利用铁尾矿制备烧结砖的可行性及烧结固化机理

周伟伦, 廖正家, 陈涛, 宁寻安, 王逸, 谢鸿智. 利用铁尾矿制备烧结砖的可行性及烧结固化机理[J]. 环境工程学报, 2021, 15(5): 1670-1678. doi: 10.12030/j.cjee.202012132
引用本文: 周伟伦, 廖正家, 陈涛, 宁寻安, 王逸, 谢鸿智. 利用铁尾矿制备烧结砖的可行性及烧结固化机理[J]. 环境工程学报, 2021, 15(5): 1670-1678. doi: 10.12030/j.cjee.202012132
ZHOU Weilun, LIAO Zhengjia, CHEN Tao, NING Xunan, WANG Yi, XIE Hongzhi. Feasibility of using iron tailings to prepare sintering brick and sintering solidification mechanism[J]. Chinese Journal of Environmental Engineering, 2021, 15(5): 1670-1678. doi: 10.12030/j.cjee.202012132
Citation: ZHOU Weilun, LIAO Zhengjia, CHEN Tao, NING Xunan, WANG Yi, XIE Hongzhi. Feasibility of using iron tailings to prepare sintering brick and sintering solidification mechanism[J]. Chinese Journal of Environmental Engineering, 2021, 15(5): 1670-1678. doi: 10.12030/j.cjee.202012132

利用铁尾矿制备烧结砖的可行性及烧结固化机理

    作者简介: 周伟伦(1996—),男,硕士研究生。研究方向:尾矿无害化及资源化利用。E-mail:294794893@qq.com
    通讯作者: 宁寻安(1967—),男,博士,教授。研究方向:固体废物处理处置。E-mail:ningxunan666@126.com
  • 基金项目:
    2017年土壤中央专项资金-大宝山尾矿无害化处理及综合利用前期研究项目(18HK0108)
  • 中图分类号: X753

Feasibility of using iron tailings to prepare sintering brick and sintering solidification mechanism

    Corresponding author: NING Xunan, ningxunan666@126.com
  • 摘要: 针对铁尾矿综合利用率低的问题,利用铁尾矿、粉煤灰、废玻璃制备烧结砖,以提高铁尾矿综合利用率。通过抗压强度、吸水率和重金属浸出3方面评价烧结砖的性能,确定最佳烧结工艺条件;并通过重金属形态分布、孔径分析、XRD和SEM探究烧结砖的固化机理。结果表明,在最佳条件烧结温度为1 100 ℃、铁尾矿、粉煤灰、玻璃配为6∶2∶2的条件下,烧结砖的抗压强度为124 MPa,吸水率为4.6%。最佳条件下烧结砖的Cu、Pb、Zn重金属浸出浓度均低于标准阈值。当烧结温度从900 ℃上升到1 200 ℃,Cu、Pb和Zn的残渣态占比均有所上升,孔容积从0.019 cm3·g−1下降到了0.001 cm3·g−1,平均孔径从22.1 nm下降到了9.3 nm。物相分析结果表明,在烧结过程中,高岭石相和石英相的特征峰降低,莫来石相的特征峰升高。上述结果可以为铁尾矿制备烧结砖提供数据参考。
  • 寻求和利用可再生绿色清洁能源替代化石燃料,是解决能源与环境危机的重要途径。微生物燃料电池(microbial fuel cell, MFC)作为一种集污水处理与生物产电于一体的新型技术,以产电细菌为主体,可将化学能转化为电能,同时去除水体中的污染物[1-2]。电极材料是影响MFC性能的关键因素之一,也是MFC产电微生物的附着载体和生长场所[3]。因此,找到一种可供微生物大量附着和生长的载体,同时具有良好导电性能的材料至关重要。

    MFC电极多采用碳质材料,拥有良好的生物相容性、导电性和化学稳定性[4]。碳质材料一般包括石墨烯、碳毡、碳布、生物炭等。其中石墨烯电极机械强度较好,但其材料表面相对光滑,不利于微生物附着,因而导致胞外电子传递效率低[5-6];碳毡电极柔韧性良好,但其在MFC运行时,由于材质较厚,生物膜会妨碍底物由外向内的扩散,影响对污染物的降解效率;碳布电极表面粗糙但机械强度较差,不适于投入大规模的实际工程应用中[7]。相比于传统电极材料,生物炭材料具有来源广泛、成本低廉、电化学性能较好、比表面积高和孔隙结构多等优点。2018年CHEN等[8]大麻槿秸秆通过简单的碳化处理制成MFC阳极,其电流密度达到了32.5 A·m−2,是对照组石墨棒电极的3倍,由此可见生物炭作为MFC电极材料是具有一定优势的。

    据2020年中国统计年鉴统计,我国核桃栽培面积为5.54×1010 m²,约1.3×109[9]。每年有大量的废弃核桃壳产生,如何有效处理这些固体废物,实现减量化和资源化是环境领域的研究热点。采用高温裂解法制备生物炭,再通过化学活化,可使其表面结构相对于碳基材料的平面结构更为粗糙,更有效的提升活性表面积[10-13]。常见的生物炭化学活化剂包括ZnCl2、HPO4、KOH等,其中ZnCl2活化制备的活性炭具有产率高、过渡孔发达、价廉易得等优点[14],JIANG等通过ZnCl2活化甘蔗渣发现,锌离子浓度越高,比表面积越大[15]

    目前,以改性核桃壳作为电极材料的研究鲜有报道。因此,本研究主要以改性核桃壳作为生物炭基电极材料,通过不同温度的碳化、不同浓度的ZnCl2活化、不同比例的材料复合制成微生物燃料电池电极,通过表征分析,考察不同制备方法制备出的材料的性能差异,分析其在MFC中产电性能的差异,以及最佳条件MFC去除污染物的能力,为微生物燃料电池的发展方向提供参考。

    将市场上购买的核桃取果皮后粉碎,过40目分子筛后,置于石英舟中,再将其放入管式炉(OTF-1200 X),真空400 ℃炭化90 min后,得到黑色产物。称取一定量的黑色产物与氯化锌固体按质量比分别为5:1、5:3、5:5,置于烧杯中加去离子水刚好完全淹没,搅拌后,再将其置于105 ℃烘箱中烘干24 h。将烘干好的黑色产物放于管式炉中央,分别在400、600、800 ℃温度条件下真空煅烧2 h,反应结束后在真空保护下冷却至室温。煅烧好的样品先用10% HCl溶液洗涤,然后用去离子水洗涤,直至中性,最后将其置于105 ℃烘箱中烘干24 h,得到核桃壳碳化产物。

    制备好的生物炭样品与聚苯胺和热熔胶按5:1:4和5:1:5质量比进行混合,然后将混合材料置于刚玉舟模具中压实,再放入200 ℃管式炉进行真空热熔,热熔30 min后,自然冷却至室温取出。制备后的电极材料样品尺寸为2 cm×3 cm×0.5(±0.05) cm。

    实验采用扫描电镜(捷克TESCAN MIRA LMS),通过磨成粉末过0.4 mm筛网制样,对生物炭基电极材料表面形貌进行表征;采用拉曼光谱(激光器波长532 nm,扫描范围50~4 000 cm−1)分析电极材料的石墨化程度;采用孔隙及比表面积分析仪(康塔4000 e,脱气温度120 ℃)分析电极材料的比表面积、孔体积和孔径;采用电化学工作站(CHI 660 e),通过LSV、EIS测试,分析电极材料的导电性能的差异;采用HACH高量程(20~1 500 mg·L−1)消解法测定COD;采用国标纳氏试剂比色法测定氨氮;采用电流电压数据采集器(KEYSIGHT 34972A)测定MFC产电性能、采集电流电压及功率密度。

    实验采用空气阴极单室MFC反应器,由有机玻璃制成,内径为10 cm,高度为14 cm,设置溢流堰用于出水,底部设置0.4 cm有机玻璃管用于进水。反应器阴阳极用尼龙螺栓固定,有效容积为377 mL。配制模拟废水(实验所用的去离子水为灭菌除氧后的水)用于MFC产电性能分析,每隔24 h进出水150 mL,其组成为1.356 g·L−1 C4H4Na2O4,0.15 g·L−1 (NH4)2SO4,0.253 5 g·L−1 KH2PO4,0.125 g·L−1 MgSO4·7H2O,0.125 g·L−1 NaCl,0.002 5 g·L−1 FeSO4·7H2O,0.002 g·L−1 MnSO4·H2O,1 mL·L−1 微量元素。其中微量元素包括1.5 g·L−1 FeC13·6H2O,0.02 g·L−1 CuC12·2H2O,0.18 g·L−1 KI,0.12 g·L−1 MnCl2·4H2O,0.01 g·L−1 ZnC12,0.06 g·L−1 Na2MoO4·2H2O,0.15 g·L−1 CoC12·6H2O,0.15 g·L−1 H3BO3,0.06 g·L−1 Na2MoO4·2H2O。

    实验所用接种微生物为本研究组前期实验筛选出的异养硝化-好氧反硝化菌[16]。通过扩大培养,鉴定其异养硝化与好氧反硝化性能后接种至MFC反应器。具体过程如下:将菌种接种至LB液体培养基,在(30±2) ℃培养箱中培养24 h后,取菌种培养液与去离子水以1:9比例混合,用10 mL离心管离心去除上清液后加适量水摇匀,倒入好氧反硝化培养基,恒温振荡培养(160 min−1,30 ℃),每12 h测1次硝氮浓度和OD600;再取培养液置于异养硝化培养基,厌氧箱中恒温培养(30 ℃),每12 h测1次氨氮浓度和OD600。实验所用LB液体培养基含有3.0 g·L−1 牛肉膏、5.0 g·L−1 NaCl、10.0 g·L−1 蛋白胨(pH=7.0);好氧反硝化培养基(100 mL)含有1.356 g·L−1 C4H4 Na2O4、0.064 1 g·L−1 KNO3、0.253 5 g·L−1 KH2PO4、0.125 g·L−1 MgSO4·7H2O、0.125 g·L−1 NaCl、0.002 5 g·L−1 FeSO4·7H2O、0.002 g·L−1 MnSO4·H2O;异养硝化培养基(100 mL)含有1.356 g·L−1 C4H4Na2O4、0.253 5 g·L−1 KH2PO4、0.125 g·L−1 MgSO4·7H2O、0.125 g·L−1 NaCl、0.002 5 g·L−1 FeSO4·7H2O、0.002 g·L−1 MnSO4·H2O、0.15 g·L−1 (NH4)2SO4

    将目标菌株菌悬液接种至MFC反应器中,接种比例10%,上下电极间距4 cm。MFC置于恒温气候箱中,温度和湿度分别控制30 ℃、50%。进水pH为7.0±0.1,连接1 kΩ的外电阻,每5 min对MFC输出电流电压进行实时监控。在MFC电压达到稳定输出时,测量分析极化曲线和功率密度曲线(文中功率密度和电流密度以反应器有效容积为参比)。具体方法为:依次将外电阻由2 000 Ω调到100 Ω,每30 s记录1次MFC外阻的电流电压值,其中每更换一次电阻需等待3 min让电压值稳定。

    为阐明ZnCl2用量对生物炭材料孔隙结构的影响,实验采用生物炭/氯化锌质量比分别为5:1、5:3、5:5的电极材料,在600 ℃煅烧后,通过比表面积和孔径分布来评估核桃壳生物炭的比表面积及相应孔径分布。由图1可知,ZnCl2活化后的生物炭孔结构的孔径主要集中在3.5 nm附近,在相对压力为0.1~1.0内出现较显著的滞后环,按照国际纯化学和应用化学联合会的定义,核桃壳生物炭是典型的Ⅰ型和Ⅱ型特性[17],说明核桃壳生物炭的结构属于尺寸较小的介孔结构。由表1可知,随着ZnCl2质量比的不断增加,改性核桃壳生物炭的比表面积由590 m2·g−1增加到883 m2·g−1,孔容由0.009 cm3·g−1逐渐增加到0.017 cm3·g−1。这说明随着ZnCl2用量的增加,活化后的核桃壳生物炭的比表面积也越大,可为微生物的生长提供更多的场所[18],做成MFC电极后其微生物负载量可得到提升,从而促进MFC的产电。

    图 1  不同生物炭/氯化锌质量比条件下电极材料BET分析图
    Figure 1.  BET analysis chart of electrode materials at different biochar/zinc chloride mass ratios
    表 1  BET测量时获得的比表面积、孔径和孔容
    Table 1.  Specific surface area, pore size and pore volume determined by BET measurement
    生物炭/氯化锌质量比比表面积/(m2·g−1)孔径/nm孔容/(cm3·g−1)
    5:15903.8180.009
    5:36573.4240.015
    5:58833.4210.017
     | Show Table
    DownLoad: CSV

    为阐明热处理温度对生物炭材料分子结构的影响规律,控制生物炭/氯化锌质量比为5:5,分别在400、600、800 ℃热处理条件下,对制备的生物炭进行拉曼光谱分析,实验结果如图2所示。由图2可见,核桃壳生物炭在1 316 cm−1和1 586 cm−1处有2个显著的拉曼峰,分别为炭材料的特征D峰和G峰[19-20]。其中D峰主要是芳香环之间的C—C结构,为环数大于6环的芳香环结构,是由炭材料缺陷引起;G峰与炭材料的C=C键Sp2杂化有关。D峰与G峰的强度比(ID/IG)可以在一定程度反映材料的缺陷程度,ID/IG值越高,代表材料的无序率越高;ID/IG值越低,说明材料的石墨化程度越高,导电性能越好[21]。根据拉曼光谱图Gauss拟合曲线方法可以得到ID/IG。由图2可以看出,随着热解温度的增加,ID/IG比值变小。这说明材料的石墨化程度增加,导电性能越好,制作的MFC电极性能越好。

    图 2  不同煅烧温度条件下改性核桃壳生物炭拉曼光谱分析
    Figure 2.  Raman spectra analysis of modified walnut shell biochar at different calcination temperatures

    聚苯胺与热熔胶比例也是考察MFC电极制作过程的因素之一。图3为在真空煅烧温度为600 ℃、生物炭与氯化锌活化质量比为5:3的条件下,生物炭/聚苯胺/热熔胶比例分别为5:1:4和5:1:5所制成的MFC复合电极的扫描电镜图。

    图 3  不同生物炭/聚苯胺/热熔胶复合比例条件下扫描电镜分析
    Figure 3.  SEM analysis at different composite ratios of biochar/polyaniline/hot melt adhesive

    由于当生物炭/聚苯胺/热熔胶的比例为5:1:1和5:1:2时,经过煅烧的生物炭电极几乎不成型,依旧保持粉末状态;当生物炭/聚苯胺/热熔胶添加比例为5:1:3时,经过煅烧的生物炭电极机械强度低,易碎,因此这些复合比例均不能到达作为MFC电极材料的要求,故实验选用的生物炭/聚苯胺/热熔胶比例为5:1:4和5:1:5。由图3可以看出,随着热熔胶中聚乙烯粉末和导电态聚苯胺的加入,其对生物炭的表面起到了修饰作用,但未对生物炭的多孔结构产生明显的影响。

    图4反映了电解池三电极体系中生物炭/聚苯胺/热熔胶复合电极的电化学性能。以1 cm2的铂片作为辅助电极,以Ag/AgCl作为参比电极,将制备得到BPP 5:1:4和BPP 5:1:5的复合电极分别连接在电极夹上作为工作电极。所有的电化学性能测试均是在1 mmol·L−1 铁氰化钾混合溶液(0.1 mol·L−1 KCl)中完成。

    图 4  不同生物炭/聚苯胺/热熔胶复合比例电极电化学分析
    Figure 4.  Electrochemical analysis of electrodes with different composite ratios of biochar/polyaniline/hot melt adhesive

    图4(a)所示,BPP 5:1:4材料在-0.8~0.8 V内的电流为0.305~-0.879 9 mA,且CV曲线有2对微弱的氧化还原峰;而BPP 5:1:5材料的电流为0.154~-0.546 mA,CV曲线没有氧化还原峰。材料氧化还原峰越多越明显,材料的电子传递能力越好[22],因此,BPP 5:1:4材料比BPP 5:1:5材料具有更良好的电子传递能力,更易促进氧化还原反应。

    交流阻抗(EIS)曲线如图4(b)所示,其中,正弦信号频率为0.01~105 Hz,交流振幅为0.006。MFC中EIS的表征大多用于分析欧姆内阻和扩散内阻,由于低频区对扩散内阻的表征存在较大偏差,所以在数据拟合过程中未将低频区部分纳入拟合范围[23]。本次拟合使用软件Zview2,等效电路模型中RΩ为欧姆内阻,Rct为电荷转移内阻,电荷转移内阻与一个双电层电容并联,但因弥散效应的存在,该电容偏离理想双电层电容器,因而在本次拟合电路中使用常相位角原件代替传统双电层电容器。根据拟合结果,BPP 5: 1: 4欧姆内阻为37.17 Ω,电荷转移内阻为1 854 Ω,BPP 5:1:5欧姆内阻为46.54 Ω,电荷转移内阻为343 Ω。总的来看,Rct均大于RΩ,说明MFC系统内组主要受Rct控制。就Rct而言,BPP 5:1:4小于BPP 5:1:5,Rct主要反映电活性微生物与电极之间电子传递过程的内阻[24]Rct越小,其电子传递速率越快,因此,BPP 5:1:4生物电化学活性优于BPP 5:1:5。

    本研究组前期筛选出的异养硝化-好氧反硝化菌[16],通过扩大培养后,接种到异养硝化与好氧反硝化培养基中。由图5可见,在好氧反硝化、异养硝化培养基中菌株不断进行自我繁殖,并消耗培养基中的硝酸根与氨氮。这说明实验接种的微生物具有好氧反硝化与异养硝化能力,后续实验将采用此细菌做为MFC的产电菌。

    图 5  接种脱氮菌的性能
    Figure 5.  Performance of inoculated denitrification bacteria

    实验构建单室MFC反应器,将脱氮菌株接种至MFC反应器中,连接不同条件下制备的改性核桃壳基生物炭电极材料,每5 min对MFC输出电流电压进行实时监控,其产电性能、功率密度与极化曲线如图6所示。

    图 6  不同生物炭/氯化锌质量比条件下制备的电极材料
    Figure 6.  Electrode materials prepared at different biochar/zinc chloride mass ratios

    在真空煅烧温度为600 ℃,BPP为5:1:4的条件下,考察了不同浓度氯化锌对产电性能的影响,结果如图6(a)和图6(b)所示。当生物炭/氯化锌质量比为5:1时,MFC电极最大输出电压为0.103 V,随外电阻由大到小变化,反应器极化曲线电压由133 mV降至16 mV,最大体积功率为26 mW·m−3,电流密度为259 mW·m−3;当生物炭/氯化锌质量比为5:3时,最大输出电压为0.137 V,随外电阻由大到小变化,反应器极化曲线电压由171 mV降至28 mV,最大体积功率为51 mW·m−3,电流密度为406 mA·m−3;当生物炭/氯化锌质量比为5:5时,MFC电极最大输出电压为0.148 V,随外电阻由大到小变化,反应器极化曲线电压由181 mV降低至31 mV,最大功率密度为61 mW·m−3,电流密度为438 mA·m−3。根据极化曲线斜率可以得出MFC电极电阻,斜率越小MFC的内阻越大[25]。随着ZnCl2质量比的增加,MFC的产电能力增加,内阻逐渐减小,电极材料的产电性能越好。当生物炭/氯化锌质量比从5:3提升到5:5,MFC的产电性能提升不大,可能原因是ZnCl2对生物炭的造孔能力几乎达到饱和[26]

    在BPP为5:1:4,生物炭/氯化锌比为5:3条件下,考察了煅烧温度对电极性能的影响,结果如图7(a)和图7(b)所示。在400 ℃煅烧条件下,MFC电极最大输出电压为0.096 V,随外电阻由大到小变化,反应器极化曲线电压由119 mV降低至17 mV,最大功率密度为22 mW·m−3,电流密度为238 mA·m−3;在600 ℃煅烧条件下,最大输出电压为0.137 V,随外电阻由大到小变化,反应器极化曲线电压由171 mV降低至28 mV,最大体积功率为51 mW·m−3,电流密度为406 mA·m−3;在800 ℃煅烧条件下,MFC电极最大输出电压为0.143 V,随外电阻由大到小变化,反应器极化曲线电压由181 mV降低至29 mV,最大功率密度约为57 mW·m−3,此时的电流密度为436 mA·m−3。随着煅烧温度的增加,MFC的产电能力增加,内阻逐渐减小,电极材料的产电性能越好。结合图2可知,这是由于材料石墨化程度的增加,导致MFC的内阻减小。由图7可见,在600 ℃和800 ℃条件下,制备的电极性能相差不大。由此可见,当煅烧温度达到一定程度,MFC的产电性能提升不大,可能的原因是温度的增加破坏了部分生物炭的微孔和大孔,虽然生物炭石墨化程度增加,但是微生物的负载量减少[27]

    图 7  不同煅烧温度条件下制备的电极材料
    Figure 7.  Electrode materials prepared at different calcination temperatures

    在生物炭/氯化锌比为5:3,真空煅烧温度为600 ℃条件下,考察了不同材料复合情况对电极产电性能的影响,结果如图8(a)和图8(f)所示。当生物炭/聚苯胺/热熔胶复合比例为5:1:4时,最大输出电压为0.137 V,随外电阻由大到小变化,反应器极化曲线电压由171 mV降至28 mV,最大体积功率为51 mW·m−3,电流密度为406 mA·m−3;当生物炭/聚苯胺/热熔胶复合比例为5:1:5时,最大输出电压为0.077 V,随外电阻由大到小变化,反应器极化曲线电压由100 mV降至13mV,最大体积功率为16 mW·m−3,电流密度为176 mA·m−3。由此可见,生物炭的含量对复合材料有显著影响。结合图3可知,在保证材料成型的前提下,生物炭含量越高,MFC的内阻越小,材料的产电性能越好[28]

    图 8  不同BPP条件下制备的电极材料
    Figure 8.  Electrode materials prepared at different BPP conditions

    根据以上结果,确认电极制备的最佳条件为BPP 5:1:4、煅烧温度600 ℃、生物炭/氯化锌比5:3时,即节约了生产成本,又达到最大产电量的90%,为减少对环境的污染,选用此种方法制备的电极材料用来探讨改性核桃壳生物炭电极材料用于MFC反应器降解污染物的长期效果,结果如图9所示。可以看出,随着时间的推移,MFC中出水COD由685 mg·L−1降至100 mg·L−1。第1天时,出水COD大幅下降,这说明微生物在反应初期消耗废水中大量有机物用于增殖。随着微生物增殖所需能量减少,有机物需求也逐渐减少,最终COD稳定去除率为85%。出水氨氮质量浓度由38 mg·L−1降低至4.5 mg·L−1,在第4天达到稳定,改性核桃壳生物炭MFC对氨氮的去除率最终达到88%。水体中的硝氮在7 d内先上升后下降,可以看出硝化菌株产生的硝态氮会被好氧反硝化菌株利用,MFC具有较好的脱硝态氮能力。

    图 9  改性核桃壳生物炭MFC处理模拟废水中污染物的去除效果
    Figure 9.  Removal effect of pollutants in simulated wastewater treated by modified walnut shell biochar MFC

    1) MFC电极的最佳制备条件:活化时生物炭/氯化锌质量比5:3,真空煅烧温度为600 ℃,生物炭/聚苯胺/热熔胶复合电极比例为5:1:4,应用于MFC中最大的体积功率密度可达51 mW·m−3,对模拟废水中COD和氨氮的去除率分别为85%和88%。

    2)相较于传统生物炭电极在水体中易碎,通过复合聚苯胺与热熔胶来制作生物炭电极可以在模拟废水中稳定运行。

    3)用核桃壳生物炭通过简单的过程制备的MFC电极,为成本低廉,绿色清洁,操作简单的MFC发展方向提供了新的选择。

  • 图 1  铁尾矿的XRD分析图谱

    Figure 1.  XRD analysis of iron tailings

    图 2  烧结砖抗压强度随温度的变化

    Figure 2.  Compressive strength of sintered bricks with temperature

    图 3  烧结砖吸水率随温度的变化

    Figure 3.  Water absorption of sintered brick with temperature

    图 4  烧结砖的重金属浸出

    Figure 4.  Leaching of heavy metals from sintered bricks

    图 5  不同温度下烧结砖的重金属形态分布特征

    Figure 5.  Distribution characteristics of heavy metals in sintered bricks at different temperatures

    图 6  烧结砖的孔径和孔容积

    Figure 6.  Pore size and pore volume of sintered brick

    图 7  不同温度下烧结砖的物相结构

    Figure 7.  Phase structure of sintered brick at different temperatures

    图 8  不同温度下烧结砖的SEM-EDS图

    Figure 8.  SEM-EDS images of sintered brick at different temperatures

    表 1  烧结砖原料质量分数

    Table 1.  Mass fraction of raw materials to sintered bricks %

    样品编号铁尾矿粉煤灰废玻璃
    G060400
    G10603010
    G20602020
    G30601030
    样品编号铁尾矿粉煤灰废玻璃
    G060400
    G10603010
    G20602020
    G30601030
    下载: 导出CSV

    表 2  原料化学组成(以质量分数计)

    Table 2.  Chemical composition of raw materials (calculated by mass fraction) %

    供试原料Fe2O3SiO2Al2O3K2ONa2O其他
    铁尾矿53.7828.1313.330.863.90
    粉煤灰6.3657.0125.332.930.887.49
    废玻璃0.1791.702.350.125.120.54
      注:—为未检出。
    供试原料Fe2O3SiO2Al2O3K2ONa2O其他
    铁尾矿53.7828.1313.330.863.90
    粉煤灰6.3657.0125.332.930.887.49
    废玻璃0.1791.702.350.125.120.54
      注:—为未检出。
    下载: 导出CSV

    表 3  铁尾矿中重金属含量

    Table 3.  Heavy metal concentration in iron tailings mg·kg−1

    CuPbZnCrCd
    2 814.921 992.121 712.3363.2610.84
    CuPbZnCrCd
    2 814.921 992.121 712.3363.2610.84
    下载: 导出CSV
  • [1] 张彪, 姜春志. 铁尾矿资源综合利用及研究进展[J]. 中国金属通报, 2020(11): 68-69. doi: 10.3969/j.issn.1672-1667.2020.10.035
    [2] XU D, FAN J, ZHANG C, et al. A critical review on environmental implications, recycling strategies, and ecological remediation for mine tailings[J]. Environmental Science and Pollution Research, 2019, 26(35): 35657-35669. doi: 10.1007/s11356-019-06555-3
    [3] 勾密蜂, 王思军, 郝中晶, 等. 铝土矿浮选尾矿对水泥砂浆性能的影响[J]. 环境工程学报, 2016, 10(9): 5185-5190. doi: 10.12030/j.cjee.201503250
    [4] LI S, WU J, LUO Y, et al. Profiling multiple heavy metal contamination and bacterial communities surrounding an iron tailing pond in Northwest China[J]. Science of the Total Environment, 2020, 752: 141827.
    [5] ZHANG X, YANG H, CUI Z, et al. Migration and speciation of heavy metal in salinized mine tailings affected by iron mining[J]. Water Science and Technology, 2017, 76(7): 1867-1874. doi: 10.2166/wst.2017.369
    [6] KUMAR R, DAS P, BEULAH M, et al. Utilization of iron ore tailings for the production of fly ash-GGBS-based geopolymer bricks[J]. Journal of Advanced Manufacturing Systems, 2017, 16(3): 257-290.
    [7] KURANCHIE F, FRANCIS A, SHUKLA S, et al. Utilization of iron ore mine tailings for the production of geopolymer bricks[J]. International Journal of Mining, Reclamation and Environment, 2016, 30(2): 92-114.
    [8] 严捍东, 陈秀峰. 粉煤灰和铁尾矿对烧结海泥多孔砖泛霜程度的影响[J]. 环境工程学报, 2012, 6(8): 2846-2852.
    [9] LUO L, LI K, WEN F, et al. Preparation, characteristics and mechanisms of the composite sintered bricks produced from shale, sewage sludge, coal gangue powder and iron ore tailings[J]. Construction and Building Materials, 2020, 232: 117250. doi: 10.1016/j.conbuildmat.2019.117250
    [10] LI W, LEI G, XU Y, et al. The properties and formation mechanisms of eco-friendly brick building materials fabricated from low-silicon iron ore tailings[J]. Journal of Cleaner Production, 2018, 204: 685-692. doi: 10.1016/j.jclepro.2018.08.309
    [11] VORRADA L, THANAPAN P, KANYARAT K, et al. Effects of recycled glass substitution on the physical and mechanical properties of clay bricks[J]. Waste Management, 2009, 29(10): 2717-2721. doi: 10.1016/j.wasman.2009.05.015
    [12] NONTHAPHONG P, SIWADOL K, SIWADOL C, et al. Utilization of waste glass to enhance physical-mechanical properties of fired clay brick[J]. Journal of Cleaner Production, 2016, 112: 3057-3062.
    [13] URE A, QUEVAUVILER P, MUNTAU H, et al. Speciation of heavy metals in soils and sediments: An account of the improvement and harmonization of extraction techniques undertaken under the auspices of the BCR of the commission of the European Communities[J]. International Journal of Environmental Analytical Chemistry, 1993, 51(1/2/3/4): 135-151. doi: 10.1080/03067319308027619
    [14] 国家环境保护总局. 固体废物浸出毒性浸出方法醋酸缓冲溶液法: HJ/T 300-2007[S]. 北京: 中国环境科学出版社, 2007.
    [15] ZHANG S, XUE X, LIU X, et al. Current situation and comprehensive utilization of iron ore tailing resources[J]. Journal of Mining Science, 2006, 42(4): 403-408. doi: 10.1007/s10913-006-0069-9
    [16] CHEN Y, ZHANG Y, CHEN T, et al. Preparation of eco-friendly construction bricks from hematite tailings[J]. Construction and Building Materials, 2011, 25: 2107-2111. doi: 10.1016/j.conbuildmat.2010.11.025
    [17] 陈永亮, 张一敏, 陈铁军, 等. 温度制度对尾矿烧结砖性能及结构的影响[J]. 硅酸盐通报, 2010, 29(6): 1343-1347.
    [18] WANG G, NING X, LU X, et al. Effect of sintering temperature on mineral composition and heavy metals mobility in tailings bricks[J]. Waste Management, 2019, 93: 112-121. doi: 10.1016/j.wasman.2019.04.001
    [19] 张海英, 赵由才, 祁景玉. 垃圾焚烧飞灰对陶瓷砖烧成影响的研究[J]. 环境工程学报, 2010, 4(12): 2865-2869.
    [20] MAO L, WU Y, ZHANG W, et al. The reuse of waste glass for enhancement of heavy metals immobilization during the introduction of galvanized sludge in brick manufacturing[J]. Journal of Environmental Management, 2019, 231: 780-787.
    [21] YU S, YOSHIMURA M. Direct fabrication of ferrite MFe2O4 (M=Zn, Mg)/Fe composite thin films by soft solution processing[J]. Chemistry of Materials, 2000, 12(12): 3805-3810. doi: 10.1021/cm000691y
    [22] LU X, SHIH K. Phase transformation and its role in stabilizing simulated lead-laden sludge in aluminum-rich ceramics[J]. Water Research, 2011, 45(16): 5123-5129. doi: 10.1016/j.watres.2011.07.015
    [23] 中华人民共和国国家环境保护总局. 危险废物鉴别标准浸出毒性鉴别: GB 5085.3-2007[S]. 北京: 中国环境科学出版社, 2007.
    [24] CULTRONE G, CARRILLO R, FRANCISCO J. Growth of metastable phases during brick firing: Mineralogical and microtextural changes induced by the composition of the raw material and the presence of additives[J]. Applied Clay Science, 2020, 185: 10519.
    [25] XU H, SONG W, CAO W, et al. Utilization of coal gangue for the production of brick[J]. Journal of Material Circulation and Waste Management, 2017, 19(3): 1270-1278.
  • 加载中
    Created with Highcharts 5.0.7访问量Chart context menu近一年内文章摘要浏览量、全文浏览量、PDF下载量统计信息摘要浏览量全文浏览量PDF下载量2024-052024-062024-072024-082024-092024-102024-112024-122025-012025-022025-032025-040Highcharts.com
    Created with Highcharts 5.0.7Chart context menu访问类别分布DOWNLOAD: 1.7 %DOWNLOAD: 1.7 %HTML全文: 86.0 %HTML全文: 86.0 %摘要: 12.2 %摘要: 12.2 %DOWNLOADHTML全文摘要Highcharts.com
    Created with Highcharts 5.0.7Chart context menu访问地区分布其他: 94.9 %其他: 94.9 %XX: 3.3 %XX: 3.3 %上海: 0.1 %上海: 0.1 %中卫: 0.0 %中卫: 0.0 %佳木斯: 0.0 %佳木斯: 0.0 %北京: 0.7 %北京: 0.7 %呼和浩特: 0.0 %呼和浩特: 0.0 %天津: 0.1 %天津: 0.1 %孝感: 0.0 %孝感: 0.0 %安康: 0.0 %安康: 0.0 %曲靖: 0.0 %曲靖: 0.0 %济南: 0.1 %济南: 0.1 %海口: 0.0 %海口: 0.0 %海得拉巴: 0.0 %海得拉巴: 0.0 %深圳: 0.1 %深圳: 0.1 %玉林: 0.0 %玉林: 0.0 %菏泽: 0.0 %菏泽: 0.0 %赣州: 0.0 %赣州: 0.0 %郑州: 0.0 %郑州: 0.0 %银川: 0.0 %银川: 0.0 %阳泉: 0.0 %阳泉: 0.0 %其他XX上海中卫佳木斯北京呼和浩特天津孝感安康曲靖济南海口海得拉巴深圳玉林菏泽赣州郑州银川阳泉Highcharts.com
图( 8) 表( 3)
计量
  • 文章访问数:  4928
  • HTML全文浏览数:  4928
  • PDF下载数:  55
  • 施引文献:  0
出版历程
  • 收稿日期:  2020-12-24
  • 录用日期:  2021-04-03
  • 刊出日期:  2021-05-10
周伟伦, 廖正家, 陈涛, 宁寻安, 王逸, 谢鸿智. 利用铁尾矿制备烧结砖的可行性及烧结固化机理[J]. 环境工程学报, 2021, 15(5): 1670-1678. doi: 10.12030/j.cjee.202012132
引用本文: 周伟伦, 廖正家, 陈涛, 宁寻安, 王逸, 谢鸿智. 利用铁尾矿制备烧结砖的可行性及烧结固化机理[J]. 环境工程学报, 2021, 15(5): 1670-1678. doi: 10.12030/j.cjee.202012132
ZHOU Weilun, LIAO Zhengjia, CHEN Tao, NING Xunan, WANG Yi, XIE Hongzhi. Feasibility of using iron tailings to prepare sintering brick and sintering solidification mechanism[J]. Chinese Journal of Environmental Engineering, 2021, 15(5): 1670-1678. doi: 10.12030/j.cjee.202012132
Citation: ZHOU Weilun, LIAO Zhengjia, CHEN Tao, NING Xunan, WANG Yi, XIE Hongzhi. Feasibility of using iron tailings to prepare sintering brick and sintering solidification mechanism[J]. Chinese Journal of Environmental Engineering, 2021, 15(5): 1670-1678. doi: 10.12030/j.cjee.202012132

利用铁尾矿制备烧结砖的可行性及烧结固化机理

    通讯作者: 宁寻安(1967—),男,博士,教授。研究方向:固体废物处理处置。E-mail:ningxunan666@126.com
    作者简介: 周伟伦(1996—),男,硕士研究生。研究方向:尾矿无害化及资源化利用。E-mail:294794893@qq.com
  • 1. 广东工业大学环境科学与工程学院,广州 510006
  • 2. 广东省环境催化与健康风险控制重点实验室,环境健康与污染控制研究院,广州 510006
  • 3. 广东省大宝山矿业有限公司,韶关 512127
基金项目:
2017年土壤中央专项资金-大宝山尾矿无害化处理及综合利用前期研究项目(18HK0108)

摘要: 针对铁尾矿综合利用率低的问题,利用铁尾矿、粉煤灰、废玻璃制备烧结砖,以提高铁尾矿综合利用率。通过抗压强度、吸水率和重金属浸出3方面评价烧结砖的性能,确定最佳烧结工艺条件;并通过重金属形态分布、孔径分析、XRD和SEM探究烧结砖的固化机理。结果表明,在最佳条件烧结温度为1 100 ℃、铁尾矿、粉煤灰、玻璃配为6∶2∶2的条件下,烧结砖的抗压强度为124 MPa,吸水率为4.6%。最佳条件下烧结砖的Cu、Pb、Zn重金属浸出浓度均低于标准阈值。当烧结温度从900 ℃上升到1 200 ℃,Cu、Pb和Zn的残渣态占比均有所上升,孔容积从0.019 cm3·g−1下降到了0.001 cm3·g−1,平均孔径从22.1 nm下降到了9.3 nm。物相分析结果表明,在烧结过程中,高岭石相和石英相的特征峰降低,莫来石相的特征峰升高。上述结果可以为铁尾矿制备烧结砖提供数据参考。

English Abstract

  • 2018年,我国铁尾矿产生量为4.76×108 t,约占全国尾矿产生量的40%。相比较其他种类尾矿,铁尾矿占比最大[1]。而目前铁尾矿的综合利用率却不足30%,远低于发达国家[2]。在我国,铁尾矿主要储存方式为露天堆放,这样不仅有溃坝的风险[3],而且还可能会对周边水体造成污染[4-5]。因此,铁尾矿堆放处理对环境造成的污染问题不容小觑,亟需解决。

    铁尾矿对环境造成危害的同时也是一种“放错地方的资源”。铁尾矿中含有大量的SiO2、Al2O3、Fe2O3,这与黏土的成分十分相似,可以代替黏土用作烧结砖的原料。已有大量研究[6-10]证实了铁尾矿制备烧结砖的可行性。严捍东等[8]分别利用铁尾矿、粉煤灰和海泥制备出多孔烧结砖;其结果表明,与粉煤灰相比,铁尾矿更利于减缓烧结砖的泛霜程度。LUO等[9]利用铁尾矿、煤矸石等作为主要原料,并用污泥和页岩作为黏结剂制备烧结砖;结果表明,在烧结温度1 100 ℃、烧结时间3 h的最佳条件下,烧结砖的抗压强度为14.24 MPa、吸水率为17.47%。有研究结果[11-12]表明,将废玻璃加入到烧结砖中会极大地提高黏土烧结砖的力学强度。VORRADA等[11]发现,向黏土砖中添加废弃玻璃,在一定范围内会提高烧结砖的力学强度;在温度为1 100 ℃、玻璃添加量为15%的条件下,会提高2~3倍的力学强度,吸水率可降低至2%~3%。这些研究多数关注在烧结砖力学性能的研究上,而忽略了烧结砖中重金属释放到环境中的潜在风险,特别是对于含有较高重金属的铁尾矿。重金属在烧结砖中的形态分布和浸出特性的问题值得关注。

    本研究中,利用铁尾矿、废玻璃和粉煤灰制备烧结砖,以探究其可行性。研究不同温度和配比条件对烧结砖性能的影响和重金属的浸出风险;并研究了在烧结过程中的重金属形态分布、孔径分析、XRD和SEM,以揭示烧结砖的固化机理。本研究结果可为铁尾矿的资源化利用提供数据参考。

  • 供试铁尾矿来自广东省大宝山槽对坑尾矿库,铁尾矿样品置于烘箱中105 ℃烘干,利用行星式球磨机(QM-3SP2,南京南大仪器有限公司)进行球磨,过200目标准筛后储存于密封袋中,置于干燥器中储存。供试废玻璃为高硼硅玻璃,利用球磨机进行球磨,过200目标准筛后储存于密封袋中,置于干燥器中储存。供试粉煤灰来自广东省某燃煤发电厂,粉煤灰样品在烘箱中105 ℃烘干至恒重后,置于干燥器中储存。

  • 将铁尾矿、粉煤灰和废玻璃按照表1的比例进行充分混合,加入去离子水使得胚料含水率为10%。将胚料放在钢模具内,利用压片机使胚料成型,成型压力为15 MPa。成型后的砖胚置于105 ℃烘箱中,干燥24 h;然后将砖胚置于马弗炉中,设定升温速率为5 ℃·min−1,升温至特定温度(900、1 000、1 100、1 200 ℃),保温时间为2 h。

  • 将烧结砖样品浸泡在超纯水中,浸泡24 h后取出,用滤纸擦干样品表面,称量样品吸水后的质量,烧结砖样品的吸水率按照式(1)计算。

    式中:w是烧结砖的吸水率;m1是烧结砖未浸泡前的质量,g;m2是烧结砖浸泡后取出并擦干的质量,g。

  • 1)采用X射线荧光光谱(XRF)(EDX-7000,日本岛津公司)测定原料中的主要化学成分。

    2)原料重金属含量的测定。取0.1 g样品于消解罐中,加入40%氢氟酸2 mL、35%浓盐酸2 mL和65%硝酸6 mL,于微波消解仪中进行消解;消解完成后赶酸,用超纯水稀释至25 mL,利用火焰原子吸收分光光度计(TAS-990F,北京普析通用仪器有限公司)测定总的重金属含量。

    3)物相结构分析。采用X射线衍射仪(XRD)(Bruker D8,德国布鲁克公司)进行物相结构分析;扫描角度为10°~80°、步长为0.02°、计数时间为0.03 s。

    4)抗压强度。采用万能材料试验机(Instron 5697,美国Instron)测试样品的抗压强度,以式(2)计算烧结砖的抗压强度。

    式中:p是烧结砖的抗压强度,MPa;F是测量受力面所承受最大的压力,N;A是受力面的面积,mm2

    5)重金属形态分析。烧结砖中的重金属形态分析采用欧共体标准物质局的BCR顺序提取法[13],分为4个形态:弱酸提取态、可还原态、可氧化态、残渣态。

    6)孔径分析。采用全自动比表面及孔隙度分析仪(TriStar II 3flex,美国麦克仪器公司)进行孔径分析;以N2作为吸附气体,脱气温度为150 ℃、脱气时间为2 h,采用BJH分析模型处理数据。

    7)扫描电镜分析。采用电子扫描电镜(Sigma 300,德国蔡司仪器公司)观察样品微观形貌;利用X射线能谱仪(XFlash6,德国布鲁克公司)做EDS分析。

    8)重金属浸出浓度测定。烧结砖重金属浸出浓度通过《固体废物浸出毒性浸出方法-醋酸缓冲溶液法》(HJ/T 300-2007)[14]进行;在样品管中加入1 g样品和20 mL醋酸缓冲溶液,放入翻转式振荡器中以30 r·min−1的转速翻转18 h;翻转完成后,再通过0.45 μm滤膜过滤,用火焰原子吸收分光光度计测定样品浸出液中重金属(Cu、Pb、Zn)的浓度。

  • 供试铁尾矿外观呈红色的颗粒状,平均粒径为189.24 μm,粒径较小。表2为铁尾矿、粉煤灰、废玻璃的化学组成。通过表2可知,铁尾矿主要化学成分有Fe2O3、SiO2、Al2O3,这些成分的含量与国内外其地区铁尾矿的成分相似[15]。CHEN等[16]指出,铁尾矿中的Fe2O3成分在制备烧结砖的过程中有促进烧结的作用,可以降低烧结砖的烧成温度。粉煤灰中含有大量的SiO2、Al2O3硅铝氧化物,可弥补铁尾矿低硅、低铝的缺点;粉煤灰还含有少部分K2O、Na2O等碱性金属氧化物,因而有助熔的作用。废玻璃的主要成分为SiO2和Na2O,在体系中可以起到黏结作用。另外,从铁尾矿的XRD分析图谱(图1)可以看出,铁尾矿中的主要矿物组成为石英、赤铁矿和高岭石。

    表3可以看出,铁尾矿中重金属种类较多,含量差异较大,是典型的多金属伴生尾矿。其中,Cu、Zn、Pb的含量较高,长期露天堆放会对环境造成隐患。

    通过对3种制砖原料理化性质的分析可初步判断,铁尾矿结合粉煤灰、废玻璃制备烧结砖是具有可行性的。

  • 1)烧结砖的抗压强度。抗压强度测试是重要的力学强度指标,可以反映烧结砖承受压缩载荷的能力。图2结果表明,在900~1 100 ℃的条件下,各配比烧结砖的抗压强度均随着烧结温度的上升而增加。在900和1 000 ℃条件下,废玻璃含量对烧结砖抗压强度的影响较为明显。其原因在于,在温度低于1 000 ℃时,铁尾矿与粉煤灰间未发生反应,矿物骨架未形成,导致砖体结构松散[17]。但在此条件下,废玻璃已经达到软化温度,以流动相的形式存在于胚料中,冷却后将铁尾矿和粉煤灰胶结在一起。因此,温度低于1 000 ℃条件下烧结砖主要的力学强度都由玻璃提供[18]。随着烧结温度继续上升至1 000~1 100 ℃,铁尾矿和粉煤灰开始发生反应,烧结砖中的骨架结构形成;废玻璃进一步填充了骨架结构中的孔隙,并进一步提高了烧结砖的力学强度。此条件下所制备烧结砖的力学强度由矿物骨架和废玻璃共同提供。而在1 200 ℃的条件下,烧结砖出现过烧现象[19],呈现较深的红色。此时,砖胚出现膨胀、变形现象,抗压强度出现下降趋势。这是因为,过高的温度破坏了烧结砖的结构。在烧结温度过高或保温时间过长的条件下,烧结砖会形成大量的熔融体,烧结砖中的骨架结构被破坏,导致冷却后出现膨胀、变形的情况,从而降低了砖体的抗压强度。

    2)烧结砖的吸水率。吸水率可反映烧结砖的内部结构情况。从图3可以看出,在相同配比情况下,烧结砖的吸水率随着烧结温度上升而降低。在900 ℃下,各配比烧结砖的吸水率均在15%以上;而随着烧结温度上升至1 200 ℃,吸水率最低为1.3%。这说明,升高温度有助于烧结砖内部的致密化。在烧结过程中,烧结砖内部的气孔逐渐缩小,内部结构趋于致密化。在相同的烧结温度条件下,吸水率会随着废玻璃含量的增加而降低。

    3)烧结砖的重金属浸出毒性。从图4中可以看出,烧结温度在900~1 000 ℃时,烧结砖中Cu、Pb、Zn的浸出浓度会随着废玻璃含量的增加而明显下降。MAO等[20]发现,玻璃在高温条件下的成型过程中会把重金属离子有效地包裹起来,形成玻璃体。当温度到达1 100~1 200 ℃,玻璃含量对重金属浸出的影响极小。这是因为,此时重金属间发生反应主要以稳定的结晶相形式存在,只有较少的重金属以不稳定的形式存在。

    Cu、Pb、Zn的浸出浓度均随着烧结温度的上升而减小,最终在1 100 ℃趋于稳定。从图4(a)(c)中可以看出,Cu和Zn在浸出特征上出现相似的规律;在温度为900 ℃时,重金属浸出浓度都较高,最高可达1.5 mg·L−1。在温度为900~1 000 ℃,3种重金属的浸出浓度下降均超过50%。有研究者[21]发现,Zn和Fe2O3在热反应过程中,可能会形成尖晶石结构ZnFe2O4,从而增加Zn的稳定性,不易被浸出。从图4(b)可以看出,Pb的浸出浓度随着温度的上升而下降。当温度为900时,Pb浸出浓度不足0.6 mg·L−1,远低于Cu和Zn的浸出浓度。这说明,当温度低于900 ℃的条件下,Pb比Cu和Zn更早地发生了固化反应。PbO在700 ℃的条件下,会与Al2O3发生化学反应,生成抗酸蚀能力强的PbAl2O4,从而抵制外界的酸性环境[22]。烧结砖中Cu、Pb、Zn的浸出浓度随烧结温度的升高均呈现降低的趋势。这说明,烧结过程对重金属的固化起到了积极作用,降低了重金属的释放风险。本研究制得的烧结砖中,重金属浸出浓度均低于《危险废物鉴别标准 浸出毒性鉴别》(GB 5085.3-2007)[23]的限值,符合安全标准。

    综合分析抗压强度、吸水率、重金属浸出3个方面,采取G20作为最佳配比进行后续实验,以研究烧结过程中烧结砖的重金属形态分布变化、孔隙结构变化、物相结构的转化和微观形貌的变化。

  • 1)烧结砖的重金属形态分布。重金属的形态分布影响着烧结砖的浸出毒性与安全性;同时,也是影响重金属迁移转化能力强弱的重要因素。BCR法把重金属形态分为4种形态:弱酸提取态,是最容易提取的状态,与生物的毒性作用呈正相关;可还原态,是离子键结合的形态;可氧化态,只有在强氧化的条件下才会被释放的状态;残渣态,存在于矿物结晶相中,十分稳定,对生物的毒性作用最小。

    图5为G20配比在烧结过程中的重金属各形态分布变化。在温度为900 ℃的条件下,Pb和Cu的稳定性较差,Pb的形态分布为弱酸提取态13.56%、可还原态14.49%、可氧化态25.79%、残渣态46.16%。Cu形态分布为弱酸提取态23.26%、可还原态7.97%、可氧化态20.79%、残渣态47.98%。Pb和Cu的形态特征非常类似,残渣态均不足50%。随着烧结温度的上升,Pb和Cu的残渣态占比上升至81.55%和82.80%。与Pb和Cu相比,Zn的稳定性较好,在900 ℃下,主要形态为残渣态(72.82%)。这说明,Zn主要以结晶相的形式存在,稳定性较好。随着烧结温度上升,Zn的形态转化没有Pb和Cu明显,迁移性较差,因而更稳定。结合图4图5进行综合分析可知,残渣态占比的上升往往伴随着重金属浸出浓度的下降。这说明重金属在烧结固化过程中,以结晶相的形式而稳定下来。

    2)烧结砖的孔隙结构变化。孔容积和孔径大小可以反映烧结砖内部的孔隙结构。图6(a)为G20配比烧结砖在烧结过程中孔容积和孔径大小的变化情况。烧结温度对孔容积的影响较为明显。在温度为900 ℃的条件下,孔容积最大,达到了0.019 cm3·g−1;而当温度上升至1 000 ℃时,孔容积迅速下降至0.004 5 cm3·g−1。随着温度继续升高到1 100 ℃,孔容积进一步下降到0.001 1 cm3·g−1;当温度到达1 200 ℃时,孔容积下降到0.001 cm3·g−1。这说明,当烧结温度为900 ℃时,烧结砖内部存在大量的孔隙结构;而随着温度的升高,孔隙结构逐渐减少,趋于致密化。

    孔径大小随着温度的升高而降低,当烧结温度为900 ℃时,孔径大小为22.1 nm;而随着温度上升至1 200 ℃,孔径最终降低至9.3 nm。从图6(b)可以看到,废玻璃含量的增加也会降低孔径大小和孔容积。相比较于图6(a)图6(b)中孔容积和孔径大小的变化并不显著。综合分析可知,温度对孔径大小的影响大于废玻璃含量对孔径大小的影响。孔容积和孔径大小的变化趋势与吸水率的变化趋势一致。这说明,孔隙结构可能是影响吸水率大小的内部因素。孔径结构也会影响重金属浸出的反应过程。这是因为,较小的孔径会阻碍浸出液与重金属离子间的接触,而松散的结构则有利于重金属的释放。

    3)烧结砖的物相结构变化。图7为G20配比烧结砖在烧结过程中物相结构的变化。从图7中可以看出,烧结砖主要矿物相为高岭石、石英、莫来石和赤铁矿。烧结砖中的赤铁矿相在烧结过程中并未发生明显变化。高岭石和石英的特征峰随着烧结温度上升而降低,莫来石相的特征峰随着烧结温度的上升而升高。有研究者发现[24-25],烧结砖的结构主要是在烧结条件下形成了莫来石晶相结构。因此可推测,在本研究中的烧结过程中,石英相与高岭石相反应生成了莫来石相。莫来石相是一种常见的硅铝酸盐结构,硬度、强度等力学性能较优异,可以有效地增加烧结砖的抗压强度。

    4)烧结砖的微观形貌变化。图8展现了烧结砖在烧结过程中的微观形貌变化。图8(a)显示了900 ℃下烧结砖的微观形态,可以看出,其表面粗糙,有许多大小不一的球形颗粒离散地分布在烧结砖表面。这说明,此时物料间还未开始发生反应,颗粒间的空隙较大。由图8(b)~图8(d)可以看出,随着烧结温度从1 000 ℃升高到1 200 ℃,离散的颗粒不断减少,颗粒间的空隙变小,孔径不断变小。由此可知,烧结过程是一个内部结构致密化的过程,烧结温度的上升会降低孔径大小。经过图8(e)EDS表征,可确定烧结砖结构主要由Si、Al、O元素组成。这说明,烧结砖中矿物骨架结构主要为硅铝酸盐结构。综合XRD结果(图7)可知,烧结砖的物相结构中,只有莫来石相是硅铝酸盐结构。因此推测,图8烧结砖中的硅铝酸盐结构有可能是莫来石结构。

  • 1)在烧结温度为1 100 ℃、玻璃含量为20%的最优条件下,烧结砖的抗压强度可达124 MPa、吸水率为4.63%;其重金属浸出浓度远低于《危险废物鉴别标准 浸出毒性鉴别》(GB 5085.3-2007)的限值。

    2)烧结砖的固化机理可能是,在烧结过程中,烧结砖内形成以莫来石相为主的硅铝酸盐结构,以导致烧结砖的孔径和孔容积不断减小,使得烧结砖孔隙结构致密化,提高了烧结砖的强度。

参考文献 (25)

返回顶部

目录

/

返回文章
返回