Loading [MathJax]/jax/output/HTML-CSS/jax.js

利用铁尾矿制备烧结砖的可行性及烧结固化机理

周伟伦, 廖正家, 陈涛, 宁寻安, 王逸, 谢鸿智. 利用铁尾矿制备烧结砖的可行性及烧结固化机理[J]. 环境工程学报, 2021, 15(5): 1670-1678. doi: 10.12030/j.cjee.202012132
引用本文: 周伟伦, 廖正家, 陈涛, 宁寻安, 王逸, 谢鸿智. 利用铁尾矿制备烧结砖的可行性及烧结固化机理[J]. 环境工程学报, 2021, 15(5): 1670-1678. doi: 10.12030/j.cjee.202012132
ZHOU Weilun, LIAO Zhengjia, CHEN Tao, NING Xunan, WANG Yi, XIE Hongzhi. Feasibility of using iron tailings to prepare sintering brick and sintering solidification mechanism[J]. Chinese Journal of Environmental Engineering, 2021, 15(5): 1670-1678. doi: 10.12030/j.cjee.202012132
Citation: ZHOU Weilun, LIAO Zhengjia, CHEN Tao, NING Xunan, WANG Yi, XIE Hongzhi. Feasibility of using iron tailings to prepare sintering brick and sintering solidification mechanism[J]. Chinese Journal of Environmental Engineering, 2021, 15(5): 1670-1678. doi: 10.12030/j.cjee.202012132

利用铁尾矿制备烧结砖的可行性及烧结固化机理

    作者简介: 周伟伦(1996—),男,硕士研究生。研究方向:尾矿无害化及资源化利用。E-mail:294794893@qq.com
    通讯作者: 宁寻安(1967—),男,博士,教授。研究方向:固体废物处理处置。E-mail:ningxunan666@126.com
  • 基金项目:
    2017年土壤中央专项资金-大宝山尾矿无害化处理及综合利用前期研究项目(18HK0108)
  • 中图分类号: X753

Feasibility of using iron tailings to prepare sintering brick and sintering solidification mechanism

    Corresponding author: NING Xunan, ningxunan666@126.com
  • 摘要: 针对铁尾矿综合利用率低的问题,利用铁尾矿、粉煤灰、废玻璃制备烧结砖,以提高铁尾矿综合利用率。通过抗压强度、吸水率和重金属浸出3方面评价烧结砖的性能,确定最佳烧结工艺条件;并通过重金属形态分布、孔径分析、XRD和SEM探究烧结砖的固化机理。结果表明,在最佳条件烧结温度为1 100 ℃、铁尾矿、粉煤灰、玻璃配为6∶2∶2的条件下,烧结砖的抗压强度为124 MPa,吸水率为4.6%。最佳条件下烧结砖的Cu、Pb、Zn重金属浸出浓度均低于标准阈值。当烧结温度从900 ℃上升到1 200 ℃,Cu、Pb和Zn的残渣态占比均有所上升,孔容积从0.019 cm3·g−1下降到了0.001 cm3·g−1,平均孔径从22.1 nm下降到了9.3 nm。物相分析结果表明,在烧结过程中,高岭石相和石英相的特征峰降低,莫来石相的特征峰升高。上述结果可以为铁尾矿制备烧结砖提供数据参考。
  • 涉重危废指含重金属的危险废物,其危险特性源于重金属的毒性,分为材料源危废和工业源危废[1-2]。涉重危废是危险废物中最为独特且极为重要的类别之一,也是《巴塞尔公约》[3]和国际社会优先关注和严格监管的大类危废类别。我国《国家危险废物名录》(2021年版)[4]包含46大类危废,其中涉重危废就有18大类。重金属的不可降解性决定了涉重危废的环境风险不能完全消除;而重金属的广泛应用及其基础材料地位又决定了涉重危废具有显著的资源属性和循环利用价值。从涉及的金属类型来看,包括铬、钼、锌、铅、锡、镉、镍、金、银、铜、钯、铍、砷、硒、碲、锑、汞、铊等各种金属,这些金属同时属于有毒、剧毒、高价、稀有、稀散、稀贵、战略储备(类)金属。从产排行业来看,包括金属冶炼生产、金属制品生产、金属加工处理、重金属基功能材料失效和废弃等全产业链。从形成机制来看,包括金属基材料/产品功能丧失的废旧和失效材料、金属生产/加工过程产生的废渣和废料以及环境污染控制生成的污泥和飞灰等。总之,涉重危废具有量大、面广、源多、物杂的产排特性[1-2]

    当前,从涉重危废中提取回收各种昂贵、高价和有价金属既是从源头控制重金属环境污染的现实需要,又是实现金属资源循环利用和保障金属资源安全供给的发展需要。涉重危废的资源化利用代表了其处理处置技术的发展方向,已得到全球固废处置与资源化领域产业界和学术界的广泛关注。面对数量巨大、结构复杂多变、环境风险突出、资源属性各异的涉重危废,怎样才能实现其科学、合理、高效、高质、高值的资源化利用?解析涉重危废产排规律和本质特性,提出金属分离提取的科学原理和工艺技术的优选原则,构建资源化利用的理论体系是实现这一目标的首要前提。

    前期工作已完成涉重危废的概念创制、提出了涉重危废资源化利用的实现路径,论证了三维属性(污染、资源和结构属性)量化描述涉重危废特性的科学性,阐述了建立基于三维属性精细化分级分类体系的重要性[1-2]。但这些前期的理论创制、概念提出和制度设计仍是孤立的、离散的、局部的、单维度的,并没有形成系统化的完整理论体系,不能科学地回答涉重危废高效、高质、高值资源化利用的问题。完整的理论体系既要有基础性概念又要有多维度体系化设计,既要解决金属提取回收技术原理问题又要解决金属提取后二次残渣利用方式和污染控制问题,既要关注掌握不同类型涉重危废产排规律又要研究建立其科学分级分类及精细化管理问题。

    涉重危废资源化理论体系包括涉重危废概念、来源及其资源化利用内涵和路径;不同行业和来源涉重危废的产排系数、产排特性和产排规律;不同行业和来源涉重危废资源属性、污染属性和结构属性及基于三维属性的精细化分级分类体系;不同类型涉重危废无害化处置和资源化利用的边际识别及其三维属性指标体系;不同类型涉重危废有价金属提取的技术原理和技术体系;脱毒“脱帽”残渣建材化利用路径选择及其产品安全和环境风险评价体系。该理论体系的构建、发展和成熟将使涉重危废处理处置这一重要细分领域由孤立的个体研究和感性经验上升到系统的科学理论,并为涉重危废资源化利用提供支撑。

    涉重危废具有突出的危害特性和独有的资源属性。涉重危废概念的创制对于该类别危废更具针对性的分类精准监管、高效处置和高值利用至关重要,对于全球重金属污染防控和金属资源安全供给意义重大,是构成本理论体系的重要基础概念之一。涉重危废指含重金属的危险废物,其危险特性源于重金属毒性。这一创制概念首次将含重金属的危险废物与其他类别危废的边际进行了科学界定,形成了涉重危废这一危险废物的重要细分领域[1]

    涉重危废概念的提出,覆盖并联通了从金属冶炼生产、金属制品加工、金属表面处理、金属产品废弃到金属循环再生的产排全过程,既凸显了这一危险废物重要细分领域的共有特性也明确了其外延。按外延性质,又可进一步将涉重危废分为材料源危废和工业源危废2类。前者指重金属基功能材料或产品失效或废弃后演变而成的危废,如废旧电池和废催化剂等[5-6];后者指重金属生产、加工、利用或环境治理过程产生的涉重危废,如电镀污泥和冶炼废渣等[7-8]

    作为危险废物的重要细分领域,涉重危废显示出相当突出的资源-环境二元属性。因此,既要对涉重危废中的有毒金属进行固化稳定化甚至脱除以消除其危害特性,又要对涉重危废中的有价金属进行提取回收以实现其资源化利用。长期以来,有价金属定义的泛化和边界不明,尤其是有价金属和有毒金属之间的复杂交错,极大地困扰着涉重危废资源-环境二元属性的精确量化评价,及对涉重危废的精准监管、高效处置和资源化利用。

    为了更精准地指导涉重危废中有价金属的回收利用及有毒金属的污染控制,本理论体系将金属/重金属进行了五分法分类[1],即:1)昂贵金属,单价100×104 元·t−1以上,包括金、银、钯、鉑、铑等;2)高价金属,单价(5~100)×104 元·t−1(以铜价为下限),包括铜、镍、钴、钼、钒等;3)低价金属,包括锌、锰、铝等;4)高毒金属,包括汞、砷、镉、铬、铅;5)无毒金属,包括钙、镁、铁、钠、钾等。金属五分法为精确反映和评价各类金属/重金属的资源回收价值和环境污染风险提供了分类学支撑,构成了本理论体系的第2个重要基础概念。

    涉重危废的资源化利用从本质上讲就是通过调节调控不同金属在溶液-残渣两相中的分配行为(湿法)或在飞灰-熔体-渣体三相中的分配行为(火法)实现目标金属的分离、提取和回收,但不同类别金属需要采取不同的分离提取策略。金属五分法为涉重危废科学合理的资源化利用奠定了分类学基础。涉重危废全量资源化利用的总体原则和实现路径为:提取回收昂贵和高价金属,脱除有毒和高毒金属,保留低价和无毒金属的脱毒残渣进行建材利用。昂贵和高价金属的提取回收实现涉重危废的高值化资源利用,脱毒残渣的建材消纳实现低价和无毒金属的低值化资源利用,有毒和高毒金属的脱除及浓缩实现涉重危废的风险集中管控。

    产排系数是指在正常技术经济和管理条件下,生产单位产品所产生或排放的污染物数量的统计平均值。产污系数是指生产单位产品所产生的原始污染物的量;排污系数是指经污染控制措施消减后排放到环境中的污染物的量。产排系数与产品类型、生产工艺、生产规模、原辅料使用、设备技术水平及污染控制措施等有关,通过现场实测、物料衡算或理论计算取得。产排系数是污染物统计、环境管理和污染治理的基础性数据[9-10]

    当前,产排系数在我国水污染和大气污染管理和防治中已发挥重要作用,但危险废物和涉重废物的产排规律、产排特性和产排系数研究基础却十分薄弱。实际上,产排系数对于危险废物和涉重危废产排总量的精确统计、涉重危废的精细管理和精准处理处置更为重要。我国的危险废物日常数据收集是采取产废单位主动申报制度,但由于危险废物高昂的处置费用和严格的管理要求,产废单位的申报数据往往存在少报、瞒报、漏报的现象,因而导致危险废物的真实产排数量难以掌握。借助科学的产排系数推算可有效甄别上报数据的真伪,有助于危险废物和涉重危废排放总量的精确掌握,从而为危险废物和涉重危废的规范管理和合理处置利用提供可靠的数据支持。

    涉重危废这一概念覆盖并联通了重金属冶炼生产、重金属制品制造、重金属加工处理、重金属基产品使用、失效及废弃等上中下游涉重全产业链条。涉重危废涉及行业众多、金属类型多样,危废形成的过程和机制也各不相同,因此,不同行业、不同类型、不同过程涉重危废的产排特性和产排系数存在很大差异。从全产业链过程分析,针对铅、锌、铜、镍、铬、镉、汞、钴、钒等重要有毒重金属,系统研究其从冶炼生产、产品制造、加工处理、失效废弃、到再生循环等不同环节的产排规律、产排特性和产排系数,对于加强涉重危废科学管理、推进涉重危废精准处置利用具有重要意义(图1)。

    图 1  重金属类型、产业链条和涉重危废产排关联图
    Figure 1.  Relevance diagrams of heavy metals types, industrial chain and production and discharge of hazardous wastes containing heavy metals

    涉重危废的危险特性源于重金属毒性。与有毒有机物相比,重金属不能降解、分解和矿化消失,只有形态转变、价态转化和空间位移。基于重金属的这一性质,通过质量平衡计算(物料衡算法)即可全面了解目标/有毒金属在产物、飞灰、底渣、浸出渣、净化渣、污泥等各相的分布及排入环境的量,并由此表征涉重危废的产排特性和产排系数。在此基础上,进一步研究飞灰、底渣、浸出渣、净化渣、污泥等各类固废/危废中金属赋存形态、液相溶解行为、高温挥发行为及其环境释放行为,从而为涉重危废的风险鉴别及分级分类、无害化处置和资源化利用提供理论依据[11-13]

    涉重危废的有毒金属产排系数计算公式见式(1)至式(4)。

    E产生=Q原料Q产品 (1)
    E排放=Wi×Ci (2)
    e产生系数=E产生P (3)
    e排放系数=E排放P (4)

    式中:E产生是有毒金属污染产生量;Q原料是原辅料中金属总量;Q产品是产品或出品中的金属利用量;E排放是金属污染排放量;Wi是固废/危废i的排放量;Ci是固废/危废i中有毒金属含量;e产生系数是金属污染产生系数;e排放系数是金属污染排放系数;P是产品(出品)总量。

    在现有严格的有毒金属污染排放控制标准下,无论一次危废还是二次危废中有毒金属的污染产生总量和排放总量大致相等,但不同排放途径和来源的有毒金属之环境行为、污染特性和危害强度存在显著差异,因而需要针对典型涉重危废产生、处置和利用全过程加强研究,以识别全产业链环境风险点并研发控制阻隔技术,引导目标金属向高资源利用和低环境风险的循环利用技术工艺和产业发展方式转变。

    涉重危废具有鲜明的资源-环境二元属性,但目前对于该类别危废二元属性的表征都是粗略说明和定性描述,缺乏量化指标和计算公式。这显然对于涉重危废的精细化管理、无害化处置和资源化利用都极为不利。另一方面,涉重危废产排涉及行业众多、金属类型多样、形成过程机制各不相同,以致其组分多变、结构复杂、种类繁多。不同产业链位阶、不同来源、不同行业、不同类型的涉重危废不仅在资源属性和污染属性上差异巨大,在组成和结构方面也千差万别。复杂多变的结构无论对于有毒/高毒金属的环境释放行为还是昂贵/高价金属的分离提取效能都会产生严重影响和干扰。因此,只有三维(资源、污染、结构)属性才能更加客观、准确、全面地反映涉重危废的固有本质特性。三维属性及其量化计算构成本理论体系的第3个基础概念。涉重危废之结构属性、资源属性和污染属性的量化计算公式和方法参考文献[2]

    在固体废物/危险废物环境管理中,分级分类聚焦于环境风险管控,只关注固体废物/危险废物的污染属性。为了解决危险废物监管压力和效率之间日益增长的矛盾,新修订的《固体废物污染环境防治法》[14]专门提出危险废物要进行分级分类管理。目前,我国《国家危险废物名录》[4]中并没有体现明确的分级分类管理思路,只是通过豁免管理清单和排除管理清单作为辅助和并行管理措施;而美国等国家针对危险废物小微产生源的分级管理措施基本属于名录管理的补充和完善,并不是严格意义上的分级分类,更没有形成完整体系[15]

    本研究提出的精细化分级分类体系是基于涉重危废三维属性的综合性分级分类,构成本理论体系的第4个基础概念。精细化分级分类体系从环境危害程度,资源利用潜力和物料结构特性3个维度对涉重危废进行定量描述。在三维属性量化计算的基础上进行5级(极高、高、中、低、极低)分级,再基于定量分级进行综合分类。该体系将突破不同行业领域的传统边界划分,完全按照三维属性量化指标进行分级分类。基于行业领域和危害特性定性分类的《国家危险废物名录》[4]和基于三维属性的精细化分级分类体系呈相辅相成的互补关系。前者是国家危险废物监管的依据和基础,后者是前者的辅助和补充,共同为涉重危废的高效精准监管、切实无害化处置和合理资源化利用提供科学可靠的理论基础。

    涉重危废的资源-环境二元属性决定了无害化处置和资源化利用并举是涉重危废处置利用的基本原则,但无害化处置和资源化利用是两种完全不同的路径选择。前者为了消除涉重危废的污染特性,凸显了环境效益;而后者为了提取回收稀缺的二次金属资源,体现了经济效益。无害化处置和资源化利用的路径选择显著依赖涉重危废的三维属性。

    涉重危废的资源化利用潜力不但取决于其所含昂贵/高价金属的浓度、类型、价格、赋存形态以及金属提取的技术经济性,而且与有毒/剧毒金属的含量、种类、赋存形态以及低价/安全金属等干扰离子的种类及浓度都有密切关系。具有高资源属性、低污染属性、低结构属性的涉重危废适宜资源化利用;而具有低资源属性、高污染属性、高结构属性的涉重危废适宜无害化处置。因此,需要在全面分析涉重危废三维属性基础上,确立可满足不同类型涉重危废无害化处置和资源化利用边际识别的三维属性指标体系,才能确保涉重危废科学、合理、可持续地资源化利用。涉重危废资源化利用潜力和无害化处置潜力归一化指标计算公式参考文献[2]。

    涉重危废具有的资源-环境二元属性,决定了其资源化利用的核心内涵是潜在资源价值的最大化回收和环境危害特性的最大化降低,其中的关键诉求是昂贵/高价金属的深度提取以实现最大的经济效益和剧毒/高毒金属的深度脱除以实现残渣的危险属性降级。但无论昂贵/高价金属的提取回收还是剧毒/高毒金属的脱除分离,都需要适宜的技术工艺以及相应的处置成本,工艺选择和费用投入与涉重危废的三维属性存在紧密关系[16]。基于不同类型涉重危废无害化处置和资源化利用的边际识别,对于资源化利用潜力较高的涉重危废则实现资源化利用,对于资源化利用价值较低的涉重危废则实行无害化处置。

    火法冶金、湿法冶金和生物沥浸在涉重危废有价金属提取和危险属性降级中各具优劣。总体来讲,火法冶金适宜高浓度、大批量、单一金属的分离提取和危险属性降维,尤其是低沸点、易挥发金属的烟化或挥发提取;湿法工艺适宜中高浓度、中小批量、多金属的同步提取回收;生物沥浸-循环富集适宜低浓度、小批量、多金属深度浸提和危险属性降级[17-18]。3种金属提取工艺存在较高的互补性和协同性,因此,只有科学合理的工艺组合才能保证有价金属提取和危险属性降级两大诉求的有效达成。例如:火法工艺还原融熔所产的合金或富氧侧吹所产的冰铜、冰镍等富集物料必须借助湿法工艺才能进一步获得高纯度单质态金属或金属盐;湿法工艺所产浸出渣需要借助生物沥浸-循环富集工艺以实现金属的深度提取、液相富集和危险属性降级;生物沥浸工艺有时需要火法或湿法工艺作为前(预)处理,如石化废催化剂需要低温煅烧去除包覆的油类物质后,才能确保生物沥浸高效进行,高浓度电镀污泥则需要前置硫酸浸提再串以生物沥浸才能使其处理规模提高、浸提富集成本减低。

    目前,涉重危废中昂贵/高价等目标金属的提取回收技术工艺选择大多依靠孤立的离散实验和研究者的感性经验。由于缺乏系统完整的科学原理指导以及基于定量分析的优选理论支持,现有的涉重危废金属提取工艺普遍存在设计不合理、标准不统一、技术不规范、路径选择随意性大的问题,加之涉重危废结构复杂多变的特性有时甚至出现技术工艺难以运行的严重状况。这是因为,金属提取工艺选择不但与金属类型性质有关,而且与其含量及赋存形态也存在很大关系,甚至与共存的其他低价、高毒和无毒金属以及处理规模、电价水价、物料配伍等都存在密切关系。所以,需要在三维属性精细化分级分类基础上,深入探究涉重危废三维属性及其分级分类与金属提取优化工艺及其组合之间的内在关联和响应关系,阐明不同分级分类物料提取工艺优选的一般规律和总体原则,构建涉重危废金属提取回收技术优选的多目标多参数定量精准决策体系。

    涉重危废金属提取过程需要在特定反应介质中进行,反应介质中的外加物料会以各种方式进入残渣之中,并改变残渣的元素组成、物相结构、金属含量及其赋存形态。不同的金属提取工艺或工艺组合可实现涉重危废的危险属性降级,但脱毒残渣中各类金属和其他有害组分、含量、赋存形态及环境风险差异较大,其建材化利用方式、途径和使用方向也各不相同[19]。因此,需要系统分析不同三维属性涉重危废脱毒残渣的物相、结构和组成,识别关联产品安全和环境安全的有害元素和离子,评估脱毒残渣建材化利用的产品安全和环境风险并进行分级分类,建立建材化利用的黑/白名单,进而提出涉重危废脱毒残渣建材化利用的技术规范和标准体系。

    基于产品安全的离子/元素限值按式(5)计算;基于环境安全的离子/元素限值按式(6)计算。

    M×S1L (5)

    式中:M指脱毒残渣中关联产品安全的离子/元素含量;L指建材产品安全要求限值;S1指脱毒残渣在建材产品中的掺和比。

    N×S2K (6)

    式中:N指脱毒残渣中关联环境安全的离子/元素含量;K指建材环境安全要求限值;S2指脱毒残渣在建材产品中的掺和比。

    脱毒残渣在建材产品中的掺和比S取S1和S2二者中的最小值。当S≤10%,则说明该消纳途径风险大,可列入黑名单;当S≥30%,则说明该消纳途径风险小,可列入白名单。通过黑/白名单的管理,使脱毒残渣是否采用或采用何种建材化利用的路径判别更加便利。

    涉重危废产排贯穿金属冶炼生产、金属加工处理、金属基材料制备、废弃和再利用等全产业链。金属作为现代生活和工业生产的基础性原材料,其生产、消耗和废弃正以前所未有的规模在全球进行,因此,涉重危废的产生也以前所未有的速度在全球发生。据估算,世界上涉重危废的年产量在1×108 t左右,我国涉重危废年产量在3 000×104~3 500×104 t[1]。涉重危废的长期任意排放是全球环境重金属污染的主因之一,而重金属不能降解的特性又使得重金属污染显示出累积性、持久性和高危害性。但另一方面,涉重危废含有以各种形式存在的多种金属元素,而金属不可再生的特性又赋予了涉重危废独有的二次资源价值。有毒/高毒/剧毒金属赋予涉重危废污染属性,昂贵/高价/有价金属赋予涉重危废资源属性,金属激发的污染属性和资源属性并存是涉重危废最显著的特点。从涉重危废中提取回收有价金属不但能够从源头消除涉重危废的环境危害,而且还可实现稀缺金属资源的循环永续利用,是固体废物处理处置学科及资源再生学科领域的热点课题。

    作为危险废物的重要细分领域,涉重危废资源化利用已是国内外经济社会发展的必然趋势,而我国作为世界制造大国,更是面临涉重危废产排量不断增长和金属资源愈加短缺的双重困境,涉重危废的资源化利用更加紧迫。然而,涉重危废固有的高污染属性给其资源化利用带来很大困扰,在分级分类、提取工艺、风险管控、政策法律等许多方面都面临巨大挑战[20-21]。目前,针对不同类型涉重危废,世界各国学者在技术层面广泛研究了有价金属高效提取的火法冶炼、湿法冶炼和生物沥浸的工艺优化、过程控制和溶释机理,但基本都是基于特定单一危废物料的孤立个案研究,未见针对涉重危废三维属性的量化分析及精细化分级分类,亦未见无害化处置和资源化利用的边界识别研究,更未见有价金属深度提取和危险属性降级的技术原理探究和技术工艺优选,以及脱毒残渣建材化利用的方式、工艺和标准研究。涉重危废量大、面广、源多、物杂的产排特性,给其高效、高质、高值的资源化利用带来很大挑战。构建基于精细化分级分类的涉重危废资源化利用理论体系是实现这一目标的根本保证,是指导涉重危废资源化利用健康、科学、可持续发展的必然要求,是涉重危废资源化利用从经验数据积累到完整学科形成的必然要求。

    涉重危废资源化利用的理论框架以涉重危废、金属五分法、涉重危废三维属性及精细化分级分类4组概念为基础,以涉重危废精细化分级分类体系、涉重危废无害化处置和资源化利用边际识别指标体系、涉重危废有价金属提取和危险属性降级技术体系、涉重危废脱毒残渣建材化利用标准体系4大体系建设为核心,以涉重危废产排系数计算、涉重危废三维属性定量描述、涉重危废资源化利用和无害化处置潜力归一化指数计算、涉重危废脱毒残渣建材化利用风险控制和黑白名单管理4个重要问题为抓手和工具(总体框架见图2)。该理论体系全面系统地回答了涉重危废全量高值化资源利用所涉及的关键问题和重大困扰,有力保障了其资源化利用的过程安全、产品安全和环境安全。该理论体系的构建、发展和成熟将使得涉重危废这一重要细分领域由孤立的个体研究上升到系统的科学理论,并为涉重危废的精细化监管、精准化风险管控和高质化资源利用提供全周期全方位全流程的理论指导。

    图 2  涉重危废资源化利用理论体系的总体框架
    Figure 2.  General framework of theoretical system of resource utilization of hazardous wastes containing heavy metals

    1)从涉重危废中提取有价回收金属促进其污染属性向资源属性的定向转化,虽然可从源头消除涉重危废的环境污染而且实现金属资源的循环利用,但其危险属性对资源化利用构成了极大困扰。为了确保涉重危废的科学、合理、健康、可持续、高值化利用,构建了涉重危废资源化利用的理论体系。

    2)涉重危废资源化利用的理论体系框架由4组概念和4大体系组成。4组概念包括涉重危废、金属五分法、涉重危废三维属性及精细化分级分类;4大体系包括涉重危废精细化分级分类体系、涉重危废无害化处置和资源化利用边际识别指标体系、涉重危废有价金属提取和危险属性降级技术体系、涉重危废脱毒残渣建材化利用标准体系。

    3)该理论体系以4组概念为基础、以4大体系建设为核心,以系统化数学公式和定量计算为工具。该理论体系的提出、发展和成熟将使得涉重危废这一重要细分领域由孤立的个体研究和感性经验上升到系统的科学理论,为涉重危废的精细化监管、精准化风险管控和高质化资源利用提供全周期全方位的理论指导。

    辛宝平(1969—),男,理学博士,教授。从事固体废物/涉重危废资源化利用理论体系和技术原理研究。中国环境科学学会理事、中国物资再生协会湿法冶金分会首席科学家、中国环境科学学会固体废物专业委员会副主任委员、中国环境科学学会重金属污染防治专业委员会副主任委员、中国有色冶金学会环境污染防治专业委员会副主任委员、全国危废处理处置技术联盟学术委员会副主任委员、中华环保联合会固危废及污染土壤专委会副主任委员、中国再生资源回收利用协会危险废物专业委员会副主任委员。在《Chemical Engineering Journal》《Bioresource Technology》《Journal of Hazardous Materials》《Waste Management》《ACS Applied Materials and Interfaces》等期刊发表SCI和EI论文100余篇,高水平SCI论文(1区)30篇,发明专利20余项。在国际上首次创制了涉重危废、金属5分法、三维属性及精细化分级分类等系列概念并构建涉重危废资源化利用的理论体系;率先将膜生物反应器(MBR)引入生物沥浸领域,解决了生物沥浸技术周期长、处理量小的行业难题;撰写了涉重危废资源化利用方面的首部专著;主持了全国涉重危废产废和处置行业发展现状及技术需求的首次调研;主持研发涉重危废行业首套100 m3级电镀污泥有价金属生物沥浸-循环富集成套设备和工艺。

  • 图 1  铁尾矿的XRD分析图谱

    Figure 1.  XRD analysis of iron tailings

    图 2  烧结砖抗压强度随温度的变化

    Figure 2.  Compressive strength of sintered bricks with temperature

    图 3  烧结砖吸水率随温度的变化

    Figure 3.  Water absorption of sintered brick with temperature

    图 4  烧结砖的重金属浸出

    Figure 4.  Leaching of heavy metals from sintered bricks

    图 5  不同温度下烧结砖的重金属形态分布特征

    Figure 5.  Distribution characteristics of heavy metals in sintered bricks at different temperatures

    图 6  烧结砖的孔径和孔容积

    Figure 6.  Pore size and pore volume of sintered brick

    图 7  不同温度下烧结砖的物相结构

    Figure 7.  Phase structure of sintered brick at different temperatures

    图 8  不同温度下烧结砖的SEM-EDS图

    Figure 8.  SEM-EDS images of sintered brick at different temperatures

    表 1  烧结砖原料质量分数

    Table 1.  Mass fraction of raw materials to sintered bricks %

    样品编号铁尾矿粉煤灰废玻璃
    G060400
    G10603010
    G20602020
    G30601030
    样品编号铁尾矿粉煤灰废玻璃
    G060400
    G10603010
    G20602020
    G30601030
    下载: 导出CSV

    表 2  原料化学组成(以质量分数计)

    Table 2.  Chemical composition of raw materials (calculated by mass fraction) %

    供试原料Fe2O3SiO2Al2O3K2ONa2O其他
    铁尾矿53.7828.1313.330.863.90
    粉煤灰6.3657.0125.332.930.887.49
    废玻璃0.1791.702.350.125.120.54
      注:—为未检出。
    供试原料Fe2O3SiO2Al2O3K2ONa2O其他
    铁尾矿53.7828.1313.330.863.90
    粉煤灰6.3657.0125.332.930.887.49
    废玻璃0.1791.702.350.125.120.54
      注:—为未检出。
    下载: 导出CSV

    表 3  铁尾矿中重金属含量

    Table 3.  Heavy metal concentration in iron tailings mg·kg−1

    CuPbZnCrCd
    2 814.921 992.121 712.3363.2610.84
    CuPbZnCrCd
    2 814.921 992.121 712.3363.2610.84
    下载: 导出CSV
  • [1] 张彪, 姜春志. 铁尾矿资源综合利用及研究进展[J]. 中国金属通报, 2020(11): 68-69. doi: 10.3969/j.issn.1672-1667.2020.10.035
    [2] XU D, FAN J, ZHANG C, et al. A critical review on environmental implications, recycling strategies, and ecological remediation for mine tailings[J]. Environmental Science and Pollution Research, 2019, 26(35): 35657-35669. doi: 10.1007/s11356-019-06555-3
    [3] 勾密蜂, 王思军, 郝中晶, 等. 铝土矿浮选尾矿对水泥砂浆性能的影响[J]. 环境工程学报, 2016, 10(9): 5185-5190. doi: 10.12030/j.cjee.201503250
    [4] LI S, WU J, LUO Y, et al. Profiling multiple heavy metal contamination and bacterial communities surrounding an iron tailing pond in Northwest China[J]. Science of the Total Environment, 2020, 752: 141827.
    [5] ZHANG X, YANG H, CUI Z, et al. Migration and speciation of heavy metal in salinized mine tailings affected by iron mining[J]. Water Science and Technology, 2017, 76(7): 1867-1874. doi: 10.2166/wst.2017.369
    [6] KUMAR R, DAS P, BEULAH M, et al. Utilization of iron ore tailings for the production of fly ash-GGBS-based geopolymer bricks[J]. Journal of Advanced Manufacturing Systems, 2017, 16(3): 257-290.
    [7] KURANCHIE F, FRANCIS A, SHUKLA S, et al. Utilization of iron ore mine tailings for the production of geopolymer bricks[J]. International Journal of Mining, Reclamation and Environment, 2016, 30(2): 92-114.
    [8] 严捍东, 陈秀峰. 粉煤灰和铁尾矿对烧结海泥多孔砖泛霜程度的影响[J]. 环境工程学报, 2012, 6(8): 2846-2852.
    [9] LUO L, LI K, WEN F, et al. Preparation, characteristics and mechanisms of the composite sintered bricks produced from shale, sewage sludge, coal gangue powder and iron ore tailings[J]. Construction and Building Materials, 2020, 232: 117250. doi: 10.1016/j.conbuildmat.2019.117250
    [10] LI W, LEI G, XU Y, et al. The properties and formation mechanisms of eco-friendly brick building materials fabricated from low-silicon iron ore tailings[J]. Journal of Cleaner Production, 2018, 204: 685-692. doi: 10.1016/j.jclepro.2018.08.309
    [11] VORRADA L, THANAPAN P, KANYARAT K, et al. Effects of recycled glass substitution on the physical and mechanical properties of clay bricks[J]. Waste Management, 2009, 29(10): 2717-2721. doi: 10.1016/j.wasman.2009.05.015
    [12] NONTHAPHONG P, SIWADOL K, SIWADOL C, et al. Utilization of waste glass to enhance physical-mechanical properties of fired clay brick[J]. Journal of Cleaner Production, 2016, 112: 3057-3062.
    [13] URE A, QUEVAUVILER P, MUNTAU H, et al. Speciation of heavy metals in soils and sediments: An account of the improvement and harmonization of extraction techniques undertaken under the auspices of the BCR of the commission of the European Communities[J]. International Journal of Environmental Analytical Chemistry, 1993, 51(1/2/3/4): 135-151. doi: 10.1080/03067319308027619
    [14] 国家环境保护总局. 固体废物浸出毒性浸出方法醋酸缓冲溶液法: HJ/T 300-2007[S]. 北京: 中国环境科学出版社, 2007.
    [15] ZHANG S, XUE X, LIU X, et al. Current situation and comprehensive utilization of iron ore tailing resources[J]. Journal of Mining Science, 2006, 42(4): 403-408. doi: 10.1007/s10913-006-0069-9
    [16] CHEN Y, ZHANG Y, CHEN T, et al. Preparation of eco-friendly construction bricks from hematite tailings[J]. Construction and Building Materials, 2011, 25: 2107-2111. doi: 10.1016/j.conbuildmat.2010.11.025
    [17] 陈永亮, 张一敏, 陈铁军, 等. 温度制度对尾矿烧结砖性能及结构的影响[J]. 硅酸盐通报, 2010, 29(6): 1343-1347.
    [18] WANG G, NING X, LU X, et al. Effect of sintering temperature on mineral composition and heavy metals mobility in tailings bricks[J]. Waste Management, 2019, 93: 112-121. doi: 10.1016/j.wasman.2019.04.001
    [19] 张海英, 赵由才, 祁景玉. 垃圾焚烧飞灰对陶瓷砖烧成影响的研究[J]. 环境工程学报, 2010, 4(12): 2865-2869.
    [20] MAO L, WU Y, ZHANG W, et al. The reuse of waste glass for enhancement of heavy metals immobilization during the introduction of galvanized sludge in brick manufacturing[J]. Journal of Environmental Management, 2019, 231: 780-787.
    [21] YU S, YOSHIMURA M. Direct fabrication of ferrite MFe2O4 (M=Zn, Mg)/Fe composite thin films by soft solution processing[J]. Chemistry of Materials, 2000, 12(12): 3805-3810. doi: 10.1021/cm000691y
    [22] LU X, SHIH K. Phase transformation and its role in stabilizing simulated lead-laden sludge in aluminum-rich ceramics[J]. Water Research, 2011, 45(16): 5123-5129. doi: 10.1016/j.watres.2011.07.015
    [23] 中华人民共和国国家环境保护总局. 危险废物鉴别标准浸出毒性鉴别: GB 5085.3-2007[S]. 北京: 中国环境科学出版社, 2007.
    [24] CULTRONE G, CARRILLO R, FRANCISCO J. Growth of metastable phases during brick firing: Mineralogical and microtextural changes induced by the composition of the raw material and the presence of additives[J]. Applied Clay Science, 2020, 185: 10519.
    [25] XU H, SONG W, CAO W, et al. Utilization of coal gangue for the production of brick[J]. Journal of Material Circulation and Waste Management, 2017, 19(3): 1270-1278.
  • 加载中
    Created with Highcharts 5.0.7访问量Chart context menu近一年内文章摘要浏览量、全文浏览量、PDF下载量统计信息摘要浏览量全文浏览量PDF下载量2024-052024-062024-072024-082024-092024-102024-112024-122025-012025-022025-032025-040Highcharts.com
    Created with Highcharts 5.0.7Chart context menu访问类别分布DOWNLOAD: 2.2 %DOWNLOAD: 2.2 %HTML全文: 85.7 %HTML全文: 85.7 %摘要: 12.1 %摘要: 12.1 %DOWNLOADHTML全文摘要Highcharts.com
    Created with Highcharts 5.0.7Chart context menu访问地区分布其他: 86.3 %其他: 86.3 %Beijing: 4.7 %Beijing: 4.7 %Beishi: 0.0 %Beishi: 0.0 %Boulder: 0.0 %Boulder: 0.0 %Brooklyn: 0.0 %Brooklyn: 0.0 %Chang'an: 0.0 %Chang'an: 0.0 %Changchun: 0.1 %Changchun: 0.1 %Changsha: 0.1 %Changsha: 0.1 %Chaowai: 0.1 %Chaowai: 0.1 %Chengdu: 0.0 %Chengdu: 0.0 %Daxing: 0.0 %Daxing: 0.0 %Ghent: 0.0 %Ghent: 0.0 %Guangzhou: 0.1 %Guangzhou: 0.1 %Guangzhou Shi: 0.0 %Guangzhou Shi: 0.0 %Haikou: 0.0 %Haikou: 0.0 %Hangzhou: 0.2 %Hangzhou: 0.2 %Heerlen: 0.0 %Heerlen: 0.0 %Hefei: 0.1 %Hefei: 0.1 %Hyderabad: 0.1 %Hyderabad: 0.1 %Jinhua: 0.0 %Jinhua: 0.0 %Jinrongjie: 0.2 %Jinrongjie: 0.2 %Kuala Lumpur: 0.0 %Kuala Lumpur: 0.0 %Lancaster: 0.0 %Lancaster: 0.0 %luohe shi: 0.0 %luohe shi: 0.0 %Manchester: 0.0 %Manchester: 0.0 %Mountain View: 0.1 %Mountain View: 0.1 %New York: 0.0 %New York: 0.0 %Newark: 0.0 %Newark: 0.0 %Qingdao: 0.0 %Qingdao: 0.0 %Qinnan: 0.0 %Qinnan: 0.0 %Shanghai: 0.2 %Shanghai: 0.2 %Shenyang: 0.0 %Shenyang: 0.0 %Shenzhen: 0.3 %Shenzhen: 0.3 %Shijiazhuang: 0.0 %Shijiazhuang: 0.0 %Shuozhou: 0.1 %Shuozhou: 0.1 %Singapore: 0.0 %Singapore: 0.0 %Taichung: 0.0 %Taichung: 0.0 %Taipei: 0.0 %Taipei: 0.0 %Taiyuan: 0.1 %Taiyuan: 0.1 %Weinan: 0.0 %Weinan: 0.0 %Wuhan: 0.0 %Wuhan: 0.0 %Xi'an: 0.1 %Xi'an: 0.1 %XX: 4.2 %XX: 4.2 %Yuncheng: 0.1 %Yuncheng: 0.1 %Yuzhong Chengguanzhen: 0.0 %Yuzhong Chengguanzhen: 0.0 %Zhengzhou: 0.0 %Zhengzhou: 0.0 %上海: 0.1 %上海: 0.1 %丽水: 0.0 %丽水: 0.0 %北京: 0.6 %北京: 0.6 %台州: 0.0 %台州: 0.0 %合肥: 0.0 %合肥: 0.0 %天津: 0.0 %天津: 0.0 %宁波: 0.0 %宁波: 0.0 %杭州: 0.0 %杭州: 0.0 %武汉: 0.0 %武汉: 0.0 %洛杉矶: 0.0 %洛杉矶: 0.0 %深圳: 0.1 %深圳: 0.1 %清远: 0.0 %清远: 0.0 %漯河: 0.0 %漯河: 0.0 %芝加哥: 0.0 %芝加哥: 0.0 %衢州: 0.1 %衢州: 0.1 %运城: 0.0 %运城: 0.0 %连云港: 0.0 %连云港: 0.0 %郑州: 0.2 %郑州: 0.2 %防城港: 0.0 %防城港: 0.0 %阳泉: 0.1 %阳泉: 0.1 %其他BeijingBeishiBoulderBrooklynChang'anChangchunChangshaChaowaiChengduDaxingGhentGuangzhouGuangzhou ShiHaikouHangzhouHeerlenHefeiHyderabadJinhuaJinrongjieKuala LumpurLancasterluohe shiManchesterMountain ViewNew YorkNewarkQingdaoQinnanShanghaiShenyangShenzhenShijiazhuangShuozhouSingaporeTaichungTaipeiTaiyuanWeinanWuhanXi'anXXYunchengYuzhong ChengguanzhenZhengzhou上海丽水北京台州合肥天津宁波杭州武汉洛杉矶深圳清远漯河芝加哥衢州运城连云港郑州防城港阳泉Highcharts.com
图( 8) 表( 3)
计量
  • 文章访问数:  4914
  • HTML全文浏览数:  4914
  • PDF下载数:  55
  • 施引文献:  0
出版历程
  • 收稿日期:  2020-12-24
  • 录用日期:  2021-04-03
  • 刊出日期:  2021-05-10
周伟伦, 廖正家, 陈涛, 宁寻安, 王逸, 谢鸿智. 利用铁尾矿制备烧结砖的可行性及烧结固化机理[J]. 环境工程学报, 2021, 15(5): 1670-1678. doi: 10.12030/j.cjee.202012132
引用本文: 周伟伦, 廖正家, 陈涛, 宁寻安, 王逸, 谢鸿智. 利用铁尾矿制备烧结砖的可行性及烧结固化机理[J]. 环境工程学报, 2021, 15(5): 1670-1678. doi: 10.12030/j.cjee.202012132
ZHOU Weilun, LIAO Zhengjia, CHEN Tao, NING Xunan, WANG Yi, XIE Hongzhi. Feasibility of using iron tailings to prepare sintering brick and sintering solidification mechanism[J]. Chinese Journal of Environmental Engineering, 2021, 15(5): 1670-1678. doi: 10.12030/j.cjee.202012132
Citation: ZHOU Weilun, LIAO Zhengjia, CHEN Tao, NING Xunan, WANG Yi, XIE Hongzhi. Feasibility of using iron tailings to prepare sintering brick and sintering solidification mechanism[J]. Chinese Journal of Environmental Engineering, 2021, 15(5): 1670-1678. doi: 10.12030/j.cjee.202012132

利用铁尾矿制备烧结砖的可行性及烧结固化机理

    通讯作者: 宁寻安(1967—),男,博士,教授。研究方向:固体废物处理处置。E-mail:ningxunan666@126.com
    作者简介: 周伟伦(1996—),男,硕士研究生。研究方向:尾矿无害化及资源化利用。E-mail:294794893@qq.com
  • 1. 广东工业大学环境科学与工程学院,广州 510006
  • 2. 广东省环境催化与健康风险控制重点实验室,环境健康与污染控制研究院,广州 510006
  • 3. 广东省大宝山矿业有限公司,韶关 512127
基金项目:
2017年土壤中央专项资金-大宝山尾矿无害化处理及综合利用前期研究项目(18HK0108)

摘要: 针对铁尾矿综合利用率低的问题,利用铁尾矿、粉煤灰、废玻璃制备烧结砖,以提高铁尾矿综合利用率。通过抗压强度、吸水率和重金属浸出3方面评价烧结砖的性能,确定最佳烧结工艺条件;并通过重金属形态分布、孔径分析、XRD和SEM探究烧结砖的固化机理。结果表明,在最佳条件烧结温度为1 100 ℃、铁尾矿、粉煤灰、玻璃配为6∶2∶2的条件下,烧结砖的抗压强度为124 MPa,吸水率为4.6%。最佳条件下烧结砖的Cu、Pb、Zn重金属浸出浓度均低于标准阈值。当烧结温度从900 ℃上升到1 200 ℃,Cu、Pb和Zn的残渣态占比均有所上升,孔容积从0.019 cm3·g−1下降到了0.001 cm3·g−1,平均孔径从22.1 nm下降到了9.3 nm。物相分析结果表明,在烧结过程中,高岭石相和石英相的特征峰降低,莫来石相的特征峰升高。上述结果可以为铁尾矿制备烧结砖提供数据参考。

English Abstract

  • 2018年,我国铁尾矿产生量为4.76×108 t,约占全国尾矿产生量的40%。相比较其他种类尾矿,铁尾矿占比最大[1]。而目前铁尾矿的综合利用率却不足30%,远低于发达国家[2]。在我国,铁尾矿主要储存方式为露天堆放,这样不仅有溃坝的风险[3],而且还可能会对周边水体造成污染[4-5]。因此,铁尾矿堆放处理对环境造成的污染问题不容小觑,亟需解决。

    铁尾矿对环境造成危害的同时也是一种“放错地方的资源”。铁尾矿中含有大量的SiO2、Al2O3、Fe2O3,这与黏土的成分十分相似,可以代替黏土用作烧结砖的原料。已有大量研究[6-10]证实了铁尾矿制备烧结砖的可行性。严捍东等[8]分别利用铁尾矿、粉煤灰和海泥制备出多孔烧结砖;其结果表明,与粉煤灰相比,铁尾矿更利于减缓烧结砖的泛霜程度。LUO等[9]利用铁尾矿、煤矸石等作为主要原料,并用污泥和页岩作为黏结剂制备烧结砖;结果表明,在烧结温度1 100 ℃、烧结时间3 h的最佳条件下,烧结砖的抗压强度为14.24 MPa、吸水率为17.47%。有研究结果[11-12]表明,将废玻璃加入到烧结砖中会极大地提高黏土烧结砖的力学强度。VORRADA等[11]发现,向黏土砖中添加废弃玻璃,在一定范围内会提高烧结砖的力学强度;在温度为1 100 ℃、玻璃添加量为15%的条件下,会提高2~3倍的力学强度,吸水率可降低至2%~3%。这些研究多数关注在烧结砖力学性能的研究上,而忽略了烧结砖中重金属释放到环境中的潜在风险,特别是对于含有较高重金属的铁尾矿。重金属在烧结砖中的形态分布和浸出特性的问题值得关注。

    本研究中,利用铁尾矿、废玻璃和粉煤灰制备烧结砖,以探究其可行性。研究不同温度和配比条件对烧结砖性能的影响和重金属的浸出风险;并研究了在烧结过程中的重金属形态分布、孔径分析、XRD和SEM,以揭示烧结砖的固化机理。本研究结果可为铁尾矿的资源化利用提供数据参考。

  • 供试铁尾矿来自广东省大宝山槽对坑尾矿库,铁尾矿样品置于烘箱中105 ℃烘干,利用行星式球磨机(QM-3SP2,南京南大仪器有限公司)进行球磨,过200目标准筛后储存于密封袋中,置于干燥器中储存。供试废玻璃为高硼硅玻璃,利用球磨机进行球磨,过200目标准筛后储存于密封袋中,置于干燥器中储存。供试粉煤灰来自广东省某燃煤发电厂,粉煤灰样品在烘箱中105 ℃烘干至恒重后,置于干燥器中储存。

  • 将铁尾矿、粉煤灰和废玻璃按照表1的比例进行充分混合,加入去离子水使得胚料含水率为10%。将胚料放在钢模具内,利用压片机使胚料成型,成型压力为15 MPa。成型后的砖胚置于105 ℃烘箱中,干燥24 h;然后将砖胚置于马弗炉中,设定升温速率为5 ℃·min−1,升温至特定温度(900、1 000、1 100、1 200 ℃),保温时间为2 h。

  • 将烧结砖样品浸泡在超纯水中,浸泡24 h后取出,用滤纸擦干样品表面,称量样品吸水后的质量,烧结砖样品的吸水率按照式(1)计算。

    式中:w是烧结砖的吸水率;m1是烧结砖未浸泡前的质量,g;m2是烧结砖浸泡后取出并擦干的质量,g。

  • 1)采用X射线荧光光谱(XRF)(EDX-7000,日本岛津公司)测定原料中的主要化学成分。

    2)原料重金属含量的测定。取0.1 g样品于消解罐中,加入40%氢氟酸2 mL、35%浓盐酸2 mL和65%硝酸6 mL,于微波消解仪中进行消解;消解完成后赶酸,用超纯水稀释至25 mL,利用火焰原子吸收分光光度计(TAS-990F,北京普析通用仪器有限公司)测定总的重金属含量。

    3)物相结构分析。采用X射线衍射仪(XRD)(Bruker D8,德国布鲁克公司)进行物相结构分析;扫描角度为10°~80°、步长为0.02°、计数时间为0.03 s。

    4)抗压强度。采用万能材料试验机(Instron 5697,美国Instron)测试样品的抗压强度,以式(2)计算烧结砖的抗压强度。

    式中:p是烧结砖的抗压强度,MPa;F是测量受力面所承受最大的压力,N;A是受力面的面积,mm2

    5)重金属形态分析。烧结砖中的重金属形态分析采用欧共体标准物质局的BCR顺序提取法[13],分为4个形态:弱酸提取态、可还原态、可氧化态、残渣态。

    6)孔径分析。采用全自动比表面及孔隙度分析仪(TriStar II 3flex,美国麦克仪器公司)进行孔径分析;以N2作为吸附气体,脱气温度为150 ℃、脱气时间为2 h,采用BJH分析模型处理数据。

    7)扫描电镜分析。采用电子扫描电镜(Sigma 300,德国蔡司仪器公司)观察样品微观形貌;利用X射线能谱仪(XFlash6,德国布鲁克公司)做EDS分析。

    8)重金属浸出浓度测定。烧结砖重金属浸出浓度通过《固体废物浸出毒性浸出方法-醋酸缓冲溶液法》(HJ/T 300-2007)[14]进行;在样品管中加入1 g样品和20 mL醋酸缓冲溶液,放入翻转式振荡器中以30 r·min−1的转速翻转18 h;翻转完成后,再通过0.45 μm滤膜过滤,用火焰原子吸收分光光度计测定样品浸出液中重金属(Cu、Pb、Zn)的浓度。

  • 供试铁尾矿外观呈红色的颗粒状,平均粒径为189.24 μm,粒径较小。表2为铁尾矿、粉煤灰、废玻璃的化学组成。通过表2可知,铁尾矿主要化学成分有Fe2O3、SiO2、Al2O3,这些成分的含量与国内外其地区铁尾矿的成分相似[15]。CHEN等[16]指出,铁尾矿中的Fe2O3成分在制备烧结砖的过程中有促进烧结的作用,可以降低烧结砖的烧成温度。粉煤灰中含有大量的SiO2、Al2O3硅铝氧化物,可弥补铁尾矿低硅、低铝的缺点;粉煤灰还含有少部分K2O、Na2O等碱性金属氧化物,因而有助熔的作用。废玻璃的主要成分为SiO2和Na2O,在体系中可以起到黏结作用。另外,从铁尾矿的XRD分析图谱(图1)可以看出,铁尾矿中的主要矿物组成为石英、赤铁矿和高岭石。

    表3可以看出,铁尾矿中重金属种类较多,含量差异较大,是典型的多金属伴生尾矿。其中,Cu、Zn、Pb的含量较高,长期露天堆放会对环境造成隐患。

    通过对3种制砖原料理化性质的分析可初步判断,铁尾矿结合粉煤灰、废玻璃制备烧结砖是具有可行性的。

  • 1)烧结砖的抗压强度。抗压强度测试是重要的力学强度指标,可以反映烧结砖承受压缩载荷的能力。图2结果表明,在900~1 100 ℃的条件下,各配比烧结砖的抗压强度均随着烧结温度的上升而增加。在900和1 000 ℃条件下,废玻璃含量对烧结砖抗压强度的影响较为明显。其原因在于,在温度低于1 000 ℃时,铁尾矿与粉煤灰间未发生反应,矿物骨架未形成,导致砖体结构松散[17]。但在此条件下,废玻璃已经达到软化温度,以流动相的形式存在于胚料中,冷却后将铁尾矿和粉煤灰胶结在一起。因此,温度低于1 000 ℃条件下烧结砖主要的力学强度都由玻璃提供[18]。随着烧结温度继续上升至1 000~1 100 ℃,铁尾矿和粉煤灰开始发生反应,烧结砖中的骨架结构形成;废玻璃进一步填充了骨架结构中的孔隙,并进一步提高了烧结砖的力学强度。此条件下所制备烧结砖的力学强度由矿物骨架和废玻璃共同提供。而在1 200 ℃的条件下,烧结砖出现过烧现象[19],呈现较深的红色。此时,砖胚出现膨胀、变形现象,抗压强度出现下降趋势。这是因为,过高的温度破坏了烧结砖的结构。在烧结温度过高或保温时间过长的条件下,烧结砖会形成大量的熔融体,烧结砖中的骨架结构被破坏,导致冷却后出现膨胀、变形的情况,从而降低了砖体的抗压强度。

    2)烧结砖的吸水率。吸水率可反映烧结砖的内部结构情况。从图3可以看出,在相同配比情况下,烧结砖的吸水率随着烧结温度上升而降低。在900 ℃下,各配比烧结砖的吸水率均在15%以上;而随着烧结温度上升至1 200 ℃,吸水率最低为1.3%。这说明,升高温度有助于烧结砖内部的致密化。在烧结过程中,烧结砖内部的气孔逐渐缩小,内部结构趋于致密化。在相同的烧结温度条件下,吸水率会随着废玻璃含量的增加而降低。

    3)烧结砖的重金属浸出毒性。从图4中可以看出,烧结温度在900~1 000 ℃时,烧结砖中Cu、Pb、Zn的浸出浓度会随着废玻璃含量的增加而明显下降。MAO等[20]发现,玻璃在高温条件下的成型过程中会把重金属离子有效地包裹起来,形成玻璃体。当温度到达1 100~1 200 ℃,玻璃含量对重金属浸出的影响极小。这是因为,此时重金属间发生反应主要以稳定的结晶相形式存在,只有较少的重金属以不稳定的形式存在。

    Cu、Pb、Zn的浸出浓度均随着烧结温度的上升而减小,最终在1 100 ℃趋于稳定。从图4(a)(c)中可以看出,Cu和Zn在浸出特征上出现相似的规律;在温度为900 ℃时,重金属浸出浓度都较高,最高可达1.5 mg·L−1。在温度为900~1 000 ℃,3种重金属的浸出浓度下降均超过50%。有研究者[21]发现,Zn和Fe2O3在热反应过程中,可能会形成尖晶石结构ZnFe2O4,从而增加Zn的稳定性,不易被浸出。从图4(b)可以看出,Pb的浸出浓度随着温度的上升而下降。当温度为900时,Pb浸出浓度不足0.6 mg·L−1,远低于Cu和Zn的浸出浓度。这说明,当温度低于900 ℃的条件下,Pb比Cu和Zn更早地发生了固化反应。PbO在700 ℃的条件下,会与Al2O3发生化学反应,生成抗酸蚀能力强的PbAl2O4,从而抵制外界的酸性环境[22]。烧结砖中Cu、Pb、Zn的浸出浓度随烧结温度的升高均呈现降低的趋势。这说明,烧结过程对重金属的固化起到了积极作用,降低了重金属的释放风险。本研究制得的烧结砖中,重金属浸出浓度均低于《危险废物鉴别标准 浸出毒性鉴别》(GB 5085.3-2007)[23]的限值,符合安全标准。

    综合分析抗压强度、吸水率、重金属浸出3个方面,采取G20作为最佳配比进行后续实验,以研究烧结过程中烧结砖的重金属形态分布变化、孔隙结构变化、物相结构的转化和微观形貌的变化。

  • 1)烧结砖的重金属形态分布。重金属的形态分布影响着烧结砖的浸出毒性与安全性;同时,也是影响重金属迁移转化能力强弱的重要因素。BCR法把重金属形态分为4种形态:弱酸提取态,是最容易提取的状态,与生物的毒性作用呈正相关;可还原态,是离子键结合的形态;可氧化态,只有在强氧化的条件下才会被释放的状态;残渣态,存在于矿物结晶相中,十分稳定,对生物的毒性作用最小。

    图5为G20配比在烧结过程中的重金属各形态分布变化。在温度为900 ℃的条件下,Pb和Cu的稳定性较差,Pb的形态分布为弱酸提取态13.56%、可还原态14.49%、可氧化态25.79%、残渣态46.16%。Cu形态分布为弱酸提取态23.26%、可还原态7.97%、可氧化态20.79%、残渣态47.98%。Pb和Cu的形态特征非常类似,残渣态均不足50%。随着烧结温度的上升,Pb和Cu的残渣态占比上升至81.55%和82.80%。与Pb和Cu相比,Zn的稳定性较好,在900 ℃下,主要形态为残渣态(72.82%)。这说明,Zn主要以结晶相的形式存在,稳定性较好。随着烧结温度上升,Zn的形态转化没有Pb和Cu明显,迁移性较差,因而更稳定。结合图4图5进行综合分析可知,残渣态占比的上升往往伴随着重金属浸出浓度的下降。这说明重金属在烧结固化过程中,以结晶相的形式而稳定下来。

    2)烧结砖的孔隙结构变化。孔容积和孔径大小可以反映烧结砖内部的孔隙结构。图6(a)为G20配比烧结砖在烧结过程中孔容积和孔径大小的变化情况。烧结温度对孔容积的影响较为明显。在温度为900 ℃的条件下,孔容积最大,达到了0.019 cm3·g−1;而当温度上升至1 000 ℃时,孔容积迅速下降至0.004 5 cm3·g−1。随着温度继续升高到1 100 ℃,孔容积进一步下降到0.001 1 cm3·g−1;当温度到达1 200 ℃时,孔容积下降到0.001 cm3·g−1。这说明,当烧结温度为900 ℃时,烧结砖内部存在大量的孔隙结构;而随着温度的升高,孔隙结构逐渐减少,趋于致密化。

    孔径大小随着温度的升高而降低,当烧结温度为900 ℃时,孔径大小为22.1 nm;而随着温度上升至1 200 ℃,孔径最终降低至9.3 nm。从图6(b)可以看到,废玻璃含量的增加也会降低孔径大小和孔容积。相比较于图6(a)图6(b)中孔容积和孔径大小的变化并不显著。综合分析可知,温度对孔径大小的影响大于废玻璃含量对孔径大小的影响。孔容积和孔径大小的变化趋势与吸水率的变化趋势一致。这说明,孔隙结构可能是影响吸水率大小的内部因素。孔径结构也会影响重金属浸出的反应过程。这是因为,较小的孔径会阻碍浸出液与重金属离子间的接触,而松散的结构则有利于重金属的释放。

    3)烧结砖的物相结构变化。图7为G20配比烧结砖在烧结过程中物相结构的变化。从图7中可以看出,烧结砖主要矿物相为高岭石、石英、莫来石和赤铁矿。烧结砖中的赤铁矿相在烧结过程中并未发生明显变化。高岭石和石英的特征峰随着烧结温度上升而降低,莫来石相的特征峰随着烧结温度的上升而升高。有研究者发现[24-25],烧结砖的结构主要是在烧结条件下形成了莫来石晶相结构。因此可推测,在本研究中的烧结过程中,石英相与高岭石相反应生成了莫来石相。莫来石相是一种常见的硅铝酸盐结构,硬度、强度等力学性能较优异,可以有效地增加烧结砖的抗压强度。

    4)烧结砖的微观形貌变化。图8展现了烧结砖在烧结过程中的微观形貌变化。图8(a)显示了900 ℃下烧结砖的微观形态,可以看出,其表面粗糙,有许多大小不一的球形颗粒离散地分布在烧结砖表面。这说明,此时物料间还未开始发生反应,颗粒间的空隙较大。由图8(b)~图8(d)可以看出,随着烧结温度从1 000 ℃升高到1 200 ℃,离散的颗粒不断减少,颗粒间的空隙变小,孔径不断变小。由此可知,烧结过程是一个内部结构致密化的过程,烧结温度的上升会降低孔径大小。经过图8(e)EDS表征,可确定烧结砖结构主要由Si、Al、O元素组成。这说明,烧结砖中矿物骨架结构主要为硅铝酸盐结构。综合XRD结果(图7)可知,烧结砖的物相结构中,只有莫来石相是硅铝酸盐结构。因此推测,图8烧结砖中的硅铝酸盐结构有可能是莫来石结构。

  • 1)在烧结温度为1 100 ℃、玻璃含量为20%的最优条件下,烧结砖的抗压强度可达124 MPa、吸水率为4.63%;其重金属浸出浓度远低于《危险废物鉴别标准 浸出毒性鉴别》(GB 5085.3-2007)的限值。

    2)烧结砖的固化机理可能是,在烧结过程中,烧结砖内形成以莫来石相为主的硅铝酸盐结构,以导致烧结砖的孔径和孔容积不断减小,使得烧结砖孔隙结构致密化,提高了烧结砖的强度。

参考文献 (25)

返回顶部

目录

/

返回文章
返回