-
氰化提金所带来的环境污染隐患是黄金冶炼行业面临的共性关键难题。据统计,我国每年产出的氰化尾渣数量约为2.45×107 t[1]。氰化尾渣中含有大量的氰化物和有价金属,如果仅仅进行堆存或填埋处理,不仅会污染环境,而且也浪费了资源。因此,氰化尾渣的无害化处理是黄金冶炼行业节能减排及可持续发展面临的关键问题。
氰化尾渣的综合利用主要包括预处理-二次提取金银,综合回收铜、铁、锌,以及无害化处理3大类。前2类侧重于有价资源的综合回收,无害化处理则侧重于氰化物的破坏及重金属离子的去除。综合回收一般流程长、工艺较为复杂,以浮选法为主;无害化处理工艺则比较简单,是解决氰化提金高污染问题最直接最有效的方法之一。目前,氰化尾渣的无害化处理主要包括化学氧化法、电解氧化法、微生物分解法及自然净化法。采用SO2-空气氧化法处理氰化尾渣,以铜为催化剂,SO2和空气的混合物在碱性条件下能将复合氰化物(CNWAD)氧化为氰酸盐(CNO−),同时沉淀除去金属和氰化铁[2-3]。MANORANJAN等[4]的研究结果表明,硫代硫酸盐和活性炭的混合物能够去除废水中的总氰化物和CNWAD。ADJEI等[5]发现,假单胞菌属、芽孢杆菌属等菌种都对氰化物有一定的降解能力。SAARELA等[2]发现,在电化学氧化过程中,氰化物和金属氰络合物首先在阳极被氧化成氰酸根离子,然后进一步分解成无毒的CO2和N2,释放出的金属阳离子在阴极处被还原成金属单质析出。一般情况下,氰化尾渣的无害化处理主要可分为矿浆直接氧化和矿渣洗涤后含氰废水氧化2种。前者氧化剂消耗量大,金属离子以沉淀形式进入渣中,氰化尾渣中的有价金属并没有得到有效的去除;而后者增加了洗涤、液固分离程序,处理过程比较繁杂,洗水量大,处理难度相对增加。因此,研究开发一种工艺简单、成本低、效果好的处理方法是黄金行业创新发展的迫切需要。
本研究中采用矿浆电解技术无害化处理氰化尾渣,将氰化尾渣的洗涤、氰化物的电解氧化、金属离子的电解沉积和矿物的氧化分解集成在同一反应器中进行,利用阳极反应生成的氯气/次氯酸根的强氧化性,破坏含氰离子,氧化包裹矿物,提高氰化尾渣中矿物的单体解离度,以期为后续有价金属的综合利用创造有利条件。
利用矿浆电解技术处理氰化尾渣
Treatment of cyanide tailings with slurry electrolysis technology
-
摘要: 氰化提金所产生的氰化尾渣会带来环境污染隐患,而氰化尾渣的无害化处理是黄金冶炼行业节能减排及可持续发展面临的关键问题。采用一步矿浆电解技术对氰化尾渣进行无害化处理,研究了电解氯氧化处理过程中NaCl添加量、外加电压、极板间距和电解时间等因素对电解氧化效果的影响,并采用高精度矿物解离分析系统对氰化尾渣进行了分析表征。研究结果表明,在NaCl添加量0.5 g、外加电压8 V、极板间距10 mm、电解时间4 h的条件下,氰化尾渣CNT、CN−、Cu、Fe及Zn离子的去除率分别为94.83%、98.94%、85.65%、84.51%与73.85%。随着NaCl添加量的增大,氰化尾渣中黄铁矿、磁黄铁矿与黄铜矿、闪锌矿等包裹矿物的解离度增大,黄铁矿与黄铜矿、闪锌矿的连生比例分别降低了12.04%、20.17%,黄铁矿的自由面积百分比降低了9.40%。电场作用下定向迁移至阳极的Cl−优先氧化生成Cl2/ClO−,与定向迁移至阳极附近的游离氰与金属氰络合离子发生氧化还原反应,使得氰化物被氧化为N2和CO2,部分金属离子则会在阴极发生电沉积反应,从而实现快速、高效无害化处理氰化尾渣的目标。Abstract: In this paper, one-step pulp electrolysis technology is used to detoxify cyanide tailings from gold smelting. NaCl addition amount, applied voltage, electrode spacing and electrolysis time were studied on electrolytic oxidation during direct electrolytic chlorine oxidation. Mineral Liberation Analyzer was used to deeply analyze the oxidation reaction mechanism of cyanide and the main encapsulated minerals during the process. The results show that with NaCl dosage of 0.5 g, the applied voltage of 8.0 V, plate spacing of 10 mm and electrolysis time of 4 h, the removal rates of CNT, CN−, Cu, Fe and Zn in the slurry are 94.83%, 98.94%, 85.65%, 84.51% and 73.85%, respectively. After the treatment, the proportion of pyrite from chalcopyrite and sphalerite continuously reduced by 12.04% and 20.17%, respectively, and free surface percentage content of pyrite reduced by 9.4%. Under the action of an electric field, Cl- migrates to the anode and preferentially oxidizes to Cl2/ClO−, which undergoes a redox reaction with the free cyanide and metal cyanide complex ions that migrate to the vicinity of the anode, resulting in the oxidation of cyanide to N2 and CO2, and some metal ions were precipitated by the electrodeposition reaction at the cathode. This study can achieve the goal of rapid, efficient and harmless treatment of cyanide tailings.
-
Key words:
- cyanidation residue /
- pulp electrolysis /
- oxychlorination /
- anodic oxidation
-
表 1 黄铁矿、磁黄铁矿与闪锌矿、黄铜矿之间的连生比例
Table 1. Relationship between pyrite, pyrrhotite and sphalerite, chalcopyrite
矿物 实验条件 连生比例/% 自由面积百分比/% 与闪锌矿 与黄铜矿 黄铁矿 原氰化尾渣 35.16 20.91 49.67 0.1 g NaCl 30.80 16.91 57.54 0.5 g NaCl 14.99 8.87 40.27 1.0 g NaCl 10.69 5.40 28.26 磁黄铁矿 原氰化尾渣 4.35 11.55 57.50 0.1 g NaCl 3.76 9.55 62.43 0.5 g NaCl 1.47 3.91 32.22 1.0 g NaCl 0.51 1.79 19.80 表 2 最佳条件下氰化尾渣中氰化物及部分金属离子的去除率
Table 2. Removal rates of cyanide and some metal ions in cyanide tailings treated under best conditions
离子种类 滤渣中平均离子含量/(g·t−1) 平均离子去除率/% CNT 90.31 94.83 CN- 3.34 98.94 Cu 26.52 85.65 Zn 949.78 73.85 Fe 2.45 84.51 -
[1] 吕翠翠, 丁剑, 付国燕, 等. 氰化尾渣中有价元素回收现状与展望[J]. 化工学报, 2016, 67(4): 1079-1089. [2] SAARELA K, KUOKKANEN T. Alternative disposal methods for wastewater containing cyanide: Analytical methods for new electrolysis technology developed for total treatment of wastewater containing gold or silver cyanide[C]//Proceedings of the Waste Minimization and Resource Use Optimization Conference. Finland, 2004: 107-121. [3] HOWELL C, CHRISTOPHERSEN D. Three-phase mining effluent treatment plant to meet stringent standards[J]. Engineering and Mining Journal, 2009, 210(3): 48-51. [4] MANORANJAN M, GAUTAM P, KUMAR J B. Cyanide detoxification process[J]. Patent Issued, 2003, 27(6): 32-34. [5] ADJEI M D, OHTA Y. Factors affecting the biodegradation of cyanide by Burkholderia cepacia strain C-3[J]. Journal of Bioscience and Bioengineering, 2000, 89(3): 274-277. doi: 10.1016/S1389-1723(00)88833-7 [6] 中华人民共和国环境保护部, 中华人民共和国国家质量监督检验检疫总局. 危险废物鉴别标准-浸出毒性鉴别标准: GB 5085.3-2007[S]. 北京: 中国环境科学出版社, 2007. [7] 刘纯玮, 冯莉, 冯一纳, 等. 无隔膜法电解制备次氯酸钠及其稳定性研究[J]. 化工学报, 2018, 69(2): 5246-5255. [8] 田建茹, 宁海丽, 王征, 等. 氰化尾渣资源化技术及环境影响应用研究[J]. 环境科学与管理, 2019, 44(6): 24-28. doi: 10.3969/j.issn.1673-1212.2019.06.006 [9] LI X Q, WU X M, JIA Y N, et al. Research on electrolysis parameters on the running effect of sodium hypochlorite reactor[J]. China Rural Water and Hydropower, 2014(11): 135-138. [10] BADRUZZAMAN M, OPPENHEIMER J, ADHAM S. Innovative beneficial reuse of reverse osmosis concentrate using bipolar membrane electrodialysis and electrochlorination processes[J]. Journal of Membrane Science, 2009, 326(2): 392-399. doi: 10.1016/j.memsci.2008.10.018 [11] BERGMANN M E H, KOPARAL A S. Studies on electrochemical disinfectant production using anodes containing RuO2[J]. Journal of Applied Electrochemistry, 2005, 35(12): 1321-1329. doi: 10.1007/s10800-005-9064-0 [12] LIU J H, WANG J J. Summary on tests of membrane polar distance of ion-exchange membrane electrolyzers with high current density[J]. Chlor-Alkali Industry, 2011, 47(2): 20-21. [13] 邱沙, 陈志国, 郭鹏志, 等. 淋洗-废水解毒工艺处理氰化物污染土壤[J]. 环境工程学报, 2017, 11(10): 5737-5742. doi: 10.12030/j.cjee.201701055 [14] 刘会芳, 乔建刚, 田世超, 等. 石墨烯修饰的二氧化钛纳米管电极光电催化去除铜氰络合物研究[J]. 环境科学学报, 2016, 36(6): 2027-2032. [15] 游丽燕, 胡承志, 刘会娟, 等. 富含活性氯与Al13水处理药剂对铜氰络合物去除效能[J]. 环境工程学报, 2014, 8(4): 1391-1396.