-
近年来,我国城市化进程和产业转型日益加快,许多企业(尤其是化工、农药、冶金等污染企业)为落实国家政策陆续迁至郊区、工业园区或关闭停产,致使城区内遗留了大量废弃的工业污染场地[1-3]。各类土壤污染物中,有机污染物的种类繁多,其具有毒性强、易致癌、易迁移等特点[4-5],对人群健康和生态环境的潜在危害大,应优先控制[6]。因此,针对有机污染场地的治理和修复工作已刻不容缓。
热脱附技术是一种近年来被广泛采用的有机污染场地修复技术,该技术通过加热升温使土壤中的有机污染物挥发、分离并对其集中处理[7]。目前,采用热脱附技术能将土壤加热至500 ℃以上(超过大多数有机污染物的沸点)[8]。该方法具有适用范围广、修复时间短、修复效果好等优点[7],但因为加热土壤需消耗大量能源,所以该技术的应用成本较高[9]。在土壤热脱附修复工程中,只有精确掌握污染场地土壤的热物性以及污染物迁移和相变对场地温度分布的影响规律,才能有效指导加热井的合理布置以及加热功率的即时调整,进而找到降低能耗和成本的途径。目前,关于土壤修复的研究主要关注技术联用、反应机理和脱除效率等[10-12],鲜有土壤热物性对热脱附过程传热和能耗的研究。同时,虽已有大量关于土壤热物性的研究,但其背景多为农业、林业和地源热泵等领域,关于有机污染场地土壤热物性的数据较少。
为了解有机污染场地土壤热物性的规律,本研究以苏州市某修复场地示范区域内的表层土壤为研究对象,用探针式导热仪探究了有机污染土壤在热脱附前后的热导率差异以及表观密度状态(松散或压实)和温度(10~90 ℃)对热脱附后土壤热导率的影响规律。
有机污染黏壤土热脱附后热导率的变化特性
Changes in thermal conductivity of organic contaminated clay loam after thermal desorption
-
摘要: 为探究有机污染土壤热脱附后热导率的变化特性,采集了苏州市某原位热脱附修复场地编号为G01、G06和G09的示范区域深度为0~3 m的土壤(系黏壤土),并利用实验室的小型热脱附装置在350 ℃的条件下对污染土壤试样进行了1 h热脱附;对其热脱附前后的粒径分布以及热脱附后的化学组成(矿物质和有机质的质量分数)进行了表征,并用探针式导热仪测试了其热导率。结果表明,在高温热脱附处理过程中,土壤颗粒的团聚作用比破碎作用更强,导致热脱附后土壤粒径增大;当密度、含水率和温度等条件保持一致时,热脱附后土壤的热导率较场地原位测试时无显著变化,平均值在1.4~1.5 W·(m·℃)–1;随温度升高或干密度增大,土壤热导率均增大,且干密度对热导率的影响比温度更加显著。此外,3个采样区域的土壤热导率呈现一定的差异,其中,G06区域的热导率最大而G01区域最小,最多相差0.055 W·(m·℃)–1,这主要是由不同区域土壤中矿物质(其热导率是有机质的3倍以上)质量分数的变化所致。本研究结果可为实际热修复场地的地层温升预测提供参考。Abstract: In order to explore the changes in thermal conductivity of organic contaminated soil after thermal desorption, soils (clay loam) with a depth of 0~3 m at the demonstration areas numbered G01, G06 and G09 in an in-situ thermal desorption remediation site in Suzhou City were collected, and then were deal with thermal desorption at 350 ℃ for 1 h by the lab-scale thermal desorption apparatus. Particle size distributions before and after thermal desorption and chemical compositions (mass percentage of minerals and organic matters) after thermal desorption of the soil samples were characterized, and the thermal conductivity was measured by a probe-type thermal conductivity meter. The results showed that the increase of soil particle size after thermal desorption was due to the fact that the agglomeration effect of soil particles was stronger than the fragmentation effect during the high-temperature treatment. When density, moisture content and temperature were kept constant, the thermal conductivity of the soil samples after thermal desorption had no significant changes compared with the in-situ measured results, with the average results being 1.4~1.5 W·(m·℃)−1 Soil thermal conductivity increased with either increasing the temperature or increasing the dry density, and the effect of dry density was more pronounced. In addition, there was a variation of the thermal conductivity of soil samples among the three areas, where G06 area was the highest and G01 area was the lowest with the maximum discrepancy being 0.055 W·(m·℃)−1. Such variation was mainly due to the changes in mass percentage of minerals, which had a thermal conductivity that was over 3 times greater than that of organic matters. These results could provide a reference for predicting the temperature rise in practical thermal remediation sites.
-
Key words:
- organic contamination /
- clay loam /
- thermal desorption /
- thermal conductivity
-
表 1 表层土壤的主要物性参数
Table 1. Main physical properties of soil samples in superficial layer
采样区域 ρw/(g·cm−3) ρd/(g·cm−3) ρg/(g·cm−3) e θ/% Sr/% pH G01 1.85 1.40 2.75 0.97 32.6 92.0 7.40 G06 1.83 1.36 2.75 1.03 35.0 94.0 7.86 G09 1.91 1.52 2.75 0.81 25.8 87.0 7.15 注:ρw为湿密度,ρd为干密度,ρg为土粒比重,e为孔隙比,θ为质量含水率,Sr为饱和度。 表 2 热脱附前后土壤试样的污染物浓度
Table 2. Concentrations of contaminants in soil samples before and after thermal desorption
污染物名称 检出下限/(mg·kg−1) 热脱附前质量分数/(mg·kg−1) 热脱附后质量分数/(mg·kg−1) G01 G06 G09 G01 G06 G09 苯 0.05 3.56 ND ND ND ND ND 乙苯 0.05 1.48 0.39 ND ND ND ND 间/对-二甲苯 0.05 5.29 0.35 ND ND ND ND 邻-二甲苯 0.05 8.50 0.07 ND ND ND ND 1,2,4-三甲苯 0.05 7.41 0.13 ND ND ND ND 正丁基苯 0.05 3.27 0.07 ND ND ND ND 正丙苯 0.05 ND 0.06 ND ND ND ND 氯苯 0.05 0.44 ND 0.60 ND ND ND 三氯甲烷 0.05 1.31 ND ND ND ND ND 三氯乙烯 0.05 6.03 ND ND ND ND ND 石油烃C6~C20 6 7 15 19 ND ND ND 注:ND表示该污染物浓度低于仪器检出下限。 表 3 热脱附前后土壤试样的粒径分布
Table 3. Particle size distribution of soil samples before and after thermal desorption
热脱附
状态采样
区域颗粒质量分数/% 黏粒
<0.005 mm粉粒
0.005~0.075 mm细砂粒
0.075~0.250 mm中砂粒
0.250~0.500 mm粗砂粒
0.500~2.000 mm热脱附前 G01 30.6 62.9 6.5 0 0 G06 34.0 64.8 1.2 0 0 G09 44.2 55.3 0.5 0 0 热脱附后 G01 14.4 60.8 24.1 0.7 0 G06 12.9 60.8 25.1 1.2 0 G09 14.5 63.1 21.5 0.9 0 表 4 热脱附后土壤试样的热导率-温度拟合公式
Table 4. Thermal conductivity-temperature fitting formula of the soil samples after thermal desorption
采样区域 表观密度状态 λ-T拟合公式 R2 G01 松散 λ = 7×10−4T + 0.127 0.979 压实 λ = 6×10−4T + 0.176 0.946 G06 松散 λ = 1×10-3T + 0.129 0.988 压实 λ = 1×10−3T + 0.185 0.980 G09 松散 λ = 7×10−4T + 0.146 0.980 压实 λ = 1×10−3T + 0.175 0.970 表 5 热脱附后土壤试样的化学组成
Table 5. Chemical compositions of the soil samples after thermal desorption
采样区域 矿物质质量分数/% 有机质
质量分数/%其他物质
质量分数/%石英 钾长石 斜长石 方解石 菱铁矿 辉石 云母 黏土 总计 G01 62.55 3.13 10.38 1.43 0 0 0 12.00 89.49 8.26 2.25 G06 57.70 4.15 10.52 1.94 0 1.11 1.12 15.88 92.42 5.13 2.55 G09 59.58 3.18 8.81 1.00 0.91 0.82 1.00 15.53 90.83 6.75 2.42 注:其他物质指土壤中的空气、自由水等。 -
[1] YANG H, HUANG X J, THOMPSON J R, et al. China's soil pollution: Urban brownfields[J]. Science, 2014, 344: 691-692. [2] 骆永明. 中国污染场地修复的研究进展、问题与展望[J]. 环境监测管理与技术, 2011, 23(3): 1-6. doi: 10.3969/j.issn.1006-2009.2011.03.002 [3] 宋昕, 林娜, 殷鹏华. 中国污染场地修复现状及产业前景分析[J]. 土壤, 2015, 47(1): 1-7. [4] SAKSHI, SINGH S K, HARITASH A K. Polycyclic aromatic hydrocarbons: Soil pollution and remediation[J]. International Journal of Environmental Science and Technology, 2019, 16: 6489-6512. doi: 10.1007/s13762-019-02414-3 [5] 焦文涛, 韩自玉, 吕正勇, 等. 土壤电阻加热技术原位修复有机污染土壤的关键问题与展望[J]. 环境工程学报, 2019, 13(9): 2027-2036. doi: 10.12030/j.cjee.201905138 [6] 邓忆凯, 韩彪, 黄世友, 等. 挥发性有机物污染土壤修复技术研究[J]. 科技创新与应用, 2020(28): 163-164. [7] O'BRIEN P L, DESUTTER T M, CASEY F X M, et al. Thermal remediation alters soil properties: A review[J]. Journal of Environmental Management, 2018, 206: 826-835. doi: 10.1016/j.jenvman.2017.11.052 [8] 缪周伟, 吕树光, 邱兆富, 等. 原位热处理技术修复重质非水相液体污染场地研究进展[J]. 环境污染与防治, 2012, 34(8): 63-68. doi: 10.3969/j.issn.1001-3865.2012.08.014 [9] 李书鹏, 焦文涛, 李鸿炫, 等. 燃气热脱附技术修复有机污染场地研究与应用进展[J]. 环境工程学报, 2019, 13(9): 2037-2048. doi: 10.12030/j.cjee.201905108 [10] 夏天翔, 姜林, 魏萌, 等. 焦化厂土壤中PAHs的热脱附行为及其对土壤性质的影响[J]. 化工学报, 2014, 65(4): 1470-1480. doi: 10.3969/j.issn.0438-1157.2014.04.043 [11] 隋红, 姜斌, 黄国强, 等. 生物通风修复含石油污染物土壤过程[J]. 化工学报, 2004, 55(9): 1488-1492. doi: 10.3321/j.issn:0438-1157.2004.09.027 [12] 杨悦锁, 陈煜, 李盼盼, 等. 土壤、地下水中重金属和多环芳烃复合污染及修复研究进展[J]. 化工学报, 2017, 68(6): 2219-2232. [13] MACKAY D, WAN Y S, MA K C, et al. Handbook of physical-chemical properties and environmental fate for organic chemicals[M]. Boca Raton: CRC Press Inc., 2006. [14] 陈王若尘. 添加剂对焦化污染土壤性质及热脱附行为影响研究[D]. 杭州: 浙江大学, 2020. [15] ARARUNA J T, PORTES V L O, SOARES A P L, et al. Oil spills debris clean up by thermal desorption[J]. Journal of Hazardous Materials, 2004, 110(1/2/3): 161-171. doi: 10.1016/j.jhazmat.2004.02.054 [16] 赵海波, 郑楚光. 多分散结构团聚体烧结的数值模拟[J]. 中国电机工程学报, 2012, 32(8): 58-63. [17] HIRAIWA Y, KASUBUCHI T. Temperature dependence of thermal conductivity of soil over a wide range of temperature (5-75℃)[J]. European Journal of Soil Science, 2010, 51(2): 211-218. [18] 陈正发, 朱合华, 闫治国, 等. 高温环境下土的导热系数研究[J]. 地下空间与工程学报, 2016, 12(6): 1532-1538. [19] 黄昌勇, 徐建明. 土壤学[J]. 3版. 北京:中国农业出版社, 2010. [20] 肖衡林, 吴雪洁, 周锦华. 岩土材料导热系数计算研究[J]. 路基工程, 2007(3): 54-56. doi: 10.3969/j.issn.1003-8825.2007.03.026 [21] JOHANSEN O. Thermal conductivity of soils[D]. Trondheim: University of Trondheim,1975. [22] ABU-HAMDEH N H, REEDER R C. Soil thermal conductivity: Effects of density, moisture, salt concentration, and organic matter[J]. Soil Science Society of America Journal, 2000, 64(4): 1285-1290. doi: 10.2136/sssaj2000.6441285x