-
垃圾焚烧厂产生的NOx主要来自垃圾中N元素(为了与其他文献保持一致,后简称“燃料N”)的转化[1]。目前国内多地已大幅收严垃圾焚烧厂的NOx排放限值,但超量投加脱硝药剂会造成氨逃逸的增加[2-3],而选择性催化还原(selective catalytic reduction,SCR)脱硝工艺的成本又很高,因此,亟需研究垃圾焚烧生成NOx的影响因素,以及在垃圾分类背景下的源头防控机理,并进一步开发低成本、低风险的NOx减排技术。
尽管20世纪90年代已有学者提出流化床焚烧炉中燃料N可能的转化路径[4-5],但国内外有关垃圾焚烧厂NOx源头防控的研究仍然有限。一方面,此类研究局限于模拟垃圾的小试实验,内容包括模拟燃料中H/N、O/N等元素比与燃料N转化率之间的关系,考察温度、升温速率对燃料N转化动力学的影响[6-7],以及风量、温度等因素对中间产物HCN、NH3的影响[8-9];另一方面,此类局限于对各反应阶段影响因素的研究尚不成系统。燃料N的转化包含3个反应阶段。在热解阶段,燃料中蛋白质、环二肽、吡啶等含氮杂环化合物需要较高的热解温度[10],而热解温度在700 ℃以上时有利于缩短反应时间[7]、提高热解产物中HCN/NH3的比例[9];在氧化阶段,氧气和水均可作氧化剂[6, 11]将NH3和HCN氧化为NO和少量的N2O,增加反应供氧量会拉动前一阶段NH3和HCN的生成,从而促进NO生成[8, 12-14];在第3阶段,已生成的NO会在还原气体氛围或焦炭表面还原为N2 [15-17],且焦炭表面的还原效率更高,故燃料固定碳含量越高则其N转化率越低。总体而言,尚未系统地探明垃圾焚烧实际工程中燃料N转化的全过程机理,不足以指导实际工程中的NOx防控。因此,多数焚烧厂对NOx的源头防控仅以调控风量和氧含量为主,未能结合垃圾的成分特征提出更优的解决方案。
本研究基于现有垃圾焚烧过程中燃料N转化的3个阶段特征,利用多家垃圾焚烧厂的垃圾成分特征、运行工况及焚烧生成NOx的质量浓度(简称“NOx生成浓度”)的成对数据,以期探明垃圾焚烧实际工程中燃料N转化的全过程机制,将转化路径图从定性推进到半定量,分析了垃圾分类背景下分离厨余垃圾对NO x 源头防控的作用,为垃圾焚烧厂实现低成本、低风险的NOx减排提供参考。
垃圾分类背景下厨余垃圾剔除比例对生活垃圾焚烧厂NOx排放 的影响
Influencing of kitchen waste removal ratio on NOx emission of domestic waste incineration plant in the era of waste classification
-
摘要: 收集了生活垃圾焚烧厂关停SNCR时燃料的N排放数据以及与之对应的工况和燃料特性数据,并分析各影响因素对燃料N转化过程中不同环节的影响机理。结果表明,在工业化生产中,燃料N转化率与炉温、垃圾含水率之间不存在显著联系,而随N元素含量和固定碳含量的增加而降低,随过剩空气系数、H/N、O/N的增加而升高。据此提出了符合实际生产条件的燃料N转化路径图。该路径图表明,燃料特性对燃料N转化率和NOx生成浓度起到了决定性作用,并进一步量化了H/N和固定碳含量这2个参数与燃料N转化率之间的关系。提出通过将厨余垃圾从生活垃圾分出的方法来减少NOx生成,并以国内典型城市为例,研究了分出不同比例厨余垃圾的情况下,燃料N转化率和NOx生成浓度的变化趋势。本研究表明通过分出厨余垃圾的方法,能够降低垃圾焚烧厂的脱硝成本及氨逃逸风险,可为进一步控制生活垃圾焚烧过程中的NOx排放提供参考。Abstract: To analyze the factors in different process of fuel-N conversion, fuel-N emission data and corresponding operating conditions and fuel characteristics data of the waste incineration plant were collected when SNCR is closed. The results showed that no significant correlation between the fuel-N conversion efficiency and furnace temperature and moisture content in industrial production. The fuel-N conversion efficiency decreased with the nitrogen content and fixed carbon content, yet increased with the excess air ratio, H/N and O/N weight ratio. The fuel-N conversion pathway under the conditions of industrial production was proposed. The fuel characteristics played a crucial role in the fuel-N conversion efficiency and NOx production. The relationship between the fuel-N conversion and H/N weight ratio and char content was further quantified. Separating kitchen waste from municipal solid waste (MSW) was proposed as an effective method to reduce NOx emission, and the evolving trends of fuel-N conversion efficiency and NOx emission were estimated under the different scenarios of kitchen waste separation rates in the representative cities in China. The estimation indicated that the cost of denitration and the risk of ammonia escape in waste incineration plants could be reduced by separating kitchen waste from MSW.
-
Key words:
- waste incineration /
- fuel-N conversion /
- source control /
- waste classification /
- kitchen waste
-
表 1 燃料N转化率及其可能的影响因素
Table 1. fuel-N conversion and possible influencing factors
焚烧厂编号 工况 垃圾特性参数 燃料N转化率η/% T/℃ EA M/% V/% FC/% R/% N/% H/N O/N A 1 049.0 3.09 50.99 42.09 6.52 13.42 0.19 6.77 37.03 6.31 B 975.8 1.96 50.21 39.21 6.55 14.32 0.55 4.65 19.51 3.48 B 1 006.0 2.49 50.21 39.21 6.55 14.32 0.55 4.65 19.51 4.16 B 1 036.9 2.45 50.21 39.21 6.55 14.32 0.55 4.65 19.51 4.35 C 986.2 2.59 52.1 41.49 6.49 13.53 0.42 6.57 30.02 6.98 D 1 116.6 1.25 54.03 40.84 7.19 14.97 0.53 5.36 25.79 6.14 D 1 087.7 1.25 54.03 40.84 7.19 14.97 0.53 5.36 25.79 5.66 E 1 015.0 1.48 54.07 33.71 6.64 16.47 0.53 4.43 23.42 7.09 F 1 016.8 1.22 55.32 43.90 6.65 13.15 0.87 2.84 12.1 4.14 G 972.6 1.67 55.03 39.21 10.50 21.12 1.46 1.16 6.21 1.87 G 1 005.2 1.72 55.03 39.21 10.50 21.12 1.46 1.16 6.21 1.94 G 996.9 1.93 55.03 39.21 10.50 21.12 1.46 1.16 6.21 2.22 H 1 040.0 1.58 42.06 35.80 6.68 15.72 1.35 3.01 10.37 5.01 H 972.0 1.51 42.06 35.80 6.68 15.72 1.35 3.01 10.37 4.53 注:垃圾特性参数分别为含水率(M)、挥发分含量(V)、固定碳含量(FC)、固定碳占可燃分的百分比(R)、N元素含量(N)、H元素与N元素的质量比(H/N)、O元素与N元素的质量比(O/N)。 表 2 10个参数Spearman秩相关系数的显著性水平
Table 2. 10 Correlation significance analysis of variables
T EA M V FC R N H/N O/N η T 0.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 EA 0.39 0.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 M 0.98 0.21 0.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 V 0.21 0.77 0.20 0.00 1.00 0.30 1.00 1.00 1.00 1.00 FC 0.83 0.04 0.07 0.42 0.00 0.02 0.18 0.20 0.25 1.00 R 0.29 0.39 0.41 0.01 0.00 0.00 0.36 0.30 0.30 1.00 N 0.07 0.50 0.44 0.12 0.00 0.01 0.00 0.00 0.00 0.01 H/N 0.09 0.26 0.13 0.11 0.01 0.01 0.00 0.00 0.00 0.09 O/N 0.06 0.52 0.43 0.08 0.01 0.01 0.00 0.00 0.00 0.01 η 0.08 0.95 0.28 0.74 0.05 0.19 0.00 0.00 0.00 0.00 序号 反应方程式 反应速率方程 动力学参数 1 ${\rm{HCN + O_{2}}} \to {\text{CNO}}$ $ R_{1} = k_{1}C_{\rm{O_{2}}}C{\rm_{HCN}} $ $k_{1}{\text{ = } }2.14 \times {10^5}\exp \left( { - \dfrac{{10\,000} }{T} } \right)$ 2 ${\text{CNO + 0}}{\rm{.5O_{2}}} \to {\text{NO + CO}}$ $R_{2} = k_{1}C_{\rm{O_{2}}}C{\rm_{HCN}} \times \left( {\dfrac{1}{{1 + k_{5}C{\rm_{NO}}}}} \right)$ — 3 ${\rm{NH_{3} + 1}}{\rm{.25O_{2}}} \to {\text{NO + 1}}{\rm{.5H_{2}O}}$ $R_{3} = k_{3}C{\rm_{O_{2}}}C{\rm_{NH_{3}}}$ $k_{3}{\text{ = } }5.07 \times {10^{14} }\exp \left( { - \dfrac{ {38\,160} }{T} } \right)$ 4 ${\rm{2NH_{3} + 1}}{\rm{.5O_{2}}} \to {\rm{N_{2} + 1}}{\rm{.5H_{2}O}}$ $R_{4} = k_{4}C{\rm_{NH_{3} } }\dfrac{ {C_{\rm{O_{2} } } }}{ {k{\rm{_{a} + } }C{\rm_{O_{2} } } }}$ $\begin{gathered} k_{4}{\text{ = } }2.89 \times {10^6}\exp \left( { - \dfrac{ {10\,000} }{T} } \right) \hfill \\ k{\rm{_{a} = } }0.054 \hfill \\ \end{gathered}$ 5 ${\text{CNO + NO}} \to {\rm{N_{2} + CO + 0}}{\rm{.5O_{2}}}$ $R_{5} = k_{1}C{\rm_{O_{2}}}C{\rm_{HCN}} \times \left( {\dfrac{{k_{5}}}{{1 + k_{5}C{\rm_{NO}}}}} \right)$ $k_{5}{\text{ = } }1.02 \times {10^9}\exp \left( { - \dfrac{ {25\,460} }{T} } \right)$ 6 ${\rm{NO + NH_{3} + 0}}{\rm{.25O_{2}}} \to {\rm{N_{2} + 1}}{\rm{.5H_{2}O}}$ $R_{6} = k_{6}C_{ {\text{NO} } }^{0.5}C_{\rm{NH_{3} } }^{0.5}C_{ {\rm{O_2} } }^{0.5}{0.5}$ $k_{6}{\text{ = } }1.1 \times {10^{12} }\exp \left( { - \dfrac{ {27\,680} }{T} } \right)$ 7 ${\text{NO + CO}} \to 0.5{\rm{N_{2} + CO_{2}}}$ $R_{7} = k_{7} \times \left( {\dfrac{{k{\rm_{b}}C{\rm_{NO}}\left( {k{\rm_{c}}C{\rm_{CO + }}k{\rm_{d}}} \right)}}{{k{\rm_{b}}C{\rm_{NO + }}k{\rm_{c}}C{\rm_{CO}} + k{\rm_{d}}}}} \right)$ $\begin{array}{l}k_{7}\text{=}1.952\times {10}^{10}\mathrm{exp}\left(-\dfrac{19\,000}{T}\right)\\ k\rm{_{b}=}0.186,\textit {k}\rm{_{c}=}0.007\,86,\\ k\rm{_{d}=}0.002\,53\end{array}$ 8 ${\text{NO + C}} \to 0.5{\rm{N_{2} + CO}}$ $R_{8} = k_{8}C{\rm_{NO} }N{\rm_{char} }\text{π} {\text{d} }_{ {\rm_{char} } }^2$ $k_{8}{\text{ = } }5.85 \times {10^7}\exp \left( { - \dfrac{ {12\,000} }{T} } \right)$ 9 ${\rm{4NO + CH_{4}}} \to 2{\rm{N_{2} + 2H_{2}O + CO_{2}}}$ $R_{9} = k_{9}C{\rm_{CH_4 } }C{\rm_{NO} }$ $k_{9}{\text{ = } }2.7 \times {10^6}\exp \left( { - \dfrac{ {9\,466} }{T} } \right)$ 表 4 H/N元素比与热解产物对应表
Table 4. Correspondence table of H/N weight ratio and pyrolysis product
% 表 5 典型城市中垃圾各组分的质量分数
Table 5. The composition of municipal solid waste in several typical cities
% 城市 厨余垃圾 纸类 橡塑类 纺织类 木竹类 一线城市A1 61.11 9.46 19.95 2.80 1.48 一线城市A2 52.42 8.95 16.77 8.43 1.98 二线城市B1 52.41 9.17 17.06 3.38 2.47 二线城市B2 64.48 6.71 10.12 1.22 0.05 -
[1] LU J W, ZHANG S, HAI J, et al. Status and perspectives of municipal solid waste incineration in China: A comparison with developed regions[J]. Waste Management, 2017, 69: 170-186. doi: 10.1016/j.wasman.2017.04.014 [2] XU C, HONG J, CHEN J, et al. Is biomass energy really clean? An environmental life-cycle perspective on biomass-based electricity generation in China[J]. Journal of Cleaner Production, 2016, 133: 767-776. doi: 10.1016/j.jclepro.2016.05.181 [3] 方熙娟. SNCR-SCR脱硝技术在500t/d垃圾焚烧炉的应用研究 [D]. 北京: 清华大学, 2015. [4] JENSEN A, JOHNSSON J E, ANDRIES J, et al. Formation and reduction of NOx in pressurized fluidized bed combustion of coal[J]. Fuel, 1995, 74(11): 1555-1569. doi: 10.1016/0016-2361(95)00155-X [5] DESROCHES-DUCARNE E, DOLIGNIER J C, MARTY E, et al. Modelling of gaseous pollutants emissions in circulating fluidized bed combustion of municipal refuse[J]. Fuel, 1998, 77(13): 1399-1410. doi: 10.1016/S0016-2361(98)00060-X [6] LIU X, LUO Z, YU C, et al. Conversion mechanism of fuel-N during pyrolysis of biomass wastes[J]. Fuel, 2019, 246: 42-50. doi: 10.1016/j.fuel.2019.02.042 [7] RIAZA J, MASON P, JONES J M, et al. High temperature volatile yield and nitrogen partitioning during pyrolysis of coal and biomass fuels[J]. Fuel, 2019, 248: 215-220. doi: 10.1016/j.fuel.2019.03.075 [8] SUKSANKRAISORN K, PATUMSAWAD S, VALLIKUL P, et al. Co-combustion of municipal solid waste and Thai lignite in a fluidized bed[J]. Energy Conversion and Management, 2004, 45(6): 947-962. doi: 10.1016/S0196-8904(03)00187-0 [9] HANSSON K M, SAMUELSSON J, TULLIN C, et al. Formation of HNCO, HCN, and NH3 from the pyrolysis of bark and nitrogen-containing model compounds[J]. Combustion and Flame, 2004, 137(3): 265-277. doi: 10.1016/j.combustflame.2004.01.005 [10] HANSSON K M, SAMUELSSON J, AMAND L E, et al. The temperature's influence on the selectivity between HNCO and HCN from pyrolysis of 2, 5-diketopiperazine and 2-pyridone[J]. Fuel, 2003, 82(18): 2163-2172. doi: 10.1016/S0016-2361(03)00206-0 [11] YAMAMOTO T, KUWAHARA T, NAKASO K, et al. Kinetic study of fuel NO formation from pyrrole type nitrogen[J]. Fuel, 2012, 93: 213-220. doi: 10.1016/j.fuel.2011.09.032 [12] CHYANG C S, WU K T, LIN C S. Emission of nitrogen oxides in a vortexing fluidized bed combustor[J]. Fuel, 2007, 86(1): 234-243. [13] CHAIKLANGMUANG S, JONES J M, POURKASHANIAN M, et al. Conversion of volatile-nitrogen and char-nitrogen to NO during combustion[J]. Fuel, 2002, 81(18): 2363-2369. doi: 10.1016/S0016-2361(02)00175-8 [14] ROGAUME T, JABOUILLE F, TORERO J L. Effect of excess air on grate combustion of solid wastes and on gaseous products[J]. International Journal of Thermal Sciences, 2008, 48(1): 165-173. [15] GLARBORG P. Fuel nitrogen conversion in solid fuel fired systems[J]. Progress in Energy and Combustion Science, 2003, 29(2): 89-113. doi: 10.1016/S0360-1285(02)00031-X [16] ROGAUME T, KOULIDIATI J, RICHARD F, et al. A model of the chemical pathways leading to NOx formation during combustion ofmixtures of cellulosic and plastic materials[J]. International Journal of Thermal Sciences, 2006, 45(4): 359-366. doi: 10.1016/j.ijthermalsci.2005.07.005 [17] DU H L, ZHANG M, ZHANG Y, et al. Characteristics of NO reduction by char layer in fixed-bed coal combustion[J]. Energy Sources, Part A:Recovery, Utilization, and Environmental Effects, 2017, 39(10): 963-970. doi: 10.1080/15567036.2016.1249810 [18] 张利田, 卜庆杰, 杨桂华, 等. 环境科学领域学术论文中常用数理统计方法的正确使用问题[J]. 环境科学学报, 2007,27(1): 171-173. doi: 10.3321/j.issn:0253-2468.2007.01.030 [19] LEICHTNAM J N. The behaviour of fuel-nitrogen during fast pyrolysis of polyamide at high temperature[J]. Journal of Analytical and Applied Pyrolysis, 2000, 55(2): 255-268. doi: 10.1016/S0165-2370(00)00075-9 [20] 詹昊, 张晓鸿, 阴秀丽, 等. 生物质热化学转化过程含N污染物形成研究[J]. 化学进展, 2016, 28(12): 1880-1890. doi: 10.7536/PC160438 [21] ZHANG G, ZHU C, GE Y, et al. Fluidized bed combustion in steam-rich atmospheres for high-nitrogen fuel: Nitrogen distribution in char and volatile and their contributions to NOx[J]. Fuel, 2016, 186: 204-214. doi: 10.1016/j.fuel.2016.08.071 [22] CHEN G, YANG R, CHENG Z, et al. Nitric oxide formation during corn straw/sewage sludge co-pyrolysis/gasification[J]. Journal of Cleaner Production, 2018, 197: 97-105. doi: 10.1016/j.jclepro.2018.06.073 [23] ZHANG H, ZHANG X, SHAO J, et al. Effect of temperature on the product characteristics and fuel-nitrogen evolution during chromium-tanned solid wastes pyrolysis polygeneration[J]. Journal of Cleaner Production, 2020, 254: 120020. doi: 10.1016/j.jclepro.2020.120020 [24] CHEN H, WANG Y, XU G, et al. Fuel-N evolution during the pyrolysis of industrial biomass wastes with high nitrogen content[J]. Energies, 2012, 5(12): 5418-5438. doi: 10.3390/en5125418 [25] HANSSONA K M, MANDA L E A, HABERMANNB A, et al. Pyrolysis of poly-L-leucine under combustion-like conditions[J]. Fuel, 2003, 82: 653-660. doi: 10.1016/S0016-2361(02)00357-5 [26] LU G, LIU H, ZHANG Q, et al. Nitrogen conversion during the homogeneous and heterogeneous stages of sludge steam gasification: Synergistic effects of Fenton's reagent and CaO conditioner[J]. Fuel, 2019, 241: 1109-1116. doi: 10.1016/j.fuel.2018.12.109 [27] ZHAN H, ZHUANG X, SONG Y, et al. Formation and regulatory mechanisms of N-containing gaseous pollutants during stage-pyrolysis of agricultural biowastes[J]. Journal of Cleaner Production, 2019, 236: 117706. doi: 10.1016/j.jclepro.2019.117706 [28] 孙洪春, 曲振平. 选择性催化氧化含氨废气为氮气的研究进展[J]. 科学通报, 2020, 65(26): 2835-2865. [29] LI H, HAN J, ZHANG N, et al. Effects of high-temperature char layer and pyrolysis gas on NOx reduction in a typical decoupling combustion coal-fired stove[J]. Journal of Thermal Science, 2019, 28(1): 40-50. doi: 10.1007/s11630-018-1022-3 [30] LIU H, MA X, LI L, et al. The catalytic pyrolysis of food waste by microwave heating[J]. Bioresource Technology, 2014, 166: 45-50. doi: 10.1016/j.biortech.2014.05.020 [31] 许崇涛, 曹阳, 武桐, 等. 城市生活垃圾焚烧过程中NOx的生成与控制研究进展[J]. 工业锅炉, 2014(4): 1-6. doi: 10.3969/j.issn.1004-8774.2014.04.001 [32] 刘富强, 朱兆华. 普通工业垃圾燃烧特性实验研究[J]. 环境科学与技术, 2008, 31(8): 113-116. doi: 10.3969/j.issn.1003-6504.2008.08.031