-
底泥作为水体污染物的受纳及反向给予者,是维持水体“生态环境效应”的关键组成[1-2]。重金属是底泥中的主要污染物之一,具有难降解及易通过食物链进入人体并富集的特点,会危及生态环境和人群健康[3]。切实做好底泥中重金属污染物的治理工作,已成为迫切需要解决的关键性环境问题。
目前,重金属污染底泥的处置思路分为吸附固定和迁出[4-5]。电动修复技术作为备受关注的迁出技术,具有污染物流动定向控制、二次污染小、处理成本低等优势[6],但其存在的聚焦效应及离子解离阻力问题是阻碍其应用的关键[7]。改进电动修复技术已成为近几年的研究热点。方一丰等[8]的研究结果表明,向阴极电解液中添加EDTA,可与难溶重金属反应生成易溶络合物,从而促进重金属解吸,底泥Pb去除率可提高至82.1%。郑燊燊等[9]采用阳极逼近法缓解聚焦效应,通过溶解阳极区域重金属,使Cd去除率提升了1.5~3.72倍。KIM等[10]提出膜控法,即在电解池和底泥间设置离子交换膜,控制电解液中离子走向,使得Pb和Cd的去除率从22.3%和14.19%分别被提高至91.6%和58.44%。路平等[11]采用切换电极极性的方法,将底泥pH整体调节至中性范围,底泥Cr的去除率从59.04%升高至86.10%。JUAN[12]的研究结果证实,通过硝酸酸化阴极电解液可以使高岭土中Cd的去除率达98%。但添加剂的降解性[13-15]及其对土壤理化性质和微生物群落分布的影响[16]已成为改进电动修复技术规模化应用所面临的新问题。李敏等[17]提出了牺牲铁阳极的电动联用修复技术,即通过增加电解液净化循环装置,以解决聚焦效应,从而使Cr去除率达到了93.4%。
以推进电动修复技术在河湖底泥修复中的工程应用为目标,因应绿色生态修复需求,提出了兼顾重金属元素回收的外置电解液循环电动联合修复技术。本研究中以典型重金属Cu、Zn、Pb、Cr、Ni复合污染底泥为研究对象,依次开展小试模拟及中试模拟实验,以污染底泥重金属含量变化、去除率及能耗为评价指标,并与传统电动修复法进行对比,以明确修复效果,构建修复及净化技术参数。本研究结果可为改进电动修复技术的规模化应用提供参考。
电动联合法对复合重金属污染底泥的修复
Electrokinetic combination remediation of sediment contaminated with complex heavy metals
-
摘要: 河流与湖泊底泥中重金属污染物的清除是实现水体彻底净化及底泥工程利用的关键。以增加了电解液循环的电动联合装置为修复设备,以Cu、Zn、Pb、Cr、Ni污染底泥为研究对象,结合小试模拟和中试模拟实验,明确修复装置对复合污染底泥的净化修复效果,并优化污染物回收的技术参数。结果表明,增设电解液循环有助于增强复合污染底泥中重金属离子的迁出,在小试模拟和中试模型实验中,底泥污染物的去除率分别达到了74%~84%和52%~60%;中试模型实验修复后底泥中的Cr、Cu、Ni和Zn含量分别为140.31、314.47、250.93、464.17 mg·kg−1,低于《土壤环境质量-建设用地土壤污染风险管控标准》(GB 36600-2018) 的筛选值。在两极电解液增设pH调节装置和斜板沉淀池有助于以Cr(OH)3、Cu(OH)2、Ni(OH)2和Zn(OH)2沉淀物的方式对重金属离子进行回收,阳极电解液pH控制在5.0~6.5,阴极电解液pH控制在10时,阴阳极两侧电解液中重金属沉淀回收率均达99%。增加了电解液循环的电动联合修复技术可同步实现底泥污染物的净化及回收。Abstract: The removal of heavy metal contaminations from sediments is the key to purify river water and utilize in engineering. The electrokinetic combination method with electrolyte circulation was designed to remediate sediment polluted with combined heavy metals like Cu, Zn, Pb, Cr and Ni. The bench-scale and pilot-scale experimentation were carried out simultaneously to clarify the purification effect of the remediation technology and to optimize the technical parameters of recovery. The results indicate that the removement of heavy metal ions from sediments is enhanced with the help of electrolyte circulation. The removal rate of pollutions in the bench-scale and pilot-scale experimentation can reach to 74%~84% and 52%~60%. In pilot-scale experimentation, the residual content of Cr, Cu, Ni and Zn is 140.31、314.47、250.93、464.17 mg·kg-1 respectively. These values are all lower than the screening value of Soil Environmental Quality- Risk Control Standard for Soil Contamination of development land Standard (GB 36600-2018). With the help of pH adjustment and the inclined plate sedimentation device, the heavy mental ions in electrolyte can be recycled by precipitation like Cr(OH)3, Cu(OH)2, Ni(OH)2 and Zn(OH)2. The precipitation rate of heavy metals on both sides are all up to 99% when the pH value of anolyte and catholyte is controlled between 5.0~6.5 and 10 respectively. The electrokinetic combination method can synchronously realize the purification and recovery of sediment pollutants.
-
表 1 供试底泥理化性质
Table 1. Physical and chemical properties of sediment
供试底泥种类 含水率/% pH 塑限/% 液限/% 塑性指数 小试实验底泥 11.27 6.89 24 43 19 中试实验底泥 100.2 6.57 28.4 42.3 13.9 表 2 实验设计
Table 2. Experimental design
实验类别 实验编号 土壤类型 是否使用外循环装置 电极材料 阳极 阴极 小试模拟实验 EXP-1 模拟底泥 否 石墨 石墨 EXP-2 模拟底泥 是 石墨 石墨 中试模拟实验 EXP-3 实际底泥 否 石墨 石墨 EXP-4 柠檬酸预处理底泥 是 铁板 石墨 表 3 改进电动修复技术参数及去除效果对比
Table 3. Technical parameters and removal effects of some improved electrokinetic remediation methods
改进方法 电压梯度/
(V·cm−1)电流密度/
(mA·cm−2)底泥类型 修复时间/
h重金属去除率 单位能耗/
(kW·h·kg−1)参考文献 膜控法 − 3 天然土样 300 Cr(95.8%) 395 [22] 阴极pH控制 1 − 天然底泥 168 Ni(70%)、Cu(59%)、
Zn(30%)、Cr(29%)− [21] 阳极逼近法 1 − 人工制备 60 Cd(54.9%) 3.37 [10] 底泥预处理 − 0.8 天然底泥 120 Cu(51.7%)、Zn(46.4%) − [24] 可渗透反应墙 2.5 − 人工制备 120 Pb(80.7%) 1.77 [23] 电动联合法 2 − 天然底泥 120 Cr(60.3%)、Cu(58.8%)、Ni(56.3%)、Zn(52.2%) 0.7 本研究 -
[1] 孙健, 曾磊, 贺珊珊, 等. 国内城市黑臭水体内源污染治理技术研究进展[J]. 净水技术, 2020, 39(2): 77-80+97. [2] 郭广慧, 陈同斌, 杨军, 等. 中国城市污泥重金属区域分布特征及变化趋势[J]. 环境科学学报, 2014, 34(10): 2455-2461. [3] 刘传, 黑亮, 蔡名旋, 等. 河流底泥重金属污染的研究动态[J]. 人民珠江, 2019, 40(10): 86-91. [4] 李敏, 张冠卿, 张会文, 等. 不同污染类型底泥处理方式研究[J]. 人民黄河, 2021, 43(1): 103-108. doi: 10.3969/j.issn.1000-1379.2021.01.020 [5] 韩丁, 黎睿, 汤显强, 等. 污染土壤/底泥电动修复研究进展[J]. 长江科学院院报, 2021, 38(1): 41-50. [6] 陈思儒. Pb污染土壤电动修复系统的优化探究[D]. 秦皇岛: 燕山大学, 2018. [7] 牟海燕, 蒋茜茜, 吴晨伟, 等. 五种土壤胶体对重金属镉的吸附特征研究[J]. 四川大学学报(自然科学版), 2019, 56(6): 1125-1130. [8] 方一丰, 郑余阳, 唐娜, 等. EDTA强化电动修复土壤铅污染[J]. 农业环境科学学报, 2008(2): 612-616. doi: 10.3321/j.issn:1672-2043.2008.02.039 [9] 郑燊燊, 申哲民, 陈学军, 等. 逼近阳极法电动力学修复重金属污染土壤[J]. 农业环境科学学报, 2007(1): 240-245. doi: 10.3321/j.issn:1672-2043.2007.01.047 [10] KIM W S, KIM S O, KIM K W. Enhanced electrokinetic extraction of heavy metals from soils assisted by ion exchange membranes[J]. Journal of Hazardous Materials, 2005, 118(1/2/3): 93-102. doi: 10.1016/j.jhazmat.2004.10.001 [11] 路平, 冯启言, 李向东, 等. 交换电极法强化电动修复铬污染土壤[J]. 环境工程学报, 2009, 3(2): 354-358. [12] JUAN A O, PENG C S, AHMED A S. Simultaneous removal of cadmium from kaolin and catholyte during soil electrokinetic remediation[J]. Desalination, 2012, 300(15): 1-11. [13] 赵倩. GLDA、EDTA-酸复合去除污泥中的重金属及其农用可行性研究[D]. 北京: 北京建筑大学, 2020. [14] ZHOU M, WANG H, ZHU S F, et al. Electrokinetic remediation of fluorine-contaminated soil and its impact on soil fertility[J]. Environmental Science and Pollution Research International, 2015, 22(21): 16907-16913. doi: 10.1007/s11356-015-4909-5 [15] 赵庆节, 沈根祥, 罗启仕, 等. 土壤电动修复中电极切换对土壤微生物群落的影响[J]. 农业环境科学学报, 2009, 28(5): 937-940. doi: 10.3321/j.issn:1672-2043.2009.05.013 [16] RUBEN L V, NAVARRO V, LEON M J, et al. Scale-up on electrokinetic remediation: Engineering and technological parameters[J]. Journal of Hazardous Materials, 2016, 315: 135-143. doi: 10.1016/j.jhazmat.2016.05.012 [17] 李敏, 孙照明, 马聪, 等. 以牺牲阳极强化的电化学联用方法修复铬污染土壤[J]. 环境工程, 2020, 38(9): 224-230. [18] 中华人民共和国水利部. 土工实验方法标准: GB/T 50123-2019[S]. 北京: 中国计划出版社, 2019. [19] 胡艳平, 王振华, 汤显强, 等. 基于EKG电动脱水去除稻田土壤重金属Cd的实验研究[J]. 长江科学院院报, 2019, 36(5): 23-27. [20] 王业耀, 孟凡生, 陈锋. 阴极pH控制对污染土壤电动修复效率的影响[J]. 环境科学研究, 2007(2): 36-40. doi: 10.3321/j.issn:1001-6929.2007.02.008 [21] 张艳杰, 鲁顺保, 彭桂群. 阴极pH控制对电动去除电镀污泥重金属的影响[J]. 环境化学, 2013, 32(3): 492-497. [22] 张敏玲. 应用双极膜辅助电动法去除铬渣中铬的研究[D]. 福州: 福建师范大学, 2018. [23] 许佳慧, 周海东, 吕叔锋, 等. EK-PRB对Pb(Ⅱ)污染土壤的修复效果研究[J]. 上海理工大学学报, 2020, 42(4): 368-374+403. [24] 裴冬冬, 鲁聪立, 杨韦玲, 等. 柠檬酸强化电动去除和回收污泥中的重金属[J]. 环境工程学报, 2017, 11(6): 3789-3796.