-
氰根离子能够与多种金属离子形成络合物,所以被广泛地应用于电镀、冶金等行业中[1]。在镀铜工艺中,由于氰化镀铜操作简便,且所获得的镀层表面光亮、结晶细微、孔隙率低、容易抛光、具有良好的导电性和可焊性,因此,尽管氰化物具有毒性,且会造成环境危害,氰化镀铜仍被广泛应用,因而产生了大量的铜氰废水。氰化物具有很强的毒性,短期内接触氰化物会增加呼气次数、心率且还产生其他神经系统毒害作用。人体长期接触氰化物会导致体重减轻,影响甲状腺,使神经系统退化甚至最终导致死亡。皮肤接触含有氰化物的液体也会引起溃疡和皮肤伤害[2]。因此,对于废水中氰化物的排放各国都制定了严格的标准。
在铜氰废水中,当pH小于9时,氰根(CN−)容易和氢离子(H+)形成剧毒气体氢氰酸(HCN),因此,处理铜氰废水必须在碱性条件下进行[3]。目前处理铜氰废水的主要方法为碱式氯化法,但这种方法可能会产生有毒的氯化氰副产物[4]。此外,也有光催化法[5-6]、物化沉淀法[7]、臭氧法[8]等用于处理铜氰废水。虽然这些方法均可对铜氰具有一定的处理效果,但也存在一些缺陷:光催化法由于光生空穴与光生电子容易复合,导致光催化效率较低;物化沉淀法需要投加大量药剂,成本高、效果差。因此,需要寻找一种绿色高效的处理铜氰废水的方法。
电化学法处理铜氰废水已经被广泛研究[9],通过电化学作用还能将铜氰废水中的铜离子进行回收。过一硫酸盐(KHSO5,PMS)是一种绿色环保的氧化剂,因其具有强氧化性、无二次污染等优点而被应用于水处理领域。过一硫酸盐在光、热、碱、电及过渡金属离子的活化作用下能够产生强氧化性的硫酸根自由基(
${\rm{SO}}_4^ - $ ·),可用以氧化多种有机物。有研究结果[10-12]表明,铜离子可以活化PMS产生${\rm{SO}}_4^ - $ ·,进而有效降解抗生素、双酚A等物质。过氧化氢(H2O2)因其清洁廉价无毒害也被广泛应用于水处理领域。H2O2可用于处理含高浓度的氰化物废水[13]。本研究分别采用PMS和H2O2,以强化电化学去除铜氰络合物Cu(CN3)2−的处理效率,并考察了不同试剂浓度和电流密度对Cu(CN3)2−去除效果的影响。
过氧化氢与过硫酸盐强化电化学处理铜氰废水
Enhanced electrochemical treatment of copper cyanide wastewater by hydrogen peroxide and peroxymonosulfate
-
摘要: 表面处理行业废水中的铜氰络合物是废水处理的难点。电化学氧化是一种水处理中常用的方法,对于水中常见的污染物均能进行有效处理,其中,过氧化氢(H2O2)和过一硫酸盐(KHSO5,PMS)是绿色清洁的氧化剂。因此,在电氧化的基础上,探索了H2O2和PMS对电化学处理铜氰络合物的强化效果。实验结果表明:氰根(CN−)和铜离子(Cu2+)的去除率随着H2O2和PMS的增加而升高;当电流密度为10 A·m−2、H2O2浓度为0.4 mol·L−1、反应时间为30 min时,氰根去除率为96.12%,铜离子去除率为81.93%,其中阴极铜回收率为75.60%;当PMS浓度为0.2 mol·L−1、反应时间30 min时,氰根去除率接近100%,铜离子去除率为94.83%,其中阴极铜回收率93.51%。以上研究结果表明,投加合适的药剂可以提高电氧化对铜氰络合物的处理效率。Abstract: Copper and cyanide in the wastewater discharged from surface treatment industry are the difficulties. Electrochemical oxidation is a kind of conventional common approach in water treatment and can effectively treat the common pollutants in water. The hydrogen peroxide (H2O2) and monosulfate (KHSO5, PMS) are the green and clean oxidants. Based on electrooxidation, the strengthening effect of electrochemical treatment of copper and cyanide effluent by H2O2 and PMS was explored. The result showed that the removal rate of cyanide (CN−) and copper ion (Cu2+) increased with the increase of H2O2 and PMS addition. When the current density, H2O2 concentration and reaction time were 10 A·m−2, 0.4 mol·L−1 and 30 min, respectively, the removal rates of cyanide and copper ion is 96.12% and 81.93%, respectively, and the recovery rate of cathode copper reached 75.60%. When the PMS concentration and reaction time were 0.2 mol·L−1 and 30 min, the removal rate of cyanide approximated 100%, the removal rate of copper ion was 94.83%, and the recovery rate of cathode copper reached 93.51%. The above results showed that the addition of suitable reagents could improve the treatment efficiency of copper and cyanide through electrooxidation.
-
Key words:
- copper cyanide complex /
- H2O2 /
- peroxymonosulfate /
- electrochemical oxidation
-
-
[1] EISLER R, WIEMEYER S N. Cyanide hazards to plants and animals from gold mining and related water issues[J]. Reviews of Environmental Contamination and Toxicology, 2004, 183: 21-54. [2] DASH R R, GAUR A, BALOMAJUMDER C. Cyanide in industrial wastewaters and its removal: A review on biotreatment[J]. Journal of Hazardous Materials, 2009, 163(1): 1-11. doi: 10.1016/j.jhazmat.2008.06.051 [3] 游丽燕, 胡承志, 刘会娟, 等. 富含活性氯与Al13水处理药剂对铜氰络合物去除效能[J]. 环境工程学报, 2014, 8(4): 1391-1396. [4] ZHENG Y, LI Z, WANG X, et al. The treatment of cyanide from gold mine effluent by a novel five-compartment electrodialysis[J]. Electrochimica Acta, 2015, 169: 150-158. doi: 10.1016/j.electacta.2015.04.015 [5] 刘会芳, 乔建刚, 田世超, 等. 石墨烯修饰的二氧化钛纳米管电极光电催化去除铜氰络合物研究[J]. 环境科学学报, 2016, 36(6): 2027-2032. [6] 施永生, 朱友利, 龙滔, 等. 生物法处理含氰废水的研究进展[J]. 给水排水, 2011, 47(S1): 278-282. [7] GUROL M D, BREMEN W M. Kinetics and mechanism of ozonation of free cyanide species in water[J]. Environmental Science & Technology, 1985, 19(9): 804-809. [8] TERAMOTO M, SUGIMOTO Y, FUKUI Y, et al. Overall rate of ozone oxidation of cyanide in bubble column[J]. Journal of Chemical Engineering of Japan, 2006, 14(2): 111-115. [9] SZPYRKOWICZ L, ZILIO-GRANDI F, KAUL S N, et al. Electrochemical treatment of copper cyanide wastewaters using stainless steel electrodes[J]. Water Science and Technology, 1998, 38(6): 261-268. doi: 10.2166/wst.1998.0260 [10] WANG L H, XU H D, JIANG N, et al. Trace cupric species triggered decomposition of peroxymonosulfate and degradation of organic pollutants: Cu(III) being the primary and selective intermediate oxidant[J]. Environmental Science & Technology, 2020, 54(7): 4686-4694. [11] CAI T, BU L, WU Y, et al. Accelerated degradation of bisphenol a induced by the interaction of EGCG and Cu(II) in Cu(II)/EGCG/peroxymonosulfate process[J]. Chemical Engineering Journal, 2020, 395(9): 125-134. [12] YUEPING B, WEN-DA O, TEIK-THYE L, et al. Elucidation of stoichiometric efficiency, radical generation and transformation pathway during catalytic oxidation of sulfamethoxazole via peroxymonosulfate activation[J]. Water Research, 2019, 151: 64-74. doi: 10.1016/j.watres.2018.12.007 [13] 胡长诚. 过氧化氢在环境保护方面的应用[J]. 无机盐工业, 2005, 37(4): 50-52. doi: 10.3969/j.issn.1006-4990.2005.04.019 [14] 姜力强, 郑精武, 刘昊, 等. 电解法处理含氰含铜废水工艺研究[J]. 水处理技术, 2004, 30(3): 153-156. doi: 10.3969/j.issn.1000-3770.2004.03.009 [15] 李亚峰, 顾涛. 金矿含氰废水处理技术[J]. 当代化工, 2003, 32(1): 1-4. doi: 10.3969/j.issn.1671-0460.2003.01.001 [16] 周珉, 黄仕源, 瞿贤. 过氧化氢催化氧化法处理高浓度含氰废水研究[J]. 工业用水与废水, 2013, 44(5): 31-34. doi: 10.3969/j.issn.1009-2455.2013.05.009 [17] SARLA M, PANDIT M, TYAGI D K, et al. Oxidation of cyanide in aqueous solution by chemical and photochemical process[J]. Journal of Hazardous Materials, 2004, 116(1/2): 49-56. [18] 万甜, 闫幸幸, 任杰辉, 等. Fe(Ⅱ)活化过硫酸盐改善污泥脱水性能[J]. 环境工程学报, 2020, 14(1): 194-201. [19] 刘桂芳, 孙亚全, 陆洪宇, 等. 活化过硫酸盐技术的研究进展[J]. 工业水处理, 2012, 32(12): 6-10. doi: 10.3969/j.issn.1005-829X.2012.12.002 [20] 唐海, 沙俊鹏, 欧阳龙, 等. Fe(Ⅱ)活化过硫酸盐氧化破解剩余污泥[J]. 化工学报, 2015, 66(2): 785-792. doi: 10.11949/j.issn.0438-1157.20141072 [21] WANG Y, TIAN S, CAO D, et al. Enhancement of electrochemical oxidation of ${\rm{Cu}}\left( {{\rm{CN}}} \right)_3^{2 - }$ by the peroxydisulfate oxidation[J]. Separation and Purification Technology, 2017, 188: 119-125. doi: 10.1016/j.seppur.2017.07.006[22] 唐琪, 王玉如, 郭菁豪, 等. CuO活化过硫酸盐对孔雀石绿的降解[J]. 环境工程学报, 2017, 11(4): 108-114. [23] 王云飞, 李一兵, 王彦斌, 等. 过硫酸钾氧化去除 ${\rm{Cu(CN)}}_3^{2 - } $ 中的氰污染物[J]. 环境科学, 2017, 38(3): 219-224.