[1] MAITI D, ANSARI I, RATHER M A, et al. Comprehensive review on wastewater discharged from the coal-related industries-characteristics and treatment strategies[J]. Water Science and Technology, 2019, 79(11): 2023-2035. doi: 10.2166/wst.2019.195
[2] PARK D, LEE D S, KIM Y M, et al. Bioaugmentation of cyanide-degrading microorganisms in a full-scale cokes wastewater treatment facility[J]. Bioresource Technology, 2008, 99(6): 2092-2096. doi: 10.1016/j.biortech.2007.03.027
[3] TYAGI M, KUMARI N, JAGADEVAN S. A holistic Fenton oxidation-biodegradation system for treatment of phenol from coke oven wastewater: optimization, toxicity analysis and phylogenetic analysis[J]. Journal of Water Process Engineering, 2020, 37: 101475. doi: 10.1016/j.jwpe.2020.101475
[4] PAL P, KUMAR R. Treatment of coke wastewater: A critical review for developing sustainable management strategies[J]. Separation and Purification Reviews, 2014, 43(2): 89-123. doi: 10.1080/15422119.2012.717161
[5] FELFÖLDI T, NAGYMÁTÉ Z, SZÉKELY A J, et al. Biological treatment of coke plant effluents: From a microbiological perspective[J]. Biologia Futura, 2020, 71(4): 359-370. doi: 10.1007/s42977-020-00028-2
[6] LI Y M, GU G W, ZHAO J F, et al. Treatment of coke-plant wastewater by biofilm systems for removal of organic compounds and nitrogen[J]. Chemosphere, 2003, 52(6): 997-1005. doi: 10.1016/S0045-6535(03)00287-X
[7] KIM Y M, PARK D, LEE D S, et al. Inhibitory effects of toxic compounds on nitrification process for cokes wastewater treatment[J]. Journal of Hazardous Materials, 2008, 152(3): 915-921. doi: 10.1016/j.jhazmat.2007.07.065
[8] SHI L, WANG D, CAO D, et al. Is A/A/O process effective in toxicity removal? case study with coking wastewater[J]. Ecotoxicology and Environmental Safety, 2017, 142: 363-368. doi: 10.1016/j.ecoenv.2017.04.034
[9] 李媛媛, 潘霞霞, 邓留杰, 等. A/O1/H/O2工艺处理焦化废水硝化过程的实现及其抑制[J]. 环境工程学报, 2010, 4(6): 1231-1237.
[10] MA J D, WU H Z, WANG Y X, et al. Material inter-recycling for advanced nitrogen and residual COD removal from bio-treated coking wastewater through autotrophic denitrification[J]. Bioresource Technology, 2019, 289: 121616. doi: 10.1016/j.biortech.2019.121616
[11] WEI C H, LI Z M, PAN J X, et al. An oxic-hydrolytic-oxic process at the nexus of sludge spatial segmentation, microbial functionality, and pollutants removal in the treatment of coking wastewater[J]. ACS Environmental Science & Technology Water, 2021, 1(5): 1252-1262. doi: 10.1021/acsestwater.0c00316
[12] 吕鹏飞, 刘雷, 吴海珍, 等. 焦化废水中总氮的构成及在生物工艺中的转化[J]. 环境工程学报, 2015, 9(10): 4789-4796. doi: 10.12030/j.cjee.20151027
[13] 潘建新. 废水处理脱氮自调节模式[D]. 广州: 华南理工大学, 2018.
[14] ZHENG X, ZHANG Z X, YU D W, et al. Overview of membrane technology applications for industrial wastewater treatment in China to increase water supply[J]. Resources, Conservation and Recycling, 2015, 105: 1-10. doi: 10.1016/j.resconrec.2015.09.012
[15] YEO B J, GOH S, ZHANG J, et al. Novel MBRs for the removal of organic priority pollutants from industrial wastewaters: A review[J]. Journal of Chemical Technology & Biotechnology, 2015, 90(11): 1949-1967.
[16] SUN F Q, SUN B, HU J, et al. Organics and nitrogen removal from textile auxiliaries wastewater with A2O-MBR in a pilot-scale[J]. Journal of Hazardous Materials, 2015, 286: 416-424. doi: 10.1016/j.jhazmat.2015.01.031
[17] WANG Z X, XU X C, GONG Z, et al. Removal of COD, phenols and ammonium from Lurgi coal gasification wastewater using A2O-MBR system[J]. Journal of Hazardous Materials, 2012, 235-236: 78-84. doi: 10.1016/j.jhazmat.2012.07.012
[18] ZHAO W T, HUANG X, LEE D. Enhanced treatment of coke plant wastewater using an anaerobic-anoxic-oxic membrane bioreactor system[J]. Separation and Purification Technology, 2009, 66(2): 279-286. doi: 10.1016/j.seppur.2008.12.028
[19] 张玉秀, 尹莉, 李海波, 等. 焦化废水处理厂活性污泥对硫氰化物的降解机制[J]. 环境化学, 2016, 35(1): 118-124. doi: 10.7524/j.issn.0254-6108.2016.01.2015072901
[20] 潘霞霞, 李媛媛, 黄会静, 等. 焦化废水中硫氰化物的生物降解及其与苯酚、氨氮的交互影响[J]. 化工学报, 2009, 60(12): 3089-3096.
[21] PAN J X, WEI C H, FU B B, et al. Simultaneous nitrite and ammonium production in an autotrophic partial denitrification and ammonification of wastewaters containing thiocyanate[J]. Bioresource Technology, 2018, 252: 20-27. doi: 10.1016/j.biortech.2017.12.059
[22] 黄会静. 焦化废水处理的硫氰化物降解功能菌特性研究[D]. 广州: 华南理工大学, 2011.
[23] MOHAN S M, NAGALAKSHMI S. A review on aerobic self-forming dynamic membrane bioreactor: Formation, performance, fouling and cleaning[J]. Journal of Water Process Engineering, 2020, 37: 101541. doi: 10.1016/j.jwpe.2020.101541
[24] LI Z M, WEI C H, CHEN Y, et al. Achieving nitritation in an aerobic fluidized reactor for coking wastewater treatment: Operation stability, mechanisms and model analysis[J]. Chemical Engineering Journal, 2021, 406: 126816. doi: 10.1016/j.cej.2020.126816
[25] IM J, JUNG J, BAE H, et al. Correlation between nitrite accumulation and the concentration of AOB in a nitritation reactor[J]. Environmental Earth Sciences, 2014, 72(1): 289-297. doi: 10.1007/s12665-014-3285-7
[26] HUNG C, PAVLOSTATHIS S G. Aerobic biodegradation of thiocyanate[J]. Water Research, 1997, 31(11): 2761-2770. doi: 10.1016/S0043-1354(97)00141-3
[27] WEI C, WU H Z, KONG Q P, et al. Residual chemical oxygen demand (COD) fractionation in bio-treated coking wastewater integrating solution property characterization[J]. Journal of Environmental Management, 2019, 246: 324-333.
[28] 曹臣, 韦朝海, 杨清玉, 等. 废水处理生物出水中COD构成的解析: 以焦化废水为例[J]. 环境化学, 2012, 31(10): 1494-1501.
[29] KIM Y M, PARK D, JEON C O, et al. Effect of HRT on the biological pre-denitrification process for the simultaneous removal of toxic pollutants from cokes wastewater[J]. Bioresource Technology, 2008, 99(18): 8824-8832. doi: 10.1016/j.biortech.2008.04.050
[30] ZHANG M, JOO H T, YI Q, et al. Comparison between anaerobic-anoxic-oxic and anoxic-oxic systems for coke plant wastewater treatment[J]. Journal of Environmental Engineering, 1997, 123(9): 876-883. doi: 10.1061/(ASCE)0733-9372(1997)123:9(876)
[31] 易欣怡, 韦朝海, 吴超飞, 等. O/H/O生物工艺中焦化废水含氮化合物的识别与转化[J]. 环境科学学报, 2014, 34(9): 2190-2198.
[32] WANG Z X, XU X C, GONG Z, et al. Removal of COD, phenols and ammonium from Lurgi coal gasification wastewater using A2O-MBR system[J]. Journal of Hazardous Materials, 2012, 235: 78-84.
[33] SAHARIAH B P, ANANDKUMAR J, CHAKRABORTY S. Treatment of coke oven wastewater in an anaerobic-anoxic-aerobic moving bed bioreactor system[J]. Desalination and Water Treatment, 2016, 57: 14396-14402. doi: 10.1080/19443994.2015.1065448