二硫化钼-磁性铈铁氧化物活化过一硫酸盐降解橙黄II

罗婷, 李为为, 吴桐, 姜飞, 谢燕华. 二硫化钼-磁性铈铁氧化物活化过一硫酸盐降解橙黄II[J]. 环境工程学报, 2021, 15(7): 2274-2286. doi: 10.12030/j.cjee.202103171
引用本文: 罗婷, 李为为, 吴桐, 姜飞, 谢燕华. 二硫化钼-磁性铈铁氧化物活化过一硫酸盐降解橙黄II[J]. 环境工程学报, 2021, 15(7): 2274-2286. doi: 10.12030/j.cjee.202103171
LUO Ting, LI Weiwei, WU Tong, JIANG Fei, XIE Yanhua. Peroxymonosulfate activation by MoS2 supported magnetic Ce-Fe oxide for removal of AO7 from wastewater[J]. Chinese Journal of Environmental Engineering, 2021, 15(7): 2274-2286. doi: 10.12030/j.cjee.202103171
Citation: LUO Ting, LI Weiwei, WU Tong, JIANG Fei, XIE Yanhua. Peroxymonosulfate activation by MoS2 supported magnetic Ce-Fe oxide for removal of AO7 from wastewater[J]. Chinese Journal of Environmental Engineering, 2021, 15(7): 2274-2286. doi: 10.12030/j.cjee.202103171

二硫化钼-磁性铈铁氧化物活化过一硫酸盐降解橙黄II

    作者简介: 罗婷(1997—),女,硕士研究生。研究方向:水污染控制。E-mail:18382260436@163.com
    通讯作者: 谢燕华(1981—),女,博士,教授。研究方向:废水深度处理等。E-mail:xieyanhua10@cdut.edu.cn
  • 基金项目:
    国家自然科学基金资助项目(41977170)
  • 中图分类号: X703.1

Peroxymonosulfate activation by MoS2 supported magnetic Ce-Fe oxide for removal of AO7 from wastewater

    Corresponding author: XIE Yanhua, xieyanhua10@cdut.edu.cn
  • 摘要: 采用二次水热法制备了花球状二硫化钼(MoS2)负载磁性铈铁氧化物(CF)复合催化剂(MCF),通过批实验和表征手段分析了MCF活化过一硫酸盐(PMS)去除偶氮染料橙黄II(AO7)的性能和反应机制。SEM、TEM和VSM结果证明,CF已成功负载于MoS2上,MCF为磁性复合材料。降解实验结果表明,与单独CF和MoS2相比,MCF的活化能力有显著提升。同时,在MCF投加量为1.2 g·L−1、PMS为2 mmol·L−1、初始pH为3~9的条件下,MCF/PMS体系对AO7的去除率达到100%,且该反应符合准一级动力学模型。重复利用实验、XRD和ICP-OES结果说明,MCF具有良好的稳定性。UV-vis图谱结果表明,降解AO7的过程中产生了含有萘环和苯环的中间产物。淬灭实验、EPR和XPS结果表明,1O2SO4和·OH是反应过程中的主要活性物种。以上研究结果可为新型PMS活化剂在废水深度处理的实际应用提供参考。
  • 近年来,随着人们生活水平的提高,我国餐厨垃圾产生量以每年10%的速度增长,截至2018年,餐厨垃圾产生量突破了1×108 t,占城市生活垃圾的57%左右。餐厨垃圾含有的大量有机物质容易腐烂变质并携带病原菌,不仅污染环境而且威胁人体健康。同时,餐厨垃圾又富含碳水化合物、蛋白质和油脂,营养价值高,是有机废物厌氧能源化的理想底物[1]。氢能被广泛认为是未来最具潜力的绿色可再生能源之一[2],与传统的电解水、化石燃料制氢相比,暗发酵生物制氢具有运行成本低、能耗低、操作简单等特点,可实现餐厨垃圾等高浓度复杂有机废物的能源化利用,成为最具前景的氢能制备策略之一,符合我国绿色可再生能源的战略需求。

    暗发酵制氢是产氢微生物利用氢酶的催化作用将有机物降解产生氢气,同时生成挥发性脂肪酸(VFA)、乙醇等代谢产物的过程。当末端产物为乙酸时,葡萄糖的理论产氢量为4 mol·mol−1,但实际产氢量不足2 mol·mol−1,底物的氢能转化效率不足50%[3]。有研究[4-7]表明,暗发酵制氢与[2Fe-2S]铁氧化还原蛋白和[4Fe-4S]氢酶的活性密切相关,铁氧还原蛋白可作为氢化酶的电子载体参与氢分子的产生过程,其中,铁是其重要组成部分,能够影响微生物的产氢潜力[8]。此外,铁离子的种类和含量也会影响微生物的产氢功能基因表达,进而影响复杂底物的产氢性能[9]。因此,如何克服高浓度有机废物暗发酵制氢过程的代谢障碍,提高复杂底物的利用效率和产氢潜力是制约暗发酵生物制氢技术的瓶颈问题。

    有研究[10-12]发现,投加纳米零价铁(NZVI)和零价铁(ZVI)可以提高暗发酵制氢过程中的微生物活性,进而提高暗发酵制氢潜力和底物的利用效率。ZVI以其低成本成为氢发酵中最具吸引力的添加剂,能够降低发酵系统中的氧化还原电位(ORP),可以为发酵菌提供更有利的环境[13]。ZHANG等[14]研究了ZVI对葡萄糖发酵产氢量的影响,当ZVI浓度为400 mg·L−1时,最大产氢量为1.22 mol·mol−1,比对照组高出了37.1%。ZHU等[15]发现,ZVI的浓度为16 g·L−1时,产氢量从3.8 mol·mol−1提高到8.7 mol·mol−1。NZVI具有较高的催化活性和较大的表面积,从而提高了暗发酵制氢过程的效率[16]。NATH等[17]采用NZVI强化葡萄糖间歇暗发酵产氢,发现当NZVI为100 mg·L−1时,最大产氢量可达到1.9 mol·mol−1,比未加NZVI的对照组高出1倍。ZADA等[18]发现,在加入250 mg·L−1 NZVI条件下,水葫芦的产氢量从31.7 mL·g−1增加到57 mL·g−1。可见,投加NZVI和ZVI添加剂均可提高产氢性能,且具有操作简单、能耗低的优点。目前,研究主要集中在投加NZVI与ZVI对以葡萄糖、蔗糖等单一底物暗发酵制氢性能的影响,而以餐厨垃圾等复杂有机废物为底物,深入研究暗发酵制氢过程中铁离子转化规律和产氢酶活性的影响还鲜有报道。本研究通过投加不同浓度的NZVI和ZVI,研究了其对餐厨垃圾在(55±1) ℃高温条件下的暗发酵制氢潜力、末端代谢产物变化规律的影响,通过分析发酵前后铁离子组成及浓度变化、氢化酶和脱氢酶活性表达,探究了NZVI与ZVI强化餐厨垃圾暗发酵制氢的作用机制,以期为餐厨垃圾等复杂有机废物的绿色能源化提供科学依据。

    本实验所用的餐厨垃圾取自北京市某大学食堂,分拣出餐厨垃圾中骨头、塑料袋等杂质后破碎至5 mm,经90 ℃水热预处理30 min,离心去油(去油可提高餐厨垃圾的水解效果,利于提高产气潜力[19]),置于4 ℃冰箱备用[20]。接种污泥取自北京某生活垃圾综合处理厂的干式厌氧发酵剩余污泥。实验材料的基本理化指标如表1所示。

    表 1  实验材料基本理化指标
    Table 1.  Basic physical and chemical indexes of experimental materials
    分析项目TS/%VS/%VS/TS/%含水率/%pHCOD/(mg·L−1)C/%N/%
    餐厨垃圾(水热后)22.5520.5991.3177.456.07107 10053.103.94
    接种污泥15.137.5950.1584.877.207 60022.132.27
     | Show Table
    DownLoad: CSV

    将11.65 g经水热去油预处理的餐厨垃圾与50 g接种污泥混合放入500 mL广口瓶中,接种比为0.63∶1(VS∶VS),分别加入不同浓度(0、100、200和300 mg·L−1)的NZVI和ZVI,实验反应器情况记为:NZVI-0、NZVI-1、NZVI-3和ZVI-0、ZVI-1、ZVI-2、ZVI-3。加去离子水定容至200 mL,有机负荷为6 g·(L·d)−1(以VS计),采用1 mol·L−1 HCl与1 mol·L−1 NaOH调节初始pH为6,通氮气10 min排除反应装置内空气。在(55±1) ℃的高温条件下进行暗发酵制氢,搅拌速度为120 r·min−1,采用排水法收集产生的气体。实验编号如表2所示。

    表 2  暗发酵产氢动力学分析
    Table 2.  Dynamic analysis of dark fermentation hydrogen production
    实验组Pmax/mLRmax/(mL·h−1)λ/hR2
    NZVI-0 220.72 38.41 1.95 0.999 55
    NZVI-1 259.25 49.43 3.27 0.999 35
    NZVI-2 224.87 47.04 2.66 0.999 85
    NZVI-3 248.70 76.48 6.02 0.996 37
    ZVI-0 308.51 216.07 5.72 0.998 48
    ZVI-1 425.72 66.32 4.59 0.998 44
    ZVI-2 350.91 70.96 5.58 0.998 90
    ZVI-3 459.24 77.67 4.72 0.989 22
      注:Pmax代表最大产氢量潜力,Rmax代表最大产氢速率,λ表示反应启动时间。
     | Show Table
    DownLoad: CSV

    铁离子浓度采用GB/T 12496.19-2015邻菲啰啉分光光度计法测定;氢化酶、脱氢酶活性采用辛红梅等[21]方法测定。VFA和乙醇浓度测定采用9790II气相色谱仪分析测定,色谱条件为:色谱柱采用CP-Wax(FFAP)25 m×0.32 mm×0.2 μm毛细管柱,FID氢火焰离子检测器,进样量1 μL,柱温箱初始温度为80 ℃,保持5 min,以10 ℃·min−1速率升温至190 ℃;进样口和检测器温度为250 ℃;高纯氮气为载气,流速为1.5 mL·min−1。气体成分测定采用上海天美公司GC7900气相色谱仪分析发酵气相产物和含量,色谱条件为:色谱柱采用填充柱,TCD热导检测器,分析柱1为2 m hayesep Q,分析柱2为5 A分子筛3 m;柱温箱120 ℃,进样口和检测器温度为150 ℃,电流为30 mV,载气为高纯氩气,进样量为1 mL。以峰面积定量,校正归一法计算气体含量。

    1) NZVI和ZVI对暗发酵制氢性能的影响。图1为不同浓度NZVI和ZVI对餐厨垃圾高温暗发酵累积产气量和氢气百分含量的影响结果。结果表明,所有实验组在暗发酵前18 h累积产气量显著提高,之后累积产气量增加趋势变缓直至趋于稳定。在暗发酵产氢的过程中,氢气百分含量呈现先升高后降低的趋势。在投加NZVI添加剂时,浓度为100 mg·L−1的NZVI-1组的暗发酵制氢性能最好,累积产气量和氢气百分含量在12 h和30 h达到最大值,分别为676 mL(单位VS产气量为281.68 mL)和83.76%,是未投加NZVI实验组的1.08倍和1.1倍。其次为NZVI-0实验组,累积产气量和氢气百分含量分别为625 mL(单位VS产气量为260.43 mL)和79.16%。由此可见,与未投加NZVI相比,NZVI-1组最多可提高产气量51 mL(单位VS产气量为21.25 mL),提高氢气百分含量8.53%。

    图 1  NZVI和ZVI对餐厨垃圾暗发酵累积产气量和氢气百分含量的影响
    Figure 1.  Influence of NZVI and ZVI on the cumulative hydrogen production and biohydrogen proportion in dark fermentation

    在投加ZVI添加剂时,暗发酵产氢性能较好的实验组为投加浓度300 mg·L−1的ZVI-3组和浓度100 mg·L−1的ZVI-1组,获得累积产气量分别为798 mL和732 mL(单位VS产气量分别为332.51 mL和305.01 mL),最大氢气百分含量分别为72.79%和81.95%,从节省添加剂的角度考虑,暗发酵产氢性能最好的是添加ZVI浓度为100 mg·L−1的ZVI-1组。由此可见,与未投加ZVI相比,投加100 mg·L−1 ZVI最多可提高产气量90 mL(单位VS产气量为37.50 mL),提高氢气百分含量2.74%。

    2)NZVI和ZVI产氢动力学分析。在累积产气量和氢气百分含量分析基础上,利用修正过的Gompertz模型对暗发酵产氢过程的累积产氢量进行动力学拟合,产氢动力学分析结果如图2表2所示。由图2可知,除NZVI-3实验组外,投加NZVI实验组的启动时间均比投加ZVI实验组短,但ZVI组的最大产氢潜力和最大产氢速率均比NZVI组高。在投加NZVI实验组中,NZVI-0实验组启动时间最短,为1.95 h,但最大产氢潜力和最大产氢速率均为最低,分别为220.72 mL和38.41 mL·h−1。浓度为100 mg·L−1的NZVI-1组最大产氢潜力最高为259.25 mL,浓度为300 mg·L−1的NZVI-3实验组的最大产氢速率最高,为76.48 mL·h−1。虽然NZVI-3实验组的最大产氢速率值最高,但其启动时间(6.02 h)是NZVI-1实验组(3.27 h)的1.84倍。NZVI-3实验组的最大产氢潜力(248.70 mL)也小于NZVI-1实验组(259.25 mL)。由此可见,投加NZVI可以提高最大产氢速率和最大产氢潜力,且投加浓度为100 mg·L−1时达到的效果最好。

    图 2  在不同浓度NZVI和ZVI条件下的累积产氢量变化
    Figure 2.  Changes of cumulative hydrogen production at different concentrations of NZVI and ZVI

    投加ZVI的实验组的产氢潜力均高于未投加ZVI的ZVI-0实验组(308.51 mL)。其中,ZVI-3实验组的最大产氢潜力最高,为459.24 mL,ZVI-1实验组次之,为425.72 mg·L−1。此外,ZVI-1实验组的启动时间最短,为4.59 h。当ZVI投加量为100 mg·L−1时,餐厨垃圾最大产氢潜力是投加NZVI实验组的1.64倍。可见投加ZVI可有效提高产氢微生物对底物的利用效率和产氢潜力。

    乙醇和VFAs是暗发酵制氢的重要末端代谢产物,根据其浓度和组成可将暗发酵制氢的代谢类型分为乙醇型发酵、丁酸型发酵、丙酸型发酵和混合酸发酵[22]。投加不同浓度的NZVI和ZVI后,餐厨垃圾暗发酵制氢末端乙醇和VFAs各组分占比如图3所示。结果表明,末端代谢产物中以乙醇、乙酸和丁酸为主,其中乙醇占比最高(53.71%~77.09%),发酵类型是以乙醇型发酵为主的混合型发酵。与未投加ZVI的实验组相比,投加浓度为300 mg·L−1的ZVI-3实验组中的乙醇浓度提高了7.04%。

    图 3  投加NZVI和ZVI对乙醇和VFAs各组分占比的影响
    Figure 3.  Effect of NZVI and ZVI addition on the proportions of ethanol and VFAs components

    在投加NZVI的实验组中,乙酸在NZVI-1、NZVI-2、NZVI-3组中末端代谢产物中的占比分别为18.04%、16.89%、14.22%,均高于NZVI-0对照组(9.42%)。而对于投加ZVI的实验组,ZVI-1、ZVI-2、ZVI-3实验组中乙酸在末端代谢产物中的占比分别为6.44%、7.70%、6.62%,均低于ZVI-0对照组(8.18%)。由此可见,与投加ZVI相比,投加NZVI更有利于乙酸的转化,但产氢潜力和速率有所较低。可能由于发酵过程中产生的乙酸使体系pH降低,产生过剩的NADH+H+,未能被氧化为NAD+,影响微生物酶活或酶合成,进而抑制NADH/NAD+平衡产氢[23]

    投加NZVI的实验组相比未投加NZVI的实验组(67.7%),其中乙醇的占比均有所降低。对应投加NZVI的实验组,随着NZVI投加量的增加,乙醇占比由53.71%逐渐升高至63.50%,同时累积产气量和氢气百分含量有所下降,这说明NZVI在一定程度上改变了产氢细菌的代谢产氢途径,产生了更多的乙醇副产物和更少的乙酸副产物,投加低浓度的NZVI有利于产氢,浓度过高可能对微生物活性产生了抑制作用。投加ZVI的实验组相比未投加ZVI的实验组(70.05%),其中乙醇的占比略有提高。随着ZVI投加量的增加,乙醇占比由72.65%升高至77.09%,同时在ZVI-3实验组中的累积产气量大于ZVI-1实验组。发酵过程中所产生的乙醇可以氧化过多的NADH+H+,有利于产氢潜力的提高[23]。对于投加NZVI和ZVI的实验组,暗发酵末端代谢产物中乙醇的占比均有所升高,但累积产气量的变化趋势却相反,这可能是由于2种添加剂对与产氢相关的关键酶影响有所不同。

    在发酵过程中,ORP是控制微生物代谢和增殖的重要参数之一[24-25]。其可以通过还原/氧化NAD(NADH/NAD+)来改变细胞内外的ORP,从而调控微生物代谢。一般认为,厌氧微生物所需ORP的最适范围为-180~-260 mV[26]

    暗发酵产氢前后体系中的ORP变化结果如图4所示。结果表明,投加与未投加NZVI和ZVI的实验组在反应结束后ORP均有所下降,其中投加NZVI与ZVI的实验组中ORP下降更为显著。投加NZVI的实验组,NZVI-3实验组ORP下降最大,由反应前的−199.6 mV下降至−260.1 mV,是未投加NZVI实验组的1.24倍。其次是NZVI-1实验组,由反应前的−198.5 mV下降至−253 mV,是未投加NZVI实验组的1.20倍。对于投加ZVI的实验组,ZVI-2实验组的ORP下降最大,由反应前的−199.4 mV下降至−292.2 mV,是未投加ZVI实验组的1.39倍。其次是ZVI-1实验组,由反应前的−198.8 mV下降至−254.3 mV,是未投加ZVI实验组的1.21倍。

    图 4  投加NZVI和ZVI对ORP的影响
    Figure 4.  Effect of adding NZVI and ZVI on ORP

    结合产氢潜力结果分析可知,产氢效果好的NZVI-1实验组(−253 mV)与ZVI-1实验组(−254.3 mV)ORP值相近,均在厌氧微生物最适ORP的范围内,从而有利于产氢性能的提高。分析原因可能是:反应器内的ORP迅速降低,说明分子氧等氧化剂被消耗掉,这可能由于投加的NZVI和ZVI被用作电子供体,铁可作为底物诱导因子,作用于细菌代谢途径中,既能参与细菌的生物氧化过程,又能使反应器内的ORP迅速降低,使ORP维持在产氢的最适范围内,从而提供更好的还原条件[27-29];另一方面,氢化酶活性和NAD+/NADH平衡产氢均需要较低的ORP[30]

    图5表示投加NZVI和ZVI进行暗发酵制氢前后,各实验组发酵液中Fe2+和Fe3+浓度的变化情况。由图5可知,在餐厨垃圾暗发酵制氢前,体系中Fe2+和Fe3+的浓度较低,分别为23.74 mg·L−1和28.52 mg·L−1。反应结束后,未投加NZVI与ZVI的实验组中Fe2+和Fe3+的浓度有所下降,投加NZVI与ZVI的实验组中Fe2+浓度显著上升,而Fe3+浓度略有提升,这证明了NZVI和ZVI是作为电子供体而存在的。铁在产氢细菌的代谢机制中起着至关重要的作用,是形成氢化酶和铁氧还蛋白的重要成分[31]。Fe2+可以促进了生物量的增长和功能基因的表达,从而促进氢气的产生。对于投加NZVI的实验组,NZVI-3实验组中的Fe2+浓度最高,为43.78 mg·L−1,是未投加NZVI实验组的2倍,NZVI-2的Fe2+浓度次之,为42.47 mg·L−1,是未投加NZVI实验组的1.96倍。在投加ZVI的实验组,ZVI-1实验组的Fe2+浓度最高,为38.21 mg·L−1,是未投加ZVI实验组的1.96倍,ZVI-3的Fe2+浓度次高,为36.51 mg·L−1,是未投加ZVI实验组的1.87倍。

    图 5  投加NZVI和ZVI对铁离子浓度的影响
    Figure 5.  Effect of adding NZVI and ZVI on the concentrations of iron ion

    厌氧微生物可以将Fe3+还原为生物利用性更高的Fe2+。在投加NZVI的实验组中,NZVI-2实验组的Fe3+浓度最高,为15.99 mg·L−1,是未投加NZVI实验组的1.72倍,NZVI-1的Fe3+浓度次之,为14.21 mg·L−1, 是未投加NZVI实验组的1.53倍。在投加ZVI的实验组中,ZVI-3实验组的Fe3+浓度最高,为12.12 mg·L−1,是未投加ZVI实验组的1.30倍,ZVI-1的Fe3+浓度次之,为10.34 mg·L−1,是未投加ZVI实验组的1.28倍。

    综上所述,在暗发酵制氢体系中投加NZVI和ZVI,可使Fe2+浓度升高,Fe3+浓度略有升高。一方面,这是由于投加的NZVI和ZVI有部分转化为了Fe2+;另一方面是由于微生物对Fe3+的利用将Fe3+还原成Fe2+。但投加NZVI与ZVI浓度过高,铁离子会与蛋白质结合生成难以被生物降解的螯合物,故使产氢潜力下降[32]

    反应结束时pH的变化情况如图6所示。由图6可知,NZVI和ZVI对反应器的pH的影响作用并不明显。在暗发酵制氢反应结束时,投加NZVI和ZVI的实验组的pH均在5.5~6.0。在投加NZVI实验组中,pH最高的实验组为NZVI-3实验组(5.71),最低的为NZVI-1实验组(5.51)。投加ZVI的实验组中,pH最高的为ZVI-3实验组(5.94),最低的为ZVI-1实验组(5.8)。随着投加NZVI和ZVI浓度的增加,pH也随升高。这可能是由于投加的NZVI和ZVI作为诱导因子作用于细菌代谢途径中,参与了产氢细菌的生物氧化过程,发酵类型为以乙醇型发酵为主的混合型发酵[33]。末端代谢产物中乙醇的占比随着NZVI和ZVI投加量的增加而增大,从而导致了pH的升高。投加NZVI的实验组在反应结束时pH低于未投加NZVI的实验组(5.75),投加ZVI的实验组在反应结束时pH高于未投加ZVI实验组,这说明与投加ZVI相比,投加NZVI更有利于乙酸的转化,产生的乙酸可使体系pH降低。

    图 6  投加NZVI和ZVI对pH的影响
    Figure 6.  Effect of adding NZVI and ZVI on pH

    有机物的暗发酵制氢过程是在一系列酶和辅酶以及中间传递体的作用下完成的一种生物氧化过程。其中,氢化酶是一类能够高效可逆地催化产生氢气的酶,含有双核铁原子的铁氢化酶具有很高的催化活性。脱氢酶中的电子载体铁氧还蛋白是暗发酵生物氧化过程产生氢分子的重要功能蛋白。可见,铁是决定餐厨垃圾暗发酵制氢过程氢化酶和脱氢酶活性的重要物质,对产氢微生物的生长代谢有着重要的影响。

    投加不同浓度的NZVI和ZVI对氢化酶和脱氢酶活性的影响结果如图7所示。结果表明,对于未投加NZVI与ZVI的实验组,氢化酶活性分别为2.49 mL·(g·min)−1和2.76 mL·(g·min)−1(以VSS计)。在投加NZVI后,氢化酶活性有所提高,其中,NZVI-3组的氢化酶活性最高,为2.56 mL·(g·min)−1,是未投加NZVI实验组的1.02倍,NZVI-1实验组氢化酶活性次高,为2.55 mL·(g·min)−1。在投加ZVI后,氢化酶活性有显著提高。ZVI-3实验组氢化酶活性(3.96 mL·(g·min)−1)最高,是ZVI-0实验组的1.43倍。ZVI-1实验组次之,为3.54 mL·(g·min)−1。有研究[5]表明,NZVI可以降低培养基中溶解氧的水平,从而提高氢化酶的活性。李永峰等[33]提出金属元素在微生物生命活动中具有重要作用,其对酶的作用主要有2方面:一是作为酶的辅助因子,在酶促反应中运输转移电子、原子或某些功能基团参与氧化还原或运载酰基团作用;二是作为激活剂来提高酶的活性。铁作为铁氧还蛋白及氢化酶重要的组成成分,投加NZVI和ZVI可以提高铁氧还蛋白和氢化酶的活性,促进电子的转移,进而提高产氢效能。

    图 7  投加NZVI和ZVI对氢化酶和脱氢酶活性的影响
    Figure 7.  Effect of adding NZVI and ZVI on hydrogenase and dehydrogenase activity

    对于NZVI-0和ZVI-0实验组,脱氢酶活性分别为128.32 μg·(g·min)−1和140.53 μg·(g·min)−1(以VSS计)。然而,投加NZVI的实验组脱氢酶活性出现了显著下降,由NZVI-0实验组的128.32 μg·(g·min)−1下降到NZVI-1实验组的34.37 μg·(g·min)−1,下降了73.2%。且随着投加NZVI浓度增加,脱氢酶活性继续下降,NZVI-3实验组中脱氢酶活性下降到最低,为8.40 μg·(g·min)−1。在投加ZVI的实验组中,脱氢酶活性有显著的提高。脱氢酶活性在ZVI浓度小于300 mg·L−1时,随着投加ZVI浓度的增加,其由140.53 μg·(g·min)−1提高到150.84 μg·(g·min)−1,提高了7.3%,但当ZVI浓度为300 mg·L−1时,脱氢酶活性下降到80.96 μg·(g·min)−1。这说明过高的ZVI浓度抑制了脱氢酶的活性。结合相关文献,其原因可能是因为铁的投加量过高超出了体系中产氢微生物的所需,而过剩的铁形成了铁盐或亚铁盐,从而使系统的渗透压升高,导致脱氢酶活性的降低[21]

    有研究[34]表明,当金属元素浓度维持在较低水平时,对微生物可以起到激活作用,但当浓度过高时,便会对微生物的酶活性产生抑制作用。由此可见,投加ZVI的同时提高了氢化酶和脱氢酶的活性。结合铁离子浓度变化趋势可知,投加的NZVI和ZVI会向系统环境中释放铁离子,为微生物提供生长代谢过程中所需的铁元素并提高氢化酶活性。但投加NZVI时虽然提高了氢化酶活性,脱氢酶活性却受到了抑制,这可能缘于纳米材料中活性氧的生成和氧化应激反应引起的生物毒性损害了微生物细胞结构,导致细胞死亡,进而影响微生物产氢能力[35]

    由此可见,投加100 mg·L−1 NZVI和ZVI均可有效提高氢化酶活性,投加ZVI还可提高脱氢酶活性,有利于产氢微生物的暗发酵制氢。

    1)投加NZVI和ZVI均可显著提高餐厨垃圾暗发酵制氢性能,投加100 mg·L−1 ZVI效果最佳,最大产氢潜力和最大产氢速率分别为425.72 mL和66.32 mL·h−1,是投加NZVI实验组的1.64倍和1.34倍。投加NZVI与ZVI后,末端代谢产物以乙醇、乙酸和丁酸为主,其中乙醇占比最高(53.71%~77.09%),发酵类型是以乙醇型发酵为主的混合型发酵。

    2)投加NZVI和ZVI可使反应体系中ORP显著下降,有利于暗发酵制氢的进行。反应结束后,未投加NZVI与ZVI的实验组中Fe2+和Fe3+的浓度较反应前均有所下降,投加NZVI与ZVI的实验组Fe2+浓度有显著上升,Fe3+浓度略有提升。在投加的NZVI和ZVI浓度为300 mg·L−1时,Fe2+浓度分别是未投加NZVI和ZVI实验组的2倍和1.87倍。

    3)投加NZVI和ZVI均可有效提高氢化酶活性,投加100 mg·L−1 ZVI-1实验组氢化酶活性最佳,为3.54 mL·(g·min)−1,是NZVI-1实验组的1.38倍。投加ZVI可同时提高氢化酶和脱氢酶活性,有利于产氢微生物的暗发酵制氢。

  • 图 1  MCF的制备流程图

    Figure 1.  Flow chart of MCF preparation

    图 2  CF、MCF的SEM图像以及MCF中各元素EDS映射图

    Figure 2.  SEM images of CF and MCF, EDS-mapping of MCF

    图 3  CF、MoS2和MCF的TEM图像

    Figure 3.  TEM images of CF、MoS2 and MCF

    图 4  CF和MCF的磁滞曲线

    Figure 4.  Hysteresis loop of CF and MCF

    图 5  不同反应体系下AO7的降解情况

    Figure 5.  Influence of different oxidation systems on AO7 degradation efficiency

    图 6  不同催化剂投加量对AO7降解的影响和动力学拟合结果

    Figure 6.  Influence of different catalyst dosage on AO7 degradation efficiency and fitting results of reaction kinetics

    图 7  不同氧化剂浓度对AO7降解的影响

    Figure 7.  Influence of different oxidation concentration on AO7 degradation

    图 8  不同初始pH对AO7降解的影响

    Figure 8.  Influence of different initial pH on AO7 degradation

    图 9  催化剂MCF稳定性评价

    Figure 9.  Stability evaluation of MCF

    图 10  淬灭剂对降解效果的影响以及MCF/PMS体系中活性物种的捕获

    Figure 10.  Effect of quenheralation on degradation effect and capture of active species in MCF/PMS system

    图 11  DMPO-SO4转化为DMPO-OH的可能途径

    Figure 11.  Possible pathway of DMPO-SO4 transformation to DMPO-OH

    图 12  MCF/PMS体系降解AO7的UV-vis图谱

    Figure 12.  UV-vis spectra of AO7 degradation by MCF/PMS

    图 13  MCF的O1s轨道谱图和AO7可能的降解机制

    Figure 13.  O1s spectra of MCF and possible degradation mechanism of AO7

    表 1  不同MCF投加量下准一级反应动力学参数

    Table 1.  Pseudo-first order kinetic parameters at different dosages of MCF

    MCF投加量/(g·L−1)准一级反应动力学
    拟合方程kobsR2
    0.1−ln(C/C0)=0.031t+0.1760.0310.918
    0.2−ln(C/C0)=0.115t+0.10400.1150.996
    0.4−ln(C/C0)=0.189t+0.5550.1890.958
    0.6−ln(C/C0)=0.376t+0.4560.3760.948
    0.8−ln(C/C0)=0.567t+0.5850.5670.935
    1.2−ln(C/C0)=1.834t+0.3111.8340.958
    MCF投加量/(g·L−1)准一级反应动力学
    拟合方程kobsR2
    0.1−ln(C/C0)=0.031t+0.1760.0310.918
    0.2−ln(C/C0)=0.115t+0.10400.1150.996
    0.4−ln(C/C0)=0.189t+0.5550.1890.958
    0.6−ln(C/C0)=0.376t+0.4560.3760.948
    0.8−ln(C/C0)=0.567t+0.5850.5670.935
    1.2−ln(C/C0)=1.834t+0.3111.8340.958
    下载: 导出CSV

    表 2  不同MCF投加量下二级反应动力学参数

    Table 2.  Second-order kinetic parameters at different dosages of MCF

    MCF投加量/(g·L−1)二级反应动力学
    拟合方程k2R2
    0.11/C−1/C0=0.023t+0.0590.0230.981
    0.21/C−1/C0=0.414t−1.3800.4140.846
    0.41/C−1/C0=3.585t−13.4113.5850.808
    0.61/C−1/C0=7.042t−13.7437.0420.814
    0.81/C−1/C0=11.400t−14.66311.4000.843
    1.21/C−1/C0=8.315t−1.6858.3150.940
    MCF投加量/(g·L−1)二级反应动力学
    拟合方程k2R2
    0.11/C−1/C0=0.023t+0.0590.0230.981
    0.21/C−1/C0=0.414t−1.3800.4140.846
    0.41/C−1/C0=3.585t−13.4113.5850.808
    0.61/C−1/C0=7.042t−13.7437.0420.814
    0.81/C−1/C0=11.400t−14.66311.4000.843
    1.21/C−1/C0=8.315t−1.6858.3150.940
    下载: 导出CSV
  • [1] ZHAO T C, LIU R, LU J P, et al. Photocatalytic degradation of methylene blue solution by diphenylanthrazoline compounds[J]. Journal of Physical Organic Chemistry, 2017, 30(12): 1-11.
    [2] SHU H Y, HSIEH W P. Treatment of dye manufacturing plant effluent using an annular UV/H2O2 reactor with multi-UV lamps[J]. Separation and Purification Technology, 2006, 51(3): 379-386. doi: 10.1016/j.seppur.2006.03.001
    [3] OH W D, DONG Z, LIM T T. Generation of sulfate radical through heterogeneous catalysis for organic contaminants removal: Current development, challenges and prospects[J]. Applied Catalysis B: Environmental, 2016, 194: 169-201. doi: 10.1016/j.apcatb.2016.04.003
    [4] LIM T T, YAP P S, SRINIVASAN M, et al. TiO2/AC composites for synergistic adsorption-photocatalysis processes: Present challenges and further developments for water treatment and reclamation[J]. Critical Reviews in Environmental Science and Technology, 2011, 41(13): 1173-1230. doi: 10.1080/10643380903488664
    [5] OLMEZ-HANCI T, ARSLAN-ALATON I. Comparison of sulfate and hydroxyl radical based advanced oxidation of phenol[J]. Chemical Engineering Journal, 2013, 224(1): 10-16.
    [6] HUANG Y, HAN C, LIU Y Q, et al. Degradation of atrazine by ZnxCu1-xFe2O4 nanomaterial-catalyzed sulfite under UV-vis light irradiation: Green strategy to generate SO4[J]. Applied Catalysis B: Environmental, 2018, 221: 380-392. doi: 10.1016/j.apcatb.2017.09.001
    [7] YI Q H, BU L J, SHI Z, et al. Epigallocatechin-3-gallate-coated Fe3O4 as a novel heterogeneous catalyst of peroxymonosulfate for diuron degradation: Performance and mechanism[J]. Chemical Engineering Journal, 2016, 302: 417-425. doi: 10.1016/j.cej.2016.05.025
    [8] XU L J, WANG J L. Magnetic nanoscaled Fe3O4/CeO2 composite as an efficient fentonlike heterogeneous catalyst for degradation of 4-chlorophenol[J]. Environmental Science & Technology, 2012, 46(18): 10145-10153.
    [9] SHENG B, YANG F, WANG Y H, et al. Pivotal roles of MoS2 in boosting catalytic degradation of aqueous organic pollutants by Fe(II)/PMS[J]. Chemical Engineering Journal, 2019, 375: 121985.
    [10] XIE J F, ZHANG J J, LI S, et al. Controllable disorder engineering in oxygen-incorporated MoS2 ultrathin nanosheets for efficient hydrogen evolution[J]. Journal of the American Chemical Society, 2013, 135(47): 17881-7888. doi: 10.1021/ja408329q
    [11] WANG J L, WANG S Z. Reactive species in advanced oxidation processes: Formation, identification and reaction mechanism[J]. Chemical Engineering Journal, 2020, 401: 126158. doi: 10.1016/j.cej.2020.126158
    [12] LIANG C J, LIN Y T, SHIH W H. Treatment of trichloroethylene by adsorption and persulfate oxidation in batch studies[J]. Industrial & Engineering Chemistry Research, 2009, 48(18): 8373-8380.
    [13] CHEN X, OH W D, HU Z T, et al. Enhancing sulfacetamide degradation by peroxymonosulfate activation with N-doped graphene produced through delicately-controlled nitrogen functionalization via tweaking thermal annealing processes[J]. Applied Catalysis B: Environmental, 2018, 225: 243-257. doi: 10.1016/j.apcatb.2017.11.071
    [14] MA W J, WANG N, DU Y C, et al. Human hair-derived N, S-doped porous carbon: an enrichment and degradation system for wastewater remediation in the presence of peroxymonosulfate[J]. ACS Sustainable Chemistry & Engineering, 2018, 7(2): 2718-2727.
    [15] CHEN P, GOU Y J, NI J M, et al. Efficient ofloxacin degradation with Co(Ⅱ)-doped MoS2 nano-flowers as PMS activator under visible-light irradiation[J]. Chemical Engineering Journal, 2020, 401: 125978. doi: 10.1016/j.cej.2020.125978
    [16] MA R, ISLAM M J, REDDY D A, et al. Transformation of CeO2 into a mixed phase CeO2/Ce2O3 nanohybrid by liquid phase pulsed laser ablation for enhanced photocatalytic activity through Z-scheme pattern[J]. Ceramics International, 2016, 42(16): 18495-18502. doi: 10.1016/j.ceramint.2016.08.186
    [17] SAIPHANEENDRA B, SAXENA T, SINGH S A, et al. Synergistic effect of co-existence of hematite (α-Fe2O3) and magnetite (Fe3O4) nanoparticles on graphene sheet for dye adsorption[J]. Journal of Environmental Chemical Engineering, 2017, 5(1): 26-37. doi: 10.1016/j.jece.2016.11.017
    [18] CHEN B J, XU L, LI W Y, et al. α-Fe2O3 nanotubes in gas sensor and lithium-ion battery applications[J]. Advanced Materials, 2005, 17(5): 582-586. doi: 10.1002/adma.200401101
    [19] GUO L, YANG Z, MARCUS K, et al. MoS2/TiO2 Heterostructures as nonmetal plasmonic photocatalysts for highly efficient hydrogen evolution[J]. Energy & Environmental Science, 2018, 11(1): 106-114.
    [20] TONG M P, LIU F Y, DONG Q Q, et al. Magnetic Fe3O4-deposited flower-like MoS2 nanocomposites for the Fentonlike Escherichia coli disinfection and diclofenac degradation[J]. Journal of Hazardous Materials, 2020, 385: 121604. doi: 10.1016/j.jhazmat.2019.121604
    [21] LIU Z Z, YANG S J, YUAN Y N, et al. A novel heterogeneous system for sulfate radical generation through sulfite activation on a CoFe2O4 nanocatalyst surface[J]. Journal of Hazardous Materials, 2017, 324: 583-592. doi: 10.1016/j.jhazmat.2016.11.029
    [22] LAI L D, YAN J F, LI J, et al. Co/Al2O3-EPM as peroxymonosulfate activator for sulfamethoxazole removal: Performance, biotoxicity, degradation pathways and mechanism[J]. Chemical Engineering Journal, 2018, 343: 676-688. doi: 10.1016/j.cej.2018.01.035
    [23] SHARMA J, MISHRA I M, DIONYSIOU D D, et al. Oxidative removal of bisphenol A by UV-C/peroxymonosulfate (PMS): Kinetics, influence of co-existing chemicals and degradation pathway[J]. Chemical Engineering Journal, 2015, 276: 193-204.
    [24] SUN Y, ZHENG W S, FU S, et al. Immobilization of iron phthalocyanine on 4-aminopyridine grafted polystyrene resin as a catalyst for peroxymonosulfate activation in eliminating tetracycline hydrochloride[J]. Chemical Engineering Journal, 2020, 391: 123611. doi: 10.1016/j.cej.2019.123611
    [25] SUN H, NIE M, XUE Z H, et al. Study on the simple synthesis and hydrogen evolution reaction of nanosized ZnO coated MoS2[J]. Materials Chemistry and Physics, 2021, 262: 124279. doi: 10.1016/j.matchemphys.2021.124279
    [26] MANE V B, MAHIND L H, JADHAV K D, et al. Structural characterization of nanosized Fe2O3-CeO2 catalysts by XRD, EDX and TEM techniques[J]. Carbon-Science and Technology, 2013, 5(2): 260-264.
    [27] HUNTELAAR M E, BOOIJ A S, CORDFUNKE E H P, et al. The thermodynamic properties of Ce2O3(s) from T→0 K to 1500 K[J]. The Journal of Chemical Thermodynamics, 2000, 32(4): 465-482. doi: 10.1006/jcht.1999.0614
    [28] RUÍZ-BALTAZAR A, REYES-LÓPEZ S Y, ESPARZA R, et al. Synthesis and characterization of bifunctional α-Fe2O3-Ag nanoparticles[J]. Advances in Condensed Matter Physics, 2015(6): 1-6.
    [29] DING Y, MIAO B Q, ZHAO Y, et al. Direct growth of holey Fe3O4-coupled Ni(OH)2 sheets on nickel foam for the oxygen evolution reaction[J]. Chinese Journal of Catalysis, 2021, 42(2): 271-278. doi: 10.1016/S1872-2067(20)63639-7
    [30] MANWAR N R, BORKAR R G, KHOBRAGADE R, et al. Efficient solar photo-electrochemical hydrogen generation using nanocrystalline CeFeO3 synthesized by a modified microwave assisted method[J]. International Journal of Hydrogen Energy, 2017, 42(16): 10931-10942. doi: 10.1016/j.ijhydene.2017.01.227
    [31] HUANG Z F, BAO H W, YAO Y Y, et al. Novel green activation processes and mechanism of peroxymonosulfate based on supported cobalt phthalocyanine catalyst[J]. Applied Catalysis B: Environmental, 2014, 154-155: 36-43. doi: 10.1016/j.apcatb.2014.02.005
    [32] WANG X B, QIN Y L, ZHU L H, et al. Nitrogen-doped reduced graphene oxide as a bifunctional material for removing bisphenols: Synergistic effect between adsorption and catalysis[J]. Environmental Science & Technology, 2015, 49(11): 6855-6864.
    [33] LAWRENCE A, JONES C M, WARDMAN P, et al. Evidence for the role of a peroxidase compound i-type intermediate in the oxidation of glutathione, nadh, ascorbate, and dichlorofluorescin by cytochrome c/H2O2: Implications for oxidative stress during apoptosis[J]. Journal of Biological Chemistry, 2003, 278(32): 29410-29419.
    [34] CHEN J B, FANG C, XIA W J, et al. Selective Transformation of β-Lactam antibiotics by peroxymonosulfate: Reaction kinetics and non-radical mechanism[J]. Environmental Science & Technology, 2018, 52(3): 1461-1470.
    [35] ZHOU Y, JIANG J, GAO Y, et al. Activation of peroxymonosulfate by benzoquinone: A novel non-radical oxidation process[J]. Environmental Science & Technology, 2015, 49(21): 12941-12950.
    [36] LUO F, YANG D, CHEN Z L, et al. One-step green synthesis of bimetallic Fe/Pd nanoparticles used to degrade orange II[J]. Journal of Hazardous Materials, 2016, 303: 145-153. doi: 10.1016/j.jhazmat.2015.10.034
    [37] LAU Y Y, WONG Y S, TENG T T, et al. Coagulation-flocculation of azo dye acid orange 7 with green refined laterite soil[J]. Chemical Engineering Journal, 2014, 246: 383-390. doi: 10.1016/j.cej.2014.02.100
    [38] XING M Y, XU W J, DONG C C, et al. Metal sulfides as excellent co-catalysts for H2O2 decomposition in advanced oxidation processes[J]. Chem, 2018, 4(6): 1359-1372. doi: 10.1016/j.chempr.2018.03.002
  • 加载中
    Created with Highcharts 5.0.7访问量Chart context menu近一年内文章摘要浏览量、全文浏览量、PDF下载量统计信息摘要浏览量全文浏览量PDF下载量2024-052024-062024-072024-082024-092024-102024-112024-122025-012025-022025-032025-0405101520Highcharts.com
    Created with Highcharts 5.0.7Chart context menu访问类别分布DOWNLOAD: 13.8 %DOWNLOAD: 13.8 %HTML全文: 74.5 %HTML全文: 74.5 %摘要: 11.8 %摘要: 11.8 %DOWNLOADHTML全文摘要Highcharts.com
    Created with Highcharts 5.0.7Chart context menu访问地区分布其他: 99.7 %其他: 99.7 %北京: 0.2 %北京: 0.2 %长沙: 0.2 %长沙: 0.2 %其他北京长沙Highcharts.com
图( 13) 表( 2)
计量
  • 文章访问数:  6210
  • HTML全文浏览数:  6210
  • PDF下载数:  73
  • 施引文献:  0
出版历程
  • 收稿日期:  2021-03-25
  • 录用日期:  2021-05-18
  • 刊出日期:  2021-07-10
罗婷, 李为为, 吴桐, 姜飞, 谢燕华. 二硫化钼-磁性铈铁氧化物活化过一硫酸盐降解橙黄II[J]. 环境工程学报, 2021, 15(7): 2274-2286. doi: 10.12030/j.cjee.202103171
引用本文: 罗婷, 李为为, 吴桐, 姜飞, 谢燕华. 二硫化钼-磁性铈铁氧化物活化过一硫酸盐降解橙黄II[J]. 环境工程学报, 2021, 15(7): 2274-2286. doi: 10.12030/j.cjee.202103171
LUO Ting, LI Weiwei, WU Tong, JIANG Fei, XIE Yanhua. Peroxymonosulfate activation by MoS2 supported magnetic Ce-Fe oxide for removal of AO7 from wastewater[J]. Chinese Journal of Environmental Engineering, 2021, 15(7): 2274-2286. doi: 10.12030/j.cjee.202103171
Citation: LUO Ting, LI Weiwei, WU Tong, JIANG Fei, XIE Yanhua. Peroxymonosulfate activation by MoS2 supported magnetic Ce-Fe oxide for removal of AO7 from wastewater[J]. Chinese Journal of Environmental Engineering, 2021, 15(7): 2274-2286. doi: 10.12030/j.cjee.202103171

二硫化钼-磁性铈铁氧化物活化过一硫酸盐降解橙黄II

    通讯作者: 谢燕华(1981—),女,博士,教授。研究方向:废水深度处理等。E-mail:xieyanhua10@cdut.edu.cn
    作者简介: 罗婷(1997—),女,硕士研究生。研究方向:水污染控制。E-mail:18382260436@163.com
  • 1. 成都理工大学生态环境学院,成都 610059
  • 2. 成都理工大学地质灾害防治与地质环境保护实验室,成都 610059
基金项目:
国家自然科学基金资助项目(41977170)

摘要: 采用二次水热法制备了花球状二硫化钼(MoS2)负载磁性铈铁氧化物(CF)复合催化剂(MCF),通过批实验和表征手段分析了MCF活化过一硫酸盐(PMS)去除偶氮染料橙黄II(AO7)的性能和反应机制。SEM、TEM和VSM结果证明,CF已成功负载于MoS2上,MCF为磁性复合材料。降解实验结果表明,与单独CF和MoS2相比,MCF的活化能力有显著提升。同时,在MCF投加量为1.2 g·L−1、PMS为2 mmol·L−1、初始pH为3~9的条件下,MCF/PMS体系对AO7的去除率达到100%,且该反应符合准一级动力学模型。重复利用实验、XRD和ICP-OES结果说明,MCF具有良好的稳定性。UV-vis图谱结果表明,降解AO7的过程中产生了含有萘环和苯环的中间产物。淬灭实验、EPR和XPS结果表明,1O2SO4和·OH是反应过程中的主要活性物种。以上研究结果可为新型PMS活化剂在废水深度处理的实际应用提供参考。

English Abstract

  • 纺织印染工业产生的难生物降解、毒性大、色度高和具有三致效应的印染废水量已呈现出逐年上升趋势[1-2]。若处理不当,排入天然水体的印染废水不仅会对水质、水生生物和生态系统造成严重影响,还可以通过食物链富集威胁人类健康。因此,对印染废水进行有效、合理地处理对保护水资源具有重要意义。

    近年来,基于SO4的高级氧化工艺因能够克服传统芬顿氧化体系具有的pH适用范围过窄[3]、活性物种氧化能力过弱[4]、存在时间过短[5]等难题而得到广泛运用。但其均相反应体系中仍存在金属离子难回收、容易产生污泥、二次污染严重等问题[6]。因此,开发新型的易回收、化学性质稳定、氧化能力强的固体催化剂并以其构建非均相反应体系成为现阶段该方法研究的热点和难点。

    在活化PMS的方法中,过渡金属活化法具有易操控、耗能小等特点。而过渡金属中,尤其是磁性铁基催化剂活化PMS降解染料一直是有机废水处理领域的研究热点。如何在铁基催化剂的基础上进一步提高Fe2+/Fe3+的转化效率也逐渐成为现阶段该技术手段的难点。本研究利用绿色可回收的铁基材料[7]、氧化还原能力优良的铈氧化物[8]以及具有共催化作用的二硫化钼[9],构建了二硫化钼负载磁性铈铁氧化物活化PMS降解橙黄II染料的体系,以期在获得高效的降解率的同时可以提高催化剂的回收利用性能,进而减少二次污染和资源浪费。

  • 六水合硝酸铈(Ce(NO3)3·6H2O)、九水合硝酸铁((Fe(NO3)3·9H2O)、无水柠檬酸((C8H8O7)、氨水(NH3·H2O)、无水甲醇(CH4O)、硫脲(CH4N2S)、橙黄II(C16H11N2NaO4S)、四水合钼酸铵((NH4)6Mo7O24·4H2O)、过一硫酸氢钾(KHSO5·0.5KHSO4·0.5K2SO4)、叔丁醇(C4H10O)、苯酚(C6H6O)、高氯酸钠(NaClO4)、对苯醌(C6H4O2)、硫酸(H2SO4)、氢氧化钠(NaOH)均为分析纯,实验用水为超纯水。

  • 首先,称取一定量的Ce(NO3)3·6H2O和Fe(NO3)3·9H2O溶于90 mL超纯水中,再加入7.685 g C8H8O7,待其溶解后持续搅拌2 h并用NH3·H2O调节溶液pH至9;然后,将上述混合液转移至特氟龙反应釜中并在180℃下保持20 h,待反应釜冷却后,将固体产物用去离子水和无水乙醇分别洗涤数次,并在60℃下烘干,将烘干固体研磨成粉末,将粉末置于马弗炉中以一定温度煅烧6 h得到磁性铈铁氧化物(CF);最后,在水热法合成二硫化钼的过程[10]中加入CF制得二硫化钼-磁性铈铁氧化物复合材料,制备流程见图1

  • 采用扫描电子显微镜(SEM,JSM-7800,日本JEOL公司)和透射电子显微镜(TEM,JEM-2100F,日本JEOL公司)分析材料的形貌、晶型。采用X射线衍射仪(XRD,D8 ADVANCE,德国Bruker公司)定性分析材料的化学组成。采用Zeta电位仪(Zetasizer Nano ZS系列,英国Malvern公司)测定MCF在不同pH下的Zeta电位值。使用振动样品磁强计(VSM,EZ7,美国MicroSense公司)对材料的磁性强弱进行定量分析。反应溶液中溶出的铁离子和铈离子浓度采用电感耦合等离子原子发射光谱仪(ICP-OES,5800,美国Agilent公司)进行测定。采用电子顺磁共振波谱仪(EPR,A-300,德国Bruker公司)对反应过程中产生的活性物种进行识别。采用光电子能谱仪(XPS,ESCALAB 250Xi,美国Thermo公司)测定反应前后含氧物种含量的变化。

  • 降解实验在恒温水浴振荡器中进行。将50 mL质量浓度为25 mg·L−1的AO7溶液和一定量的MCF置于血清瓶中振荡吸附30 min并取样,随后加入PMS启动氧化反应,并在氧化反应的不同时间段取样,所有样品取出后均立即加入等量甲醇淬灭。采用紫外-可见分光光度计在485 nm处测定样品吸光度。每次实验完成后利用抽滤装置回收催化剂,并通过数次乙醇和超纯水洗涤后烘干,所得催化剂再进行重复降解实验。

    不同反应体系影响实验中催化剂投加量为0.6 g·L−1,PMS浓度为1 mmol·L−1。MCF投加量影响实验中PMS浓度为1 mmol·L−1。如无特殊说明,降解实验中MCF投加量为1.2 g·L−1,PMS为2 mmol·L−1,反应pH为初始值。采用甲醇和叔丁醇鉴识溶液中的·OH与SO4[11],选用苯酚分辨溶液中和材料表面的·OH与SO4[12];通过高氯酸钠辨别反应中非自由基的反应机制[13];使用对苯醌和L-组氨酸鉴别反应中生成的O21O2[11, 14]

    实验中采用准一级反应动力学模型(式(1))和二级动力学模型(式(2))对不同催化剂投加量的反应过程进行拟合。

    式中:Ct时刻橙黄II的瞬时质量浓度,mg·L−1C0为橙黄Ⅱ的初始质量浓度,mg·L−1t为氧化降解时间,min;kobs为准一级反应速率常数,min−1k2为二级反应速率常数,min−1

  • 1) SEM分析。图2为CF和MCF的SEM表征图像和MCF中各元素的EDS映射图。由图2(a)可以看出,CF是由许多纳米小球组合链接并形成类似束状的物质。由图2(b)可以看出,MoS2是由厚度为10 nm左右的不规则纳米片组合而成的直径为1 μm左右的团簇花球[15]。MCF的EDS元素映射图像(图3(c)~图3(h))显示MCF中含有Fe、Ce、Mo、S、O 5种元素,说明CF较为均匀地分散附着在了MoS2花球的表面和缝隙中。因此,SEM图像与EDS元素映射图初步表明二次水热法成功合成了二硫化钼-磁性铈铁氧化物。

    2) TEM分析。图3为CF和MCF的TEM图像。由图3(a)可以看出,CF的组成物质呈现出较规则均匀的颗粒状,其金属氧化物颗粒的直径为5~10 nm,这与SEM图像结果一致。图3(b)图3(c)中,0.31 nm的晶格条纹间可以与立方萤石结构的CeO2的(111)晶面反射很好地匹配[16]图3(b)中0.19 nm的晶格条纹间距归属于斜方晶系结构的CeFeO3的(221)晶面;图3(c)中0.27 nm和0.25 nm的晶格间距可以与六方相结构的Fe2O3的(104)和(110) 2个晶面对应[17-18]图3(d)为高清放大倍数下的MoS2边缘,由图3(d)可以清楚地识别出0.62 nm晶格间距,其对应的是六方相MoS2的(002)晶面[19]。由图3(e)可以看出,CF附着于MoS2表面。以上结果进一步说明,MCF复合材料已成功制备;并且MoS2的花球结构起到了分散CF纳米颗粒的作用,不但能降低其团聚度,同时增大了CF颗粒与PMS接触面积。

    3)磁滞曲线分析。图4为CF和MCF的样品在室温下的磁化曲线。由图4可看出,CF和MCF的磁化曲线在外加磁场下均表现出典型的S型,证明他们均为磁性材料。CF和MCF的最大磁感应强度分别为6.7×10−3 T和6.3×10−3 T,MCF的最大磁感应强度略低。这主要是由于在合成MCF的过程中产生了没有磁性的MoS2,单位质量的MCF中含有的磁性物质会比CF中的少,进而导致MCF磁性下降。但MCF仍能通过外加磁力从溶液中快速分离,这对材料的回收再利用具有重要意义。

  • 图5为不同反应体系中AO7降解率的变化。单独投加CF、MoS2和MCF均可使橙黄II的浓度有一定程度的下降,这是由于材料对AO7的吸附导致的,上述3种材料对AO7的吸附能力大小为MoS2>MCF>CF。根据CF、MoS2和MCF的SEM表征结果可知,花球状的MoS2表面褶皱较多,比表面积较大且吸附点位较多,而CF表面呈现为较为光滑的球状,导致其吸附点位较少,吸附能力弱,MCF中的CF则可能覆盖MoS2原有的吸附位点而导致其吸附能力小于MoS2[20]。在催化氧化能力方面,单独PMS、CF/PMS和MoS2/PMS体系对AO7的最终去除率分别仅有11%、22%和30%,而MCF/PMS体系对AO7的最终去除率可达到100%,说明溶液中单独的PMS氧化降解AO7的能力很弱,CF和MoS2虽对PMS具有一定的活化效果,但其活化效果远不如MCF。

  • MCF投加量对AO7降解效果的影响及动力学拟合结果见图6表1表2。由图6(a)可看出,当MCF的投加量由0.1 g·L−1增加至2 g·L−1时,MCF对AO7的吸附能力和降解速率依次增加。这主要是由于催化剂投加量的增加使得MCF的吸附点位增多,致使AO7的吸附去除量增加;氧化去除速率的提高主要是因为较高的MCF投加量提供了更多的活化位点,能够催化PMS产生更多瞬时自由基,进而加快了AO7的降解[21]。而当MCF投加量为2 g·L−1时,降解速率并未较1.2 g·L−1时有明显提高,说明此时MCF表面激活PMS的活性点位接近于饱和,材料发生团聚,导致去除速率增幅不大。由图6(b)图6(c)表1表2中的动力学拟合数据结果可知,准一级反应动力学拟合结果中的可决系数R2更接近于1,说明MCF/PMS降解AO7的过程更符合准一级动力学模型。

  • 图7可知,当氧化剂PMS的浓度低于2 mmol·L−1时,随着PMS浓度增大,AO7的降解速率随之增大。这是由于较高浓度的PMS增加了MCF与氧化剂之间的反应概率,有利于产生更多活性物种,同时促进非自由基反应[22]。而当PMS浓度为4 mmol·L−1时,降解速率明显变慢,说明过高的PMS浓度可能对氧化降解污染物的过程产生抑制作用。在满足MCF的活化点位所需的PMS含量后,体系中过多的PMS反而会消耗部分SO4和·OH,生成氧化能力较弱或者不具有氧化能力的物质,导致反应速率下降[23],反应过程见式(3)~式(6)。

  • 图8(a)图8(b)可知,MCF对AO7的吸附能力随着pH的增加而降低。在pH为3、5、7、9和11的条件下,测得MCF的Zeta电位均为负值,且随着环境pH的增高,MCF材料表面带有的负电荷离子也增多,从而增加了阴离子染料AO7与MCF间的静电斥力,进而导致MCF吸附能力的减弱[24]。由图8(a)可知,在pH为3~9时,MCF/PMS体系对AO7的最终去除率均可达到100%;而当pH为11时,MCF/PMS体系对AO7的最终去除率仅为65%。这是由于当溶液的pH过高时,氧化体系中大量的SO4被转化为·OH(式(7)),但·OH的氧化能力远弱于SO4,从而导致体系降解污染物的能力被削弱。

  • 通过6次重复利用实验和对反应前后材料的XRD表征,分析了催化剂的稳定性能。由图9(a)可知,随着循环反应次数的增加,MCF/PMS体系对AO7的去除速率逐渐降低,但是经过6次循环利用后,AO7的去除率仍可达到95%,并且MCF仍可通过磁铁吸引的手段从溶液中分离出来。此结果证明,MCF具有较好的结构稳定性和可回收利用性。

    图9(b)可知,反应后的XRD谱图形状与反应前基本一致,并未出现新的衍射峰。在2θ为14.38°处出现的归属于MoS2的(002)晶面(JCPDS 37-1492)[25]的特征衍射峰强度略有降低,这可能是由于材料回收过程中MoS2少量流失所致。在2θ为28.55°、33.08°、47.48°、56.33°、59.09°和69.40°处出现的CeO2(JCPDS 34-0394,空间群为Fm-3m)[26]与2θ为27.33°处出现的Ce2O3(JCPDS 23-1048)[27]特征衍射峰依然明显,2θ为33.15°和35.61°处归属于Fe2O3(JCPDS 33-0664)的特征衍射峰[28]仍然存在,2θ为50.98°处的Fe3O4(JCPDS 28-0491)特征衍射峰[29]也没有减弱。除此之外,2θ为25.40°、47.67°和77.03°处CeFeO3(JCPDS 22-0166)的特征衍射峰[30]的强度没有发生明显变化,表明MCF提供的磁性物质并没有减少。同时,在采用ICP-OES对重复利用去除后反应溶液中的铁和铈离子浓度进行测定时发现,溶液中铁离子的溶出质量浓度低于检测限,而铈离子的最大溶出质量浓度为6.92 mg·L−1。以上结果均可说明,MCF在活化PMS降解AO7的反应后分子结构没有明显变化,具有较好的稳定性。

  • 1)活性物种淬灭实验。图10为MCF和MoS2活化PMS的体系中不同功能活性物种抑制剂对AO7降解的影响和MCF/PMS体系中的活性物种检测EPR谱图。如图10(a)所示,在不添加任何抑制剂的情况下,AO7最终去除率可以达到99%以上。而向体系中分别加入浓度为2 mol·L−1的甲醇、叔丁醇和苯酚时,AO7的最终去除率分别被降低至90%、66%和28%。这说明反应中产生了SO4和·OH,且抑制剂对降解AO7的抑制率排序为苯酚>叔丁醇>甲醇,这与其他金属离子活化PMS降解污染物得出的结果一致[31]。叔丁醇可抑制溶液中的·OH,苯酚和甲醇均可作为SO4和·OH的抑制剂,但苯酚的抑制效果最强,这主要是因为甲醇和叔丁醇不会对HSO5与催化剂表面的接触造成阻碍,而更多的是与溶液中存在的SO4和·OH发生反应。但污染物却仍有可能在接近MCF表面时被自由基氧化[32],而苯酚则能够同时抑制材料表面及附近的自由基产生,因此,苯酚呈现出更强的抑制效果。

    与不添加抑制剂的反应体系相比,加入L-组氨酸、对苯醌和高氯酸钠的反应体系对AO7的最终去除率分别为12%、59%和100%。这说明L-组氨酸和对苯醌分别对反应有不同程度的抑制作用,即1O2O2也作为重要的活性物质参与到了氧化反应中。而高氯酸钠不仅没有抑制降解过程,反而对AO7的去除速率有轻微的促进作用,证明在本实验中并不存在其他的非自由基反应机制。根据图10(b)可知,与上述相似的抑制趋势可以在MoS2/PMS体系中看到,再次说明MoS2也具有一定的活化PMS产生活性物种的能力。

    使用DMPO作为自旋阱捕获MCF活化PMS产生的·OH和SO4的结果如图10(c)所示,在加入MCF之前(0 min)并没有出现自由基的峰值,即单独的DMPO几乎不产生自由基。而在加入MCF后1 min的EPR波谱中,可以明显看到DMPO-SO4和DMPO-OH加合物的强峰,这再次证明MCF/PMS体系中产生了SO4和·OH,并且DMPO-OH的信号明显高于DMPO-SO4。这与添加叔丁醇和甲醇的淬灭实验结果一致,即表面上看来·OH的作用似乎比SO4更大,原因可能是体系中的SO4会快速与H2O发生不理想的亲核取代反应并转化为·OH[33](图11)。因此,与·OH相比,SO4在氧化降解AO7的过程中做出了更大贡献。此外,由图10(d)可知,在单独添加TEMP的体系中未观察到特征信号,说明自旋捕获剂TEMP对整个反应体系没有影响。但在PMS/TEMP体系中产生了相对较强的TEMP-1O2加合物1∶1∶1的三重态特征信号。这是由于水溶液中的PMS可以通过自行分解产生少量的1O2[34]。而添加MCF后,TEMP-1O2加合物强度显著增强,根据以往的研究,非均相催化反应中的1O2一般来自碱/苯醌活化[35]和PMS的自分解。而本实验中较高pH条件下和添加苯醌的体系中降解反应均受到抑制,说明MCF对PMS的自分解起到了很强的促进作用。

    综上所述,在MCF/PMS降解AO7体系中产生的1O2SO4、·OH、O2均对氧化过程有一定的贡献,1O2SO4和·OH在降解反应中起主导作用。

    2)降解UV-vis图谱分析。由图12可知,AO7的特征波长分别为485、310和228 nm,上述3个波长处的吸收峰分别对应其偶氮发色基团(—N=N—)、萘环和苯环结构[33, 36]。随着反应时间的增加,可以看到485 nm处对应的吸收峰强度不断降低至几乎为0,说明溶液中所有AO7分子的—N=N—均发生了断裂,这与图12中的脱色结果一致;310 nm处的吸收峰在反应过程中逐渐消失,而228 nm处的吸收峰在反应后期变强,说明AO7分子中的—N=N—断裂后形成了一些萘环和苯环芳香碎片,并且萘环碎片有被氧化分解的现象[37]

    3)反应机理初步推导。前述分析结果表明,MCF活化PMS的过程中产生了1O2SO4、·OH和O2几种活性物种,其中1O2主要由PMS的自分解产生。此外,由图13(a)可知,反应后MCF的晶格氧(M-O)含量由41.88%下降为38.29%,说明材料中的晶格氧也参与了1O2的生成。活性物种SO4和·OH主要由体系中电荷转移所产生。

    图13(b)反映了AO7降解过程中可能的反应机制。在降解过程中,有较少部分AO7是通过PMS直接氧化和MCF的吸附作用去除的,MoS2的花球状结构有利于污染物的吸附与传质,剩余绝大部分AO7则是通过MCF/PMS体系的氧化降解作用而被去除。淬灭实验结果说明,在MoS2/PMS和MCF/PMS体系中起到主导作用的均是1O2。在MCF活化PMS的过程中,MoS2具有较大的比表面积和较高的电子转移速率,MCF中CF和MoS2的关联作用有利于PMS活化过程中的电荷转移,从而加速了SO4和·OH的生成,即Fe2+、Fe3+、Ce3+、Ce4+和Mo4+可以通过电荷转移活化PMS产生SO4和·OH(式(8)~式(12)),而MoS2表面的硫空位和暴露出的还原金属活动中心Mo4+还可以通过提高界面电荷转移效率起到增强Fe3+/Fe2+氧化还原循环的作用(式(13))[38]。在体系未添加MCF时,PMS自分解可产生小部分的1O2(式(14)和式(15)),体系中添加的MCF促进了PMS的自分解产生大部分1O2,并且还有一部分1O2由MCF中的晶格氧(OLatt.)转化得到(式(16)和式(17));此外,低价金属离子在反应过程中均起到了活化PMS产生1O2的作用(式(18)和式(19))。Ce4+/Ce3+和Fe2+/Fe3+的标准氧化还原电位分别为1.44 V和0.77 V,因此,电子从Fe2+转移到Ce4+的过程从热力学角度来看也是实际可行的[8](式(20))。综上所述,体系中产生的1O2SO4和·OH可将AO7降解为中间产物,并可进一步将中间产物完全矿化为CO2和H2O(式(21))。

  • 1)采用二次水热法成功制备了MCF复合材料,CF以颗粒形式附着于花球状MoS2的表面。

    2) MCF呈现比CF和MoS2更显著的催化活性,MCF中的CF和MoS2在反应过程中存在协同作用。在MCF投加量为1.2 g·L−1、PMS浓度为2 mmol·L−1、pH为3~9时,MCF/PMS体系对AO7的去除率在反应3 min即可达到100%。

    3) MCF的化学性质稳定,且有一定的可回收利用性。在AO7降解过程中起主导作用的活性物种为1O2SO4和·OH,1O2来自于PMS自分解和晶格氧的转化,SO4和·OH由金属离子活化PMS产生。AO7最终被降解为含有萘环和苯环的中间产物、CO2和H2O。

参考文献 (38)

返回顶部

目录

/

返回文章
返回