;TN的排放质量浓度为70~296 mg·L−1,平均去除率可达70%以上。

    3)狐尾藻植物含水率为88.8%~89.1%,在A池中狐尾藻TN和TP含量分别为53.8 g·kg−1和5.2 g·kg−1,O池中TN和TP含量分别为51.4 g·kg−1和3.4 g·kg−1。改良A/O工艺狐尾藻TN的含量要远高于常规富营养化水体中狐尾藻TN的含量,且狐尾藻净化增效作用大于本身直接吸收作用。因此,狐尾藻在改良A/O工艺中能够更好的吸收去除污染水体中的含氮物质。

参考文献 (31)

返回顶部

目录

/

返回文章
返回