我国突发环境事件演变态势、应对经验及防控建议

虢清伟, 邴永鑫, 陈思莉, 黄大伟, 胡立才, 常莎, 张政科. 我国突发环境事件演变态势、应对经验及防控建议[J]. 环境工程学报, 2021, 15(7): 2223-2232. doi: 10.12030/j.cjee.202009193
引用本文: 虢清伟, 邴永鑫, 陈思莉, 黄大伟, 胡立才, 常莎, 张政科. 我国突发环境事件演变态势、应对经验及防控建议[J]. 环境工程学报, 2021, 15(7): 2223-2232. doi: 10.12030/j.cjee.202009193
GUO Qingwei, BING Yongxin, CHEN Sili, HUANG Dawei, HU Licai, CHANG Sha, ZHANG Zhengke. Pattern of evolution, experience of response, and suggestions of prevention and control of environmental emergencies in China based on typical case studies[J]. Chinese Journal of Environmental Engineering, 2021, 15(7): 2223-2232. doi: 10.12030/j.cjee.202009193
Citation: GUO Qingwei, BING Yongxin, CHEN Sili, HUANG Dawei, HU Licai, CHANG Sha, ZHANG Zhengke. Pattern of evolution, experience of response, and suggestions of prevention and control of environmental emergencies in China based on typical case studies[J]. Chinese Journal of Environmental Engineering, 2021, 15(7): 2223-2232. doi: 10.12030/j.cjee.202009193

我国突发环境事件演变态势、应对经验及防控建议

    作者简介: 虢清伟(1974—),男,博士,正高级工程师。研究方向:环境应急处置技术,环境风险管理,水污染治理。E-mail:guoqingwei@scies.org
    通讯作者: 邴永鑫(1986—),男,硕士,工程师。研究方向:水环境应急处置技术与应用,环境风险评估与管理。E-mail:bingyongxin@scies.org
  • 基金项目:
    中央级公益性科研院所基本科研业务专项(PM-zx703-202002-079)
  • 中图分类号: X507

Pattern of evolution, experience of response, and suggestions of prevention and control of environmental emergencies in China based on typical case studies

    Corresponding author: BING Yongxin, bingyongxin@scies.org.cn
  • 摘要: 依据2006—2020年突发环境事件数据,运用统计和个案分析方法,分析了近年来我国突发环境事件的演变规律、总体情况及特点,基于典型案例,探讨了突发环境事件应对的有效模式及成功经验。结果表明:2006—2020年全国共发生突发环境事件6 569起,总体呈下降趋势;2016—2020年发生的重大及以上突发环境事件较2011—2015年下降了69%,趋势明显,说明我国突发环境事件总体上得到了有效防控。然而,事件多发频发的高风险态势并没有根本改变,近年来还呈现出情况复杂、类型多、诱因复杂、公众关注度高等一些新的发展态势。基层环境应急准备扎实、应急指挥体系高效顺畅、预警防控体系健全、科技支撑和物资储运保障有力、信息公开机制健全是妥善应对突发环境事件的成功经验。未来应注重重大环境风险的识别防范,重大及敏感突发环境事件的应急准备和应对、环境应急管理人员能力的培养、环境应急管理体制机制的创新。
  • 抗生素广泛用于人类医疗和畜禽水产养殖中,以治疗疾病和促进动物生长等,其被服用后,大部分会以原形或代谢产物的形式进入到污水处理厂中[1-2]。由于传统污水处理厂对此类生物活性物质的去除不完全,大量抗生素在污水处理厂出水中检出,其中,克拉霉素、红霉素、脱水红霉素、阿奇霉素、罗红霉素、磺胺甲恶唑、甲氧苄胺嘧啶、氧氟沙星、环丙沙星、诺氟沙星和四环素是最常检出的抗生素[3]。这些抗生素最终通过污水处理厂出水排放进入到地表水环境中,并对非靶生物表现出不同程度的生态风险[4]。更令人担忧的是,抗生素的普遍存在可能导致抗性细菌的产生和抗性基因的扩散传播,严重威胁人类健康[5]。因此,必须发展有效的降解技术以削减污水处理厂出水中的抗生素。

    近年来,基于UV、热、过渡金属、碳材料等活化过硫酸盐(PS)的高级氧化技术在抗生素降解方面表现出广阔的应用前景[6]。在各种活化方式中,Fe(Ⅱ)因具有无毒、成本低和环境友好的特点,是最常用的PS活化方式之一[7]。但是,Fe(Ⅱ)/PS体系在应用上还具有明显的缺点:Fe(Ⅱ)可与PS迅速反应生成Fe(Ⅲ)(式(1)),而Fe(Ⅲ)还原为Fe(Ⅱ)的过程则十分缓慢,这使得Fe(Ⅱ)被迅速消耗,导致PS的活化持续效果较差;而且,过量Fe(Ⅱ)还会淬灭反应体系中的SO4和·OH(式(2)和(3)),降低对有机污染物的去除效果[8-10]。针对以上不足,研究者提出添加Fe的螯合剂,使Fe(Ⅱ)缓慢释放并在更宽的pH范围内保持可溶状态,同时引入UV光,促进Fe(Ⅲ)向Fe(Ⅱ)的还原,充分提高Fe(Ⅱ)的利用率[11-13]。但是,UV光的引入往往增加了处理成本,限制其推广使用。而太阳光作为一种清洁的可再生能源,也可促进Fe(Ⅲ)向Fe(Ⅱ)的光解还原,提高反应体系对污染物的降解效率[8]。但目前有关同时引入太阳光和螯合剂强化Fe(Ⅱ)/PS对抗生素的降解的研究尚未见报道。

    Fe()+S2O28Fe()+SO24+SO4 (1)
    Fe()+SO4Fe()+SO24 (2)
    Fe()+OHFe()+OH (3)

    因此,本研究以典型抗生素罗红霉素为目标污染物,以柠檬酸作为Fe(Ⅱ)的螯合剂,研究太阳光/Fe(Ⅱ)/柠檬酸/PS高级氧化体系对污水二级出水中罗红霉素的降解效能、影响因素和降解机制,为污水中抗生素的深度处理技术的发展提供科学依据。

    罗红霉素(纯度>98%)购于百灵威科技有限公司(中国);色谱纯的乙腈和甲醇购于美国Tedia试剂公司;色谱纯乙酸铵和叔丁醇购于Aladdin试剂公司;一水合柠檬酸、冰乙酸、乙醇、七水合硫酸亚铁、过硫酸钾购于国药集团;5,5-二甲基-1-吡咯啉-N-氧化物(DMPO)购于TCL化成工业有限公司。所有试剂均至少为分析纯。实验用水为Millipore超纯水。

    污水二级出水取自南京某污水处理厂二沉池出水,运送至实验室后过0.45 μm滤膜,放置于4 ℃冰箱保存。其水质特征为:化学需氧量(COD)为16.7 mg·L−1,总有机碳(TOC)为8.04 mg·L−1,pH 7.8,NO3浓度为28.48 mg·L−1,Cl浓度为50.09 mg·L−1

    降解实验在50 mL石英试管和XPA-7型光化学反应仪中进行。模拟太阳光通过500 W氙灯和截止290 nm的滤光片来获得,其光照强度为97.17 mW·cm−2(CEL-FZ-A辐照计,北京中教金源科技有限公司)。在污水二级出水样品中加入一定量的罗红霉素母液,使其初始浓度为10 mg·L−1;加入一定量的Fe(Ⅱ)母液和柠檬酸,使Fe(Ⅱ)的浓度为0.1、0.25、0.5 mmol·L−1,Fe与柠檬酸的物质的量比为2∶1、1∶1、1∶1.5、1∶2、1∶4,置于黑暗中搅拌30 min,使Fe(Ⅱ)和柠檬酸充分络合;再加入一定量的PS母液,使PS的浓度分别为0.5、1、2、4、8 mmol·L−1。然后将反应溶液置于光化学反应仪中,反应一段时间后(0、1、2、5、10、20、30、45、60 min),取1.5 mL的样品放入含有50 μL乙醇(终止由任何残留氧化剂或自由基引起的氧化)液相色谱小瓶中,测定罗红霉素的浓度。同时做黑暗/Fe(Ⅱ)/PS、太阳光/Fe(Ⅱ)/PS、太阳光/Fe(Ⅱ)/柠檬酸、黑暗/Fe(Ⅱ)/柠檬酸/PS对照组,每个处理组至少重复2次。

    在上述的反应体系中,除加入罗红霉素外,再加入100 mmol·L−1的乙醇或叔丁醇分别作为SO4和/或·OH的淬灭剂,以考察活性物种对罗红霉素的贡献。

    为验证·OH和SO4的存在,在合适的反应条件下,在反应0、15、30、45 min时加入50 mmol·L−1的DMPO作为·OH和SO4的特异性捕获剂,捕获15 min后取样,采用电子自旋共振波谱仪(EMX-10/12,德国Bruker公司)鉴定活性物种。

    罗红霉素的浓度采用Ultimate 3000液相色谱仪(Dionex, 美国)测定[14]

    罗红霉素的降解产物采用固相萃取-LTQ-Orbitrap-XL高分辨液质联用仪(Thermo Scientific,美国)来测定[15]。反应60 min后的样品用于罗红霉素降解产物的测定,反应0、5、15、30、45、60 min的样品用于了解罗红霉素降解产物随时间的变化情况。

    在Fe(Ⅱ)浓度为0.25 mmol·L−1,PS为4 mmol·L−1,Fe(Ⅱ)与柠檬酸物质的量比为1∶1.5和1∶2的条件下,研究了黑暗/Fe(Ⅱ)/PS,太阳光/Fe(Ⅱ)/PS、太阳光/Fe(Ⅱ)/柠檬酸、黑暗/Fe(Ⅱ)/柠檬酸/PS和太阳光/Fe(Ⅱ)/柠檬酸/PS对罗红霉素的降解作用(图1)。

    图 1  不同处理系统中罗红霉素的去除率[Fe(Ⅱ)]0=0.25 mmol·L−1,[PS]0=4 mmol·L−1
    Figure 1.  Removal efficiency of roxithromycin in different treatment system

    图1可见,反应60 min后,黑暗/Fe(Ⅱ)/PS和太阳光/Fe(Ⅱ)/PS对污水二级出水中罗红霉素的去除率分别仅为5.9%和9.5%,这可能是由于污水的pH(7.8)较高造成的,在较高的pH下,Fe主要以沉淀或胶体状态存在[16],无法有效的激活PS,导致罗红霉素的去除率较低。在Fe/柠檬酸物质的量比为1∶1.5和1∶2时,太阳光/Fe(Ⅱ)/柠檬酸对罗红霉素的去除率分别为13.5%和23.0%。以往研究发现,在紫外光或太阳光条件下,Fe(Ⅲ)/柠檬酸络合物可光解产生·OH,促进磺胺甲恶唑等有机物的降解[17-18]。但是,较高的pH不利于·OH的产生[17],因此,太阳光/Fe(Ⅱ)/柠檬酸对污水二级出水中罗红霉素的去除效果并不理想。

    黑暗/Fe(Ⅱ)/柠檬酸/PS体系中罗红霉素的去除率也较低,仅为10%左右。相较而言,太阳光/Fe(Ⅱ)/柠檬酸/PS体系对罗红霉素的去除率显著加强。在Fe(Ⅱ)/柠檬酸的物质的量比为1∶1.5时和1∶2时,反应60 min后,罗红霉素的去除率分别为46.9%和91.7%。柠檬酸中有3个羧基配位基,在Fe(Ⅱ)与柠檬酸的物质的量比为1∶2时,Fe(Ⅱ)可以与柠檬酸完全络合形成六配位络合物[11]。Fe(Ⅱ)/柠檬酸络合物与PS反应可转化成Fe(Ⅲ)/柠檬酸络合物。在太阳光照射下,Fe(Ⅲ)/柠檬酸络合物可通过配位到金属的电荷转移过程生成Fe(Ⅱ)和柠檬酸自由基(公式(4)),柠檬酸自由基通过与O2的反应生成O2·-和H2O2等活性物种(式(5)—(8)),Fe(Ⅱ)可进一步与PS和H2O2反应生成SO4和·OH(式(1)和(9)),促进罗红霉素的降解[19, 20]

    Fe()cithνFe()+Cit (4)
    CitHOCR2+CO2 (5)
    HOCR2+Fe()R2CO+H++Fe() (6)
    HOCR2+O2R2CO+H++O2 (7)
    {\rm{2}}{{\rm{H}}^{\rm{ + }}}{\rm{ + 2O}}_2^{ \cdot  - }\rightleftharpoons}_{\rm{2}}}{{\rm{O}}_{\rm{2}}}{\rm{ + }}{{\rm{O}}_{\rm{2}}} (8)
    H2O2+Fe()Fe()+OH+OH (9)

    式中,R表示CH2COOH。

    污水二级出水的初始pH 7.8,当加入的物质的量比分别为1∶1.5和1∶2的Fe(Ⅱ)/柠檬酸后,反应体系的pH值降低至6.4和6.1。随着反应的进行,反应体系的pH逐渐减低,反应60 min后,Fe(Ⅱ)/柠檬酸的物质的量比为1∶1.5和1∶2体系的pH值可降低至5.6和2.4。以往研究也发现Fe(Ⅱ)/PS体系反应后的pH降低至3左右[21-22]。这主要是由PS分解和SO4自由基与H2O反应生成H+,以及SO4自由基对OH的消耗造成的(方程式(10)—(12))[11, 23-24]。因此,Fe(Ⅱ)/柠檬酸摩尔比为1∶2的反应体系最终pH较低也表明反应体系中产生了更多的SO4和·OH。

    S2O82+H2O2SO24+HO2+3H+ (10)
    SO4+H2OOH+SO24+H+ (11)
    SO4+OHSO24+OH (12)

    采用一级动力学和二级动力学对不同反应体系中罗红霉素的降解数据进行拟合,结果见表1

    表 1  不同反应体系中,罗红霉素的降解反应动力学拟合常数
    Table 1.  The degradation kinetics fitting constants of roxithromycin in different reaction systems
    反应体系(物质的量比)Reaction system一级动力学Pseudo-first order kinetic二级动力学Second order kinetics
    k1/min−1R2k2/(L·mol−1·s−1R2
    黑暗/Fe(Ⅱ)/PS0.0010.95641.61430.9593
    太阳光/Fe(Ⅱ)/PS 0.00160.98862.80600.9887
    太阳光/Fe(Ⅱ)/柠檬酸(1∶1.5)Sunlight/Fe(Ⅱ)/citrate(1∶1.5)0.00240.89574.02280.9042
    太阳光/Fe(Ⅱ)/柠檬酸1∶2)Sunlight/Fe(Ⅱ)/citrate(1∶2)0.00450.90828.55150.9247
    黑暗/Fe(Ⅱ)/柠檬酸/PS(1∶1.5)Dark/Fe(Ⅱ)/citrate/PS(1∶1.5)0.00130.77952.57930.7887
    黑暗/Fe(Ⅱ)/柠檬酸/PS(1∶2)Dark/Fe(Ⅱ)/citrate/PS(1∶2)0.00180.83433.10150.8428
    太阳光/Fe(Ⅱ)/柠檬酸/PS(1∶1.5)Sunlight/Fe(Ⅱ)/citrate/PS(1∶1.5)0.01030.984822.8660.9962
    太阳光/Fe(Ⅱ)/柠檬酸/PS(1∶2)Sunlight/Fe(Ⅱ)/citrate/PS(1∶2)0.04090.9966290.330.9056
     | Show Table
    DownLoad: CSV

    表1可见,黑暗/Fe(Ⅱ)/PS体系和太阳光/Fe(Ⅱ)/PS体系中罗红霉素的降解符合一级反应动力学和二级反应动力学;太阳光/Fe(Ⅱ)/柠檬酸体系和黑暗/Fe(Ⅱ)/柠檬酸/PS体系中,可能由于柠檬酸的存在,一级动力学和二级动力学的拟合效果均不佳。而太阳光/Fe(Ⅱ)/柠檬酸/PS体系对罗红霉素的降解更符合一级动力学模型。在Fe浓度为0.25 mmol·L−1,PS浓度为4 mmol·L−1,Fe:柠檬酸的物质的量比为1∶1.5和1∶2时,罗红霉素降解的一级反应动力学常数分别为0.0103 min−1和0.0409 min−1表1)。这说明螯合剂柠檬酸的添加实现了Fe(Ⅱ)的缓慢释放,使Fe(Ⅱ)能够平稳的活化PS,保持反应体系的持续氧化效果。

    图2为Fe(Ⅱ)的浓度对太阳光/Fe(Ⅱ)/柠檬酸/PS体系降解罗红霉素的影响。在PS为4 mmol·L−1,Fe/柠檬酸的物质的量比为1:1时,反应体系对罗红霉素的去除速率随Fe(Ⅱ)浓度增加而增加。在Fe(Ⅱ)浓度为0.1、0.25 mmol·L−1时,反应60 min后,罗红霉素的去除率分别为12.0%和21.7%;当Fe(Ⅱ)升高至0.5 mmol·L−1后,罗红霉素的去除率显著增加,反应20 min后,罗红霉素的去除率可达到90.7%,但是当反应时间继续延长时,罗红霉素的去除率增加缓慢。这可能是由于后期反应体系中Fe(Ⅱ)浓度降低,产生的活性物种浓度降低以及罗红霉素降解产物对活性自由基的竞争造成的。而且,在Fe(Ⅱ)浓度为0.5 mmol·L−1时,反应20 min后,反应体系的pH值降至2.9。在此pH条件下,罗红霉素以质子化的形式存在,其与·OH等自由基的反应速率也较慢[25]

    图 2  Fe(Ⅱ)浓度对太阳光/Fe(Ⅱ)/柠檬酸/PS体系降解罗红霉素的影响[PS]0=4 mmol·L−1,[Fe(Ⅱ)]/[柠檬酸]=1∶1
    Figure 2.  Effect of Fe(Ⅱ) concentration on the degradation of roxithromycin by slight/Fe(Ⅱ)/citrate/PS system [PS]0=4 mmol·L−1, [Fe(Ⅱ)]/[citrate]=1∶1

    不同Fe(Ⅱ)浓度体系中罗红霉素的快速降解阶段符合一级反应动力学。当Fe(Ⅱ)浓度为0.1、0.25、0.5 mmol·L−1时,罗红霉素的一级反应动力学常数分别为0.0022、0.0043、0.118 min−1(前20 min)。这说明较高浓度的Fe(Ⅱ)可以激活PS产生更多的·OH和SO4,促进罗红霉素的降解[26]。但是Fe(Ⅱ)含量过高时也可能淬灭自由基[22],并产生较多的污泥,不利于后续的处理,因此Fe(Ⅱ)的投加量不宜过高。再者,本实验中所选用的Fe(Ⅱ)/柠檬酸的物质的量比为1∶1,当Fe与柠檬酸摩尔的物质的量比提高时,也可能促进活性自由基的产生和罗红霉素的降解。因此,从节约资源和减少Fe污泥的角度出发,选择Fe(Ⅱ)浓度为0.25、0.5 mmol·L−1进行后续实验。

    图3为PS浓度对太阳光/Fe(Ⅱ)/柠檬酸/PS体系降解罗红霉素的影响。在Fe(Ⅱ)浓度为0.25 mmol·L−1时,太阳光/Fe(Ⅱ)/柠檬酸/PS体系对罗红霉素的去除率和反应速率常数随PS增加而略有增加,这可能是因为反应体系中Fe(Ⅱ)浓度较低,不足以活化过量的PS,因此,Fe(Ⅱ)浓度低时,PS并不是限制该反应体系对罗红霉素降解效能的主要因素。当Fe(Ⅱ)浓度为0.5 mmol·L−1时,太阳光/Fe(Ⅱ)/柠檬酸/PS体系对罗红霉素的去除率和反应速率常数随PS增加而显著增加,在PS浓度为4 mmol·L−1时,罗红霉素的去除率即可达到95%,罗红霉素的降解的一级反应速率常数(0.1034 min−1)可达到PS浓度为0.5 mmol·L−1条件下的8.4倍。这说明在保证Fe(Ⅱ)浓度充足的情况下,高浓度的PS生成了更多的活性自由基,促进了罗红霉素的降解[10]

    图 3  PS浓度对太阳光/Fe(Ⅱ)/柠檬酸/PS体系降解罗红霉素的影响Fe(Ⅱ)]/[柠檬酸]=1∶1
    Figure 3.  Effect of PS concentration on the degradation of roxithromycin by slight/Fe(Ⅱ)/citrate/PS system[Fe(Ⅱ)]/[citrate]=1∶1

    图4为Fe(Ⅱ)与柠檬酸的摩尔比对太阳光/Fe(Ⅱ)/柠檬酸/PS体系降解罗红霉素的影响。在Fe(Ⅱ)浓度为0.25 mmol·L−1时,太阳光/Fe(Ⅱ)/柠檬酸/PS体系对罗红霉素的去除率和反应速率常数随Fe(Ⅱ)/柠檬酸的物质的量比增加而增大。当Fe(Ⅱ)/柠檬酸的物质的量比从2∶1增加到1∶4时,罗红霉素的去除率从19.6%增加到94.3%,罗红霉素降解的一级反应速率常数从0.0045 min−1增加至0.0778 min−1图4(A))。值得注意的是,尽管Fe(Ⅱ)/柠檬酸的物质的量比为1∶4的反应速率比Fe(Ⅱ)/柠檬酸的物质的量比为1∶2的大,但反应60 min后,两者对罗红霉素的去除率非常接近。

    图 4  Fe/柠檬酸物质的量比对太阳光/Fe(Ⅱ)/柠檬酸/PS体系降解罗红霉素的影响
    Figure 4.  Effect of molar ratio of Fe/citrate on the degradation of roxithromycin by slight/Fe(Ⅱ)/citrate/PS system
    [PS]0=4 mmol·L−1k为30 min时,罗红霉素降解的一级反应速率常数
    [PS]0=4 mmol·L−1, k represents the degradation rate constant of roxithromycin in 30 min

    在Fe(Ⅱ)浓度为0.5 mmol·L−1时,当Fe(Ⅱ)/柠檬酸的物质的量比从2:1增加到1∶1时,罗红霉素的去除率从35.5%增加到了95.4%,一级反应速率常数从0.0094 min−1显著增加到了0.1034 min−1,这说明柠檬酸的用量对太阳光/Fe(Ⅱ)/柠檬酸/PS体系的降解效果影响很大。但是当Fe(Ⅱ)/柠檬酸的摩尔比继续增加到1∶2时,罗红霉素的去除率和一级反应速率常数均降低。Tan等[27]研究发现Fe(Ⅱ)/柠檬酸的物质的量比从1∶1增加到1∶5时,Fe(Ⅱ)/柠檬酸/PS对敌草隆的去除率从80%降低到了57%。过量柠檬酸对反应体系中污染物降解的抑制作用可能是由两方面的原因造成的,一是柠檬酸与污染物竞争消耗反应体系中的活性自由基;二是柠檬酸与Fe(Ⅱ)的过分螯合阻碍了Fe与PS的反应,导致反应体系中产生的活性物种量减少[28]

    综上,结合试剂用量和对罗红霉素的去除效果,可确定太阳光/Fe(Ⅱ)/柠檬酸/PS体系对罗红霉素降解的反应条件为Fe(Ⅱ)浓度为0.25 mmol·L−1,Fe(Ⅱ)/柠檬酸的物质的量比为1:2,PS为4 mmol·L−1,反应时间60 min,在此条件下,罗红霉素的去除率可达到92%以上。

    在Fe(Ⅱ)浓度为0.25 mmol·L−1,PS为4 mmol·L−1,Fe/柠檬酸的物质的量比为1∶1.5和1∶2的太阳光/Fe(Ⅱ)/柠檬酸/PS体系中分别加入乙醇和叔丁醇,以考察反应体系中的活性物种及其贡献(表2)。乙醇可同时淬灭·OH和SO4,而叔丁醇仅可淬灭·OH[29]。加入叔丁醇后,Fe(Ⅱ)/柠檬酸的物质的量比为1∶1.5和1∶2体系中罗红霉素降解的一级反应速率常数分别从0.0120 min−1和0.0397 min−1降低为0.0026 min−1和0.0054 min−1,根据公式(13)计算得到·OH的贡献率分别为78.3%和86.4%。加入乙醇后,Fe(Ⅱ)/柠檬酸的物质的量比为1∶1.5和1∶2体系中罗红霉素降解的一级反应速率常数分别为0.0011 min−1和0.0025 min−1 ,根据公式(14)计算得到SO4的贡献分别为12.5%和7.3%。这说明反应体系中·OH是起主要作用的活性物种,与以往研究报道的Fe(Ⅱ)/柠檬酸/PS体系中·OH是主要的活性物种相一致[11, 23]。此外,反应体系也可能通过Fe(Ⅱ)/柠檬酸络合物的光解(方程(4)—(8))和方程(15)—(18)产生O2·-和HO2·等活性物种[19, 30],这些活性物种对两个体系中罗红霉素的去除的贡献分别为9.2%和6.3%。

    表 2  太阳光/Fe(Ⅱ)/柠檬酸/PS体系中的活性物种贡献
    Table 2.  The contribution of reactive species in sunlight/Fe(Ⅱ)/citrate/PS system
    Fe/柠檬酸的物质的量比Fe(Ⅱ)/citratekobs/ min−1kEtOH/min−1kTBA/min−1·OH的贡献/%The contribution of ·OHSO4·-贡献/%The contribution of SO4·-其他贡献/%The contribution of others
    1:1.50.01200.00110.002678.312.59.2
    1:20.03970.00250.005486.47.36.3
      注 [Fe(Ⅱ)]0=0.25 mmol·L−1,[PS]0=4 mmol·L−1.
     | Show Table
    DownLoad: CSV
    COH=kobskTBAkobs×100% (13)
    CSO4=kobskEtOHkobs×100%COH (14)

    式中,C·OHCSO4分别表示·OH和SO4对罗红霉素降解的贡献;kobs表示未添加淬灭剂时反应体系中罗红霉素降解的表观反应速率常数;kTBAkEtOH表示加入叔丁醇和乙醇时罗红霉素降解的反应速率常数.

    S2O82+HO2SO24+SO4+O2+H+ (15)
    OH+OHH2O2 (16)
    Fe(III)+H2O2Fe(II)+HO2+H2O (17)
    HO2H++O2 (18)

    为了更直观地验证反应体系中活性物种的存在,分别在反应0、15、30、45 min的时候,添加DMPO作为·OH和SO4的捕获剂,测定反应体系的电子自旋共振波谱,结果见图5。Fe(Ⅱ)/柠檬酸的物质的量比为1∶1.5和1∶2体系中均可明显观察到·OH的1∶2∶2∶1的信号,但并未观察到SO4的信号,这可能是由于SO4的浓度较低和DMPO的捕获时间较短(15 min)造成的。同时这也证明了·OH是太阳光/Fe(Ⅱ)/柠檬酸/PS体系的主要活性物种。

    图5也表明了不同反应时间段内反应体系中·OH的相对含量。在Fe(Ⅱ)/柠檬酸的物质的量比为1∶1.5的体系中,在不同时间段内,·OH的信号强度基本一致,说明Fe(Ⅱ)/柠檬酸的物质的量比为1∶1.5时,反应体系的·OH浓度保持稳定。而在Fe(Ⅱ)/柠檬酸的物质的量为1∶2的反应体系中,·OH的信号强度在30—60 min要比0—30 min时弱,这可能是因为柠檬酸含量高时,Fe(Ⅱ)/柠檬酸络合物与PS的反应速率较快,而Fe(Ⅲ)/柠檬酸络合物光解还原为Fe(Ⅱ)的速率相对较慢,导致后期反应体系中Fe(Ⅱ)浓度降低,降低了·OH的产率。这与反应体系中罗红霉素的降解情况是一致的。

    图 5  太阳光/Fe(Ⅱ)/柠檬酸/PS体系的电子自旋共振波谱
    Figure 5.  ESR spectra of the slight/Fe(Ⅱ)/citrate/PS system

    在Fe(Ⅱ)浓度为0.25 mmol·L−1,PS为4 mmol·L−1,Fe(Ⅱ)/柠檬酸的物质的量比为1∶1.5和1∶2的条件下,研究了太阳光/Fe(Ⅱ)/柠檬酸/PS体系中罗红霉素的降解产物。根据罗红霉素降解前后的总离子流图、降解产物的精确分子量、二级碎裂质谱图以及Xcalibur的分子式计算功能,共识别出8种罗红霉素的降解产物。罗红霉素及其降解产物(以DP+m/z命名)的精确分子量和元素组成等信息见表3,分子结构见图6

    表 3  罗红霉素及其降解产物的精确分子量、元素组成及碎片离子
    Table 3.  Accurate mass, elemental composition and fragmentation ion of roxithromycin and its degradation products
    化合物Compounds保留时间Retention time元素组成Element composition精确分子量Accurate molecular weight/[m+H]+碎片离子fragmentations误差Error(×10−6)环和双键值 Ring double bond equivalent(RDB)
    罗红霉素Roxithromycin14.94C41H77O15N2837.5315158.1173, 679.4366−0.4254.5
    DP5915.00C29H55O10N2591.3834522.3422, 158.1174−2.8783.5
    DP6656.22C32H61O12N2665.4210158.1172−1.4153.5
    DP5587.38C29H52O9N558.3624158.1172−2.3084.5
    DP6799.49C33H63O12N2679.4371158.1172−0.7093.5
    DP74910.21C37H69O13N2749.4780591.3837, 158.1171−1.8504.5
    DP54011.14C29H50O8N540.3521158.1171−1.8215.5
    DP71612.18C37H66O12N716.4565158.1171−1.9725.5
    DP71416.23C37H64O12N714.4417556.3465, 158.1171−0.9146.5
     | Show Table
    DownLoad: CSV
    图 6  罗红霉素的降解路径
    Figure 6.  Degradation pathway of roxithromycin

    在8种降解产物中,DP749在UV/H2O2降解罗红霉素的体系中报道过[14],DP679、DP665和DP591在罗红霉素的光降解过程中报道过[15]。而DP716、DP714、DP558和DP540尚未见报道。这4种降解产物的二级质谱中都有碎片离子m/z158.1172,说明红霉脱氧糖胺保持完整。DP716的分子量比DP749的少33 Da,说明DP716是由DP749上脱去羟胺(NH2OH)形成的。相似的,DP558是由DP591上脱去羟胺形成的。DP714和DP540分别是DP716脱去2H和DP558脱去H2O形成的。此外,和文献中报道的罗红霉素的降解产物相比[14-15, 31-32],太阳光/Fe(Ⅱ)/柠檬酸/PS体系中产生的降解产物的分子量普遍要小,这说明太阳光/Fe(Ⅱ)/柠檬酸/PS体系对罗红霉素的氧化降解性能可能更强。

    图7为罗红霉素的降解产物的量(以降解产物的峰面积与罗红霉素的初始峰面积比值A/A0表示)随反应时间的变化情况。

    图 7  罗红霉素的降解产物随反应时间的变化[Fe(Ⅱ)]0=0.25 mmol·L−1,[PS]0=4 mmol·L−1
    Figure 7.  The evolution of degradation products of roxithromycin with varying reaction time

    图7可见,反应15 min后,DP749即可达到最大的A/A0值,这说明罗红霉素首先生成DP749。在Fe(Ⅱ)/柠檬酸物质的量比为1∶1.5时,DP679、DP716、DP558和DP714在反应30 min时达到最大值,DP591、DP665和DP540在反应45 min时达到最大值,而在Fe(Ⅱ)/柠檬酸为1∶2时,DP679和DP716在反应30 min后达到最大,其它5种降解产物均在反应45 min时达到最大值。除DP714外,Fe(Ⅱ)/柠檬酸物质的量比为1∶2体系中的降解产物的A/A0值均高于Fe(Ⅱ)/柠檬酸为1∶1.5条件下。这进一步说明了Fe(Ⅱ)/柠檬酸为1∶2的反应体系中产生了更多的·OH,对罗红霉素的降解程度要高于Fe(Ⅱ)/柠檬酸物质的量比为1∶1.5体系.

    (1)太阳光/Fe(Ⅱ)/柠檬酸/PS高级氧化体系能有效去除污水处理厂二级出水中的罗红霉素,在Fe(Ⅱ)浓度为0.25 mmol·L−1,Fe(Ⅱ)/柠檬酸物质的量比为1∶2,PS为4 mmol·L−1,反应时间60 min时,罗红霉素的去除率可达到92%以上。

    (2)太阳光/Fe(Ⅱ)/柠檬酸/PS高级氧化技术可同时产生SO4和·OH,其中·OH是最主要的活性物质,其对罗红霉素降解的贡献可达到78.3%—86.4%,SO4的贡献仅为7.3%—12.5%。

    (3)基于高效液相色谱-高分辨质谱鉴定出8种罗红霉素的降解产物,这些降解产物主要通过脱去克拉定糖(—C8H14O3)、肟侧链的断裂(—C4H8O2)、脱羟胺(—NH2OH)等过程产生,其中,罗红霉素通过肟侧链断裂和脱去克拉定糖生成的DP749和DP679是最主要的降解产物。

  • 图 1  2006—2020年全国突发环境事件的发生频次

    Figure 1.  Frequency of Environmental Emergencies from 2006 to 2020 in China

    表 1  2016—2020年中国重大突发环境事件

    Table 1.  Major environmental emergencies from 2016 to 2020 in China

    年份事件名称简要情况事件起因特征污染物
    2016陕西省汉中市宁强县108国道交通事故致柴油泄漏事件3月22日,一辆装载约28 t柴油的油罐车由陕入川,行至108国道宁强县汉源街道办何家坟村处侧翻,约20 t柴油泄漏,部分进入河流造成陕川跨省界重大突发环境事件交通事故柴油
    2016江西新余“4·5”中安公司违法排污致仙女湖镉、砷、铊污染事件4月5日,江西省新余市发生因宜春市中安实业有限公司违法排污致新余市饮用水水源地仙女湖水体镉、砷、铊污染,事件造成新余市第三水厂取水中断违法排污镉、砷、铊
    2016江西省宜春市上高县饮用水污染事件12月14日,宜春市宜丰县工业园内陶瓷企业偷排含酚废水导致上高县自来水厂取供水中断,监测表明,自来水公司取水口挥发酚浓度超标10.2倍违法排污挥发酚
    2017四川省嘉陵江(广元段)铊污染事件5月5日,陕西省汉中市宁强县燕子砭镇汉中锌业铜矿有限责任公司违法排污导致嘉陵江四川广元段铊污染,广元西湾水厂水源地水质铊浓度超标4.6倍,5月6日6时起停止取水,并启动城市应急供水违法排污
    2018甘肃平凉市泾川县柴油罐车泄漏事故4月9日,一辆油罐车在泾川县路段发生交通事故,泄漏柴油约24 t,约12.35 t柴油沿公路路面进入汭河,造成甘陕跨省界重大突发环境事件。4月11日2时,甘陕交界长宁桥断面超标10.4倍交通事故柴油
    2018宁夏盐池县储油罐原油泄漏事件9月20日,宁夏盐池县麻黄山乡潘山村采油368-8井场的储油罐发生原油泄漏事故,约9 m3原油泄漏流入十字河,经6.8 km进入陕西省境内汇入东川河,再流经10.2 km进入甘肃省境内。21日10时,陕甘交界断面石油类浓度为3.1 mg·L−1,超标61倍生产安全石油类
    2020黑龙江伊春鹿鸣矿业有限公司“3·28”尾矿库泄漏3月28日13时30分左右,黑龙江省伊春市伊春鹿鸣矿业有限公司尾矿库发生泄漏,泄漏尾矿砂水约250×106 m3,事件造成铁力市第一水厂停止取水,伊春市、绥化市境内部分河段、农田及林地污染生产安全
    2020贵州遵义桐梓中石化西南成品油管道“7·14”柴油泄漏事故7月14日6时6分许,贵州省遵义市桐梓县境内中石化西南成品油管道柴油发生泄漏,泄漏柴油进入捷阵溪,汇入松坎河后进入重庆市境内,造成跨省界重大突发环境事件生产安全柴油
    年份事件名称简要情况事件起因特征污染物
    2016陕西省汉中市宁强县108国道交通事故致柴油泄漏事件3月22日,一辆装载约28 t柴油的油罐车由陕入川,行至108国道宁强县汉源街道办何家坟村处侧翻,约20 t柴油泄漏,部分进入河流造成陕川跨省界重大突发环境事件交通事故柴油
    2016江西新余“4·5”中安公司违法排污致仙女湖镉、砷、铊污染事件4月5日,江西省新余市发生因宜春市中安实业有限公司违法排污致新余市饮用水水源地仙女湖水体镉、砷、铊污染,事件造成新余市第三水厂取水中断违法排污镉、砷、铊
    2016江西省宜春市上高县饮用水污染事件12月14日,宜春市宜丰县工业园内陶瓷企业偷排含酚废水导致上高县自来水厂取供水中断,监测表明,自来水公司取水口挥发酚浓度超标10.2倍违法排污挥发酚
    2017四川省嘉陵江(广元段)铊污染事件5月5日,陕西省汉中市宁强县燕子砭镇汉中锌业铜矿有限责任公司违法排污导致嘉陵江四川广元段铊污染,广元西湾水厂水源地水质铊浓度超标4.6倍,5月6日6时起停止取水,并启动城市应急供水违法排污
    2018甘肃平凉市泾川县柴油罐车泄漏事故4月9日,一辆油罐车在泾川县路段发生交通事故,泄漏柴油约24 t,约12.35 t柴油沿公路路面进入汭河,造成甘陕跨省界重大突发环境事件。4月11日2时,甘陕交界长宁桥断面超标10.4倍交通事故柴油
    2018宁夏盐池县储油罐原油泄漏事件9月20日,宁夏盐池县麻黄山乡潘山村采油368-8井场的储油罐发生原油泄漏事故,约9 m3原油泄漏流入十字河,经6.8 km进入陕西省境内汇入东川河,再流经10.2 km进入甘肃省境内。21日10时,陕甘交界断面石油类浓度为3.1 mg·L−1,超标61倍生产安全石油类
    2020黑龙江伊春鹿鸣矿业有限公司“3·28”尾矿库泄漏3月28日13时30分左右,黑龙江省伊春市伊春鹿鸣矿业有限公司尾矿库发生泄漏,泄漏尾矿砂水约250×106 m3,事件造成铁力市第一水厂停止取水,伊春市、绥化市境内部分河段、农田及林地污染生产安全
    2020贵州遵义桐梓中石化西南成品油管道“7·14”柴油泄漏事故7月14日6时6分许,贵州省遵义市桐梓县境内中石化西南成品油管道柴油发生泄漏,泄漏柴油进入捷阵溪,汇入松坎河后进入重庆市境内,造成跨省界重大突发环境事件生产安全柴油
    下载: 导出CSV
  • [1] 国家突发环境事件应急预案[EB/OL]. (2019-12-27)[2020-09-20]. http://www.mee.gov.cn/ywgz/hjyj/yjzb/201912/t20191227_751708.shtml.
    [2] 王倩. 深刻认识三个“没有根本改变”[N]. 中国环境报, 2020-05-27(3).
    [3] 曹国志. 加强“十四五”环境应急管理体系和能力建设[N]. 中国环境报, 2021-04-22(3).
    [4] 张智. 消防救援队伍参加尾矿库泄漏事故处置探讨[J]. 消防科学与技术, 2020, 39(11): 1589-1592. doi: 10.3969/j.issn.1009-0029.2020.11.031
    [5] 李静, 吕永龙, 贺桂珍, 等. 我国突发性环境污染事故时空格局及影响研究[J]. 环境科学, 2008, 29(9): 2684-2688. doi: 10.3321/j.issn:0250-3301.2008.09.051
    [6] 丁镭, 黄亚林, 刘云浪, 等. 1995-2012年中国突发性环境污染事件时空演化特征及影响因素[J]. 地理科学进展, 2015, 34(6): 749-760.
    [7] 李旭, 吕佳佩, 裴莹莹, 等. 国内突发环境事件特征分析[J]. 环境工程技术学报, 2021, 11(2): 401-408.
    [8] 李倩倩, 谢超, 唐海龙. 水体突发性环境污染事故应急监测技术研究[J]. 环境与发展, 2019, 31(1): 123.
    [9] 黄蕾, 黄雨佳, 刘朋辉, 等. 区域综合环境风险评价方法体系研究[J]. 中国环境科学, 2020, 40(12): 5468-5474. doi: 10.3969/j.issn.1000-6923.2020.12.044
    [10] 陈正侠, 丁一, 毛旭辉, 等. 基于水环境模型和数据库的潮汐河网突发水污染事件溯源[J]. 清华大学学报(自然科学版), 2017, 57(11): 1170-1178.
    [11] 姜继平, 王鹏, 刘洁, 等. 突发水污染预警应急响应研究与实践的方法学辨析[J]. 环境科学学报, 2017, 37(9): 3621-3628.
    [12] 许榕, 徐淑彩, 沈靓, 等. 污染事件导致的生态环境损害及评估[J]. 资源节约与环保, 2020(12): 135-136. doi: 10.3969/j.issn.1673-2251.2020.12.073
    [13] 李婷, 韩丰磊. 石化行业环境污染的特点及环境风险研究[C]//中国石油大学(华东), 中国化学品安全协会, 美国化学工程师协会化工过程安全中心(CCPS). 第六届CCPS中国过程安全会议论文集, 2018: 10.
    [14] 韦正峥, 金笛, 邢晶晶, 等. 天津港“8·12”爆炸事故后续处理中的环境与健康问题[J]. 环境与健康杂志, 2016, 33(10): 938-939.
    [15] 王冠颖, 刘晓玲, 魏健, 等. 响水化工园区爆炸事故污水应急预处理工艺筛选[J]. 环境科学学报, 2020, 40(12): 4318-4324.
    [16] 张志国. 广西龙江河镉污染事件给我们带来怎样的警示[J]. 绿色中国, 2012(3): 8-9.
    [17] 肖筱瑜. 2012-2017年国内重大突发环境事件统计分析[J]. 广州化工, 2018, 46(15): 134-136. doi: 10.3969/j.issn.1001-9677.2018.15.053
    [18] 刘晓星. 全力保障嘉陵江沿线群众饮水安全: 甘肃陇星锑业有限公司尾砂泄漏重大突发环境事件应急综述[N]. 中国环境报, 2016-02-16(1).
    [19] 江西省新余市应急办. 江西新余仙女湖“4·5”水污染事件应急处置工作纪实[J]. 中国应急管理, 2016(4): 64.
    [20] 应急管理部. 加快提升危险化学品安全生产治理体系和治理能力现代化水平: 应急管理部有关负责人就《关于全面加强危险化学品安全生产工作的意见》答记者问[EB/OL]. (2020-02-27)[2020-09-20]. https://www.mem.gov.cn/xw/bndt/202002/t20200227_344803.shtml.
    [21] 应急管理部. 从源头上防范化解危险化学品系统性安全风险[EB/OL]. (2020-02-27)[2020-09-20]. http://society.people.com.cn/n1/2020/0227/c1008-31608028.html.
    [22] 曹国志, 於方, 王金南, 等. 长江经济带突发环境事件风险防控现状、问题与对策[J]. 中国环境管理, 2018, 10(1): 81-85.
    [23] 廖婵娟, 赵淑琪, 刘燊, 等. 2010-2015年我国危险化学品泄漏事故统计分析与对策[J]. 安全与环境工程, 2017, 24(5): 151-157.
    [24] 戚建刚. 解析“11·22”青岛输油管道爆炸事件中的六类违法行为[J]. 法学杂志, 2014, 35(6): 37-43.
    [25] 王明华. 湖北通报汉江武汉段污染原因[J]. 水资源研究, 2014(3): 47.
    [26] 孙啟分. 环境事件中微博话题的传播特征研究:以泉州碳九泄漏事件为例[J]. 新媒体研究, 2020, 6(2): 1-4. doi: 10.3969/j.issn.1671-7597.2020.02.005
    [27] 魏进, 袁思宇, 李冰, 等. 化工园区有毒有害气体预警体系建设研究[J]. 污染防治技术, 2017, 30(2): 92-95.
    [28] 吴丹, 闫艳芳, 夏广锋, 等. 流域水环境风险评估与预警技术研究进展[J]. 辽宁大学学报(自然科学版), 2017, 44(1): 81-86.
    [29] 水利部水电局. 梯级开发小水电构筑抗镉大防线 小水电站在广西龙江河镉污染应急防控中发挥关键作用[J]. 中国水能及电气化, 2012(3): 61.
    [30] 广东省人民政府应急管理办公室. 广东省处置“10·18”北江流域铊污染事故的经验与启示[J]. 中国应急管理, 2013(2): 34-38.
    [31] 张晓健, 陈超, 米子龙, 等. 饮用水应急除镉净水技术与广西龙江河突发环境事件应急处置[J]. 给水排水, 2013, 49(1): 24-32. doi: 10.3969/j.issn.1002-8471.2013.01.005
    [32] 袁鹏, 彭剑峰, 田智勇, 等. 加强企业环境风险防范 积极应对突发环境事件:山西长治苯胺泄漏事件的启示[J]. 环境保护, 2013, 41(5): 53-55.
    [33] 北极星水处理网讯. 天津“8·12”事故含氰废水处理处置纪实[EB/OL]. (2015-09-10)[2020-09-20]. http://huanbao.bjx.com.cn/news/20150910/661929.shtml.
    [34] 生态环境部. 生态环境部通报响水爆炸事故环境应急处置最新进展[EB/OL]. (2019-03-30)[2020-09-20]. http://legal.people.com.cn/n1/2019/0330/c42510-31004429.html.
    [35] 潘亚茹. 地方政府在公共危机管理中的外部沟通问题研究: 以泉港碳九泄漏事件为例[D]. 郑州: 郑州大学, 2019.
    [36] 王亚变, 刘佳, 周婷, 等. 环境应急管理理论与实践[M]. 北京: 中国石化出版社, 2019.
  • 加载中
    Created with Highcharts 5.0.7访问量Chart context menu近一年内文章摘要浏览量、全文浏览量、PDF下载量统计信息摘要浏览量全文浏览量PDF下载量2024-052024-062024-072024-082024-092024-102024-112024-122025-012025-022025-032025-040Highcharts.com
    Created with Highcharts 5.0.7Chart context menu访问类别分布DOWNLOAD: 3.7 %DOWNLOAD: 3.7 %HTML全文: 92.6 %HTML全文: 92.6 %摘要: 3.7 %摘要: 3.7 %DOWNLOADHTML全文摘要Highcharts.com
    Created with Highcharts 5.0.7Chart context menu访问地区分布其他: 99.4 %其他: 99.4 %XX: 0.1 %XX: 0.1 %平凉: 0.1 %平凉: 0.1 %杭州: 0.1 %杭州: 0.1 %贵阳: 0.1 %贵阳: 0.1 %郑州: 0.1 %郑州: 0.1 %其他XX平凉杭州贵阳郑州Highcharts.com
图( 1) 表( 1)
计量
  • 文章访问数:  11383
  • HTML全文浏览数:  11383
  • PDF下载数:  222
  • 施引文献:  0
出版历程
  • 收稿日期:  2020-09-27
  • 录用日期:  2021-05-31
  • 刊出日期:  2021-07-10
虢清伟, 邴永鑫, 陈思莉, 黄大伟, 胡立才, 常莎, 张政科. 我国突发环境事件演变态势、应对经验及防控建议[J]. 环境工程学报, 2021, 15(7): 2223-2232. doi: 10.12030/j.cjee.202009193
引用本文: 虢清伟, 邴永鑫, 陈思莉, 黄大伟, 胡立才, 常莎, 张政科. 我国突发环境事件演变态势、应对经验及防控建议[J]. 环境工程学报, 2021, 15(7): 2223-2232. doi: 10.12030/j.cjee.202009193
GUO Qingwei, BING Yongxin, CHEN Sili, HUANG Dawei, HU Licai, CHANG Sha, ZHANG Zhengke. Pattern of evolution, experience of response, and suggestions of prevention and control of environmental emergencies in China based on typical case studies[J]. Chinese Journal of Environmental Engineering, 2021, 15(7): 2223-2232. doi: 10.12030/j.cjee.202009193
Citation: GUO Qingwei, BING Yongxin, CHEN Sili, HUANG Dawei, HU Licai, CHANG Sha, ZHANG Zhengke. Pattern of evolution, experience of response, and suggestions of prevention and control of environmental emergencies in China based on typical case studies[J]. Chinese Journal of Environmental Engineering, 2021, 15(7): 2223-2232. doi: 10.12030/j.cjee.202009193

我国突发环境事件演变态势、应对经验及防控建议

    通讯作者: 邴永鑫(1986—),男,硕士,工程师。研究方向:水环境应急处置技术与应用,环境风险评估与管理。E-mail:bingyongxin@scies.org
    作者简介: 虢清伟(1974—),男,博士,正高级工程师。研究方向:环境应急处置技术,环境风险管理,水污染治理。E-mail:guoqingwei@scies.org
  • 生态环境部华南环境科学研究所(生态环境部生态环境应急研究所),广州 510530
基金项目:
中央级公益性科研院所基本科研业务专项(PM-zx703-202002-079)

摘要: 依据2006—2020年突发环境事件数据,运用统计和个案分析方法,分析了近年来我国突发环境事件的演变规律、总体情况及特点,基于典型案例,探讨了突发环境事件应对的有效模式及成功经验。结果表明:2006—2020年全国共发生突发环境事件6 569起,总体呈下降趋势;2016—2020年发生的重大及以上突发环境事件较2011—2015年下降了69%,趋势明显,说明我国突发环境事件总体上得到了有效防控。然而,事件多发频发的高风险态势并没有根本改变,近年来还呈现出情况复杂、类型多、诱因复杂、公众关注度高等一些新的发展态势。基层环境应急准备扎实、应急指挥体系高效顺畅、预警防控体系健全、科技支撑和物资储运保障有力、信息公开机制健全是妥善应对突发环境事件的成功经验。未来应注重重大环境风险的识别防范,重大及敏感突发环境事件的应急准备和应对、环境应急管理人员能力的培养、环境应急管理体制机制的创新。

English Abstract

  • 突发环境事件是指由于污染物排放或自然灾害、生产安全事故等因素,导致污染物或放射性物质等有毒有害物质进入大气、水体、土壤等环境介质,突然造成或可能造成环境质量下降,危及公众身体健康和财产安全,或造成生态环境破坏,或造成重大社会影响,需要采取紧急措施予以应对的事件[1]。近年来,我国环境应急管理工作取得了长足发展,环境风险防范化解成效显著,突发环境事件总量明显下降并趋于稳定。然而,突发生态环境事件多发频发的高风险态势并没有根本改变[2],重大突发环境事件时有发生,并呈复杂态势,涉危化品安全事故次生突发环境事件高发,涉水事件比例高,事件空间分布区域聚集特征明显,环境应急面临的形势依然严峻[3]。据统计,2020年全国发生突发环境事件208起,重大和较大事件均有所增加,而且发生了多起敏感事件,对人民生命财产和生态环境安全造成了严重威胁。如2020年4月黑龙江伊春鹿鸣矿业公司尾矿库泄漏事故[4],约2.5×106 m3尾矿砂水泄漏,特征污染物钼浓度最高超标80倍,成为我国近20年来尾矿泄漏量最大、对水生态影响最大、应急处置难度最大的突发环境事件。突发环境事件的多发频发,尤其是一些重大突发环境事件,严重危害公众身体健康和财产安全,极大地影响了中国生态文明建设进程。如何有效预防和应对突发环境事件的发生是各级政府面临的一大挑战和经常性课题。

    近年来,有部分学者对突发环境事件的时空演化与基本特征等进行了研究。如李静等[5]运用GIS和非参数相关分析方法,分析了全国范围内环境污染与破坏事故的动态变化趋势、空间地域分布;丁镭等[6]利用ESDA空间统计分析方法和Matlab空间面板计量模型,对1995—2012年我国各地区发生的环境污染事件的时空演化特征和影响因素进行了分析;李旭等[7]应用Origin软件分别从6个方面对2011—2017年我国3 203件突发环境事件进行了统计与分析。部分学者在突发环境事件应急监测[8]、风险评估[9]、污染溯源[10]、预警响应[11]、损害评估[12]等方面进行了研究。据现有文献,国内对突发环境事件的研究大部分是对时空演变态势和事件原因、特征进行讨论以及对属性数据的挖掘与研究,并运用统计图以及表的方式将研究结果可视化表达出来,鲜有结合典型案例研判突发环境事件未来发展态势,总结应对处置的经验和做法。

    基于上述原因,笔者通过将突发环境事件历史数据与属性数据结合,并运用统计分析方法和典型案例挖掘手段,分析了我国突发环境事件发生发展规律和处置应对经验,以期为科学认识和防范环境风险,妥善应对突发环境事件提供参考。历年的突发环境事件次数来源于生态环境部官方网站公布的2006年—2020年环境统计年报,部分属性数据和典型案例主要来源于《安全与环境学报》中2006—2020 年《国内环境事件》和《突发环境事件典型案例选编》(第一、二辑),以及政府公开发布和权威媒体报道的事件信息。

  • 2006—2020年内全国共发生各类型突发环境事件数量6569起,总体呈下降趋势(见图1),其中2016—2020年共发生1 361起,比2011—2015的2 597起相比下降了49%,事件主要集中在长三角、环渤海、甘陕、两广、两湖、成渝等地区,约占全国总数的70%,高频风险区域逐渐减小,说明突发环境事件总体上得到了有效防控。

    1)重大以上突发环境事件明显下降,但越发呈现出高度复杂性和不确定性。2016—2020年全国共发生重大突发环境事件8起(见表1),较2011—2015年下降了69%(见图1),下降趋势显著,未发生过特别重大突发环境事件。但由于我国行业结构性、布局性环境风险突出等因素,重大突发环境事件仍难以避免,并愈发呈现出高度复杂性和不确定性,以及巨大的危害性。特别是大型化工企业一旦发生事故,往往与爆炸、火灾、泄漏相互引发,具有突发性强、有毒化学品类型多、危害性大、行为复杂、处置难度大的特点,对人民生命财产和生态环境安全构成巨大威胁[13]。如2015年天津港爆炸事故[14]以及2019年的响水爆炸事故[15],大量危险化学品爆炸产生的污染物以及周边被引燃物品持续燃烧产生大量污染物进入环境,污染物质众多且成分复杂,现场化学品种类数量不清、降雨天气等不确定性因素给环境应急处置工作带来了极大困难。2012年广西龙江河镉污染事件[16]、2014年重庆市巫山县千丈岩水库污染事件[17]、2015年甘陕川锑污染[18]、2016年江西省新余市仙女湖水污染事件[19]等重大突发环境事件均以发生突然、发展迅猛,瞬间污染物排放量大、影响范围广、性质复杂、非常难易控制、危害后果严重为显著特征。其实,以我国现有环境应急管理水平,已基本可以应对现实中的常规突发事件,但在面对重大突发环境事件时却仍然暴露出一些脆弱性。这提醒我们,要时刻聚焦复杂性环境风险防范和重大事件应对,重大突发环境事件才是对一个国家环境应急能力的真正检验。

    2)涉化工类安全事故进入集中爆发期,并引发次生性突发环境事件持续上升。据调查,我国化工生产经营单位已达21万家,涉及2 800多个品种,其2018年行业产值占全国GDP的13.8%,在国民经济和社会发展中具有重要地位,但因整体安全条件差、管理水平低、重大安全风险隐患集中,在危险化学品生产、贮存、运输、使用、废弃处置等环节已经形成了系统性安全风险,导致重特大事故时有发生[20-21]。根据2010年至2018年生态环境部调度处理的突发环境事件统计,涉化工行业及危化品事故次生突发环境事件占所有事件总量比例持续上升(由2010年的41%上升到2018年的66%),2013年以来全国发生的15起重大突发环境事件中,涉及危化品的就有9起。受危化品生产和销售的季节性影响,每年4月至9月为事故高发期,且事故的发生主要集中在运输和储存阶段,占该类事件总数的93%[22](运输54%、储存39%、生产5%、其他2%)。广东省2013年至2018年共发生突发环境事件199起,其中涉及化学品行业的共计86起,占比达43%。生态环境部近3年调度的陕西省突发环境事件均涉及化工行业及危化品。化学品不稳定的特点,决定了其生产、储运、使用过程中各个环节极易发生燃烧、爆炸、泄漏,从而造成大量有毒污染物进入环境,严重损害人民群众生命财产和生态环境安全。我国化学品全生命周期的安全管理基础依然薄弱,化工和危险化学品安全形势依然严峻复杂,应大力加强对化工及危化品行业安全事故次生环境事件的防范和应对。

    3)突发环境事件诱因日趋复杂,环境风险预警防范难度加大。当前,突发环境事件越来越呈现出诱因的复合化趋势。从事件原因看,生产安全、交通运输等事故灾难以及地震、洪水等自然灾害,均容易导致次生突发环境事件。从2006年至2015年环保部调度处理的长江经济带地区突发环境事件统计来看[23],由安全生产、交通事故、企业排污、自然灾害及其他原因导致的突发环境事件分别约占事件总数的40%、22%、16%、8%和15%。2016—2020年,安全生产、交通事故次生的突发环境事件比例逐步增大,平均每年比例已超过80%,其中2019年高达94%。这意味着绝大多数环境风险隐患并不在生态环境管理部门的视野之内,而其他部门则很难从环境的角度考虑问题,且许多事件往往是多种因素综合作用的结果,发生的现场情景与应急需求难以精确预判,这也直接导致环境预警的失效。例如,2013年“11·22”青岛输油管道爆炸事件[24],安全生产、企业布局和历史遗留隐患类问题同时爆发;2014年汉江武汉段氨氮超标事件[25],是由于上游普降大雨,开闸排放长期积累渍水以及农业面源污染物综合所致;2018年赣湘两省萍水河交界断面铊浓度异常事件的发生则是企业违法排放含铊污染物与历史本底值叠加,加上50年一遇的旱情综合作用的结果,从发现醴陵市水源地铊异常到确定污染源,历时20 d之久。这提醒我们,突发环境事件诱因复合化程度正在增加,我们既要善于发现突发环境事件的苗头,妥善处置,防止小事拖大,大事拖难,又要创新性地提高事前环境风险预警预防能力,防患于未然。

    4)信息传播渠道呈多元化和多样化,对突发环境事件的社会影响作用凸显。“新媒体”、“自媒体”时代的出现,在畅通人们诉求表达渠道的同时,也加快了信息传播速度。特别是突发环境事件敏感度高,新闻性强,受关注度大,容易在微博、微信等社交媒体上发酵扩散,使突发事件在舆论场上变得扑朔迷离,甚至被放大扭曲,此时如果处置不当,极易诱发群体性事件。2014年、2015年兰州连续发生自来水异味事件,事件经网络及媒体广泛关注和报道后导致兰州市部分区域市民恐慌,引起社会舆论的高度关注。2018年福建泉港“11·4”碳九泄漏事件[26],由于当地存在信息公开不到位、回应公众关切滞后等问题,一些谣言文章如《40万泉港人在无声中消逝》在微博、微信朋友圈大肆传播,引发灾难性恐慌情绪。信息传播的过程,既有真相,也有谣言。这就要求政府部门必须正视当前的舆论传播新生态所带来的强大冲击,主动融入并占领舆论传播的新渠道和“制高点”,及时对突发环境事件进行权威的解释和引导,进行全面、客观地报道,切实满足公众知情权,以挤压谣言产生和传播的空间。

  • 1)基层环境应急准备扎实是防控突发环境事件的根本保障。环境应急的大量工作在基层,基层是最初的环境应急响应单元,也是直接的应急主体,一旦形成扎实的基层环境应急准备能力,就可以将突发环境事件遏制在萌芽或初始状态。陕西省近年发生危化品道路运输事故次生突发环境事件较多,因当地政府不断强化环境应急准备能力,故成效显著。2018年汉中留坝县粗酚运输车泄漏事故中,大量粗酚进入水体危及汉江,当地第一时间利用人工湖并开挖临时蓄水池拦控高浓度废水,为成功处置赢得了时间。2020年7月宝鸡凤县柴油罐车泄漏事故中,当地通过过境危化品车辆强制安装GPS定位系统,第一时间获取事故地点信息,在半小时内启动应急响应,将污染团拦截在人工湖内,同时,事发地下游各乡镇应急人员、物资第一时间迅速集结,处置工作迅速展开,污染态势得以迅速控制。反观2015年甘陕川锑污染事件,由于当地应急预案体系不完善、一线应急人员意识差、物资配备不足、上下游联防联控机制缺失等十分有限的基层环境应急能力,酿成近年少有的一次污染影响范围之大、处置难度之高、历时时间之长、协调任务之重的重大突发环境事件。实践证明,基层是环境应急全部工作的基础,是妥善应对突发环境事件的战斗堡垒,将环境应急准备做实、做细,基层工作起着决定性的作用,因此,要不断提高基层环境应急准备能力。

    2)应急指挥体系高效顺畅是妥善应对突发环境事件的必要前提。应急指挥体系是环境应急管理的神经中枢,要使突发环境事件得到有效控制,必须迅速反应,在全面、准确了解情况的基础上,果断决策,沉着应对,科学调度,靠前指挥,坚决控制住事态。2013年“11·22”青岛输油管道爆炸事件,青岛市政府和中石化迅速成立应急指挥部,有关部门加强合作及联动,共享信息,统一行动,按照任务分工,联合作战,确保沿海和海上的清污工作有序进行。2017年河南栾川尾矿库泄漏事件,当地政府在短时间内全面掌握污染态势、科学决策、周密部署,协调各方力量协同作战,有效实施了应急处置。在以往多起重大突发环境事件的应对过程中,领导靠前指挥、科学调度都起到了关键作用。反观2014年重庆渝北“4.11”加油加气站油类泄漏事件,参与现场抢险处置的环保、公安、安监、消防、电力、市政等救援力量之间没有快速形成协调有序的现场协作机制,现场缺乏权威指挥中枢,导致职责不清、各自为战。实践证明,只有主要领导及时到位、指挥若定,机构健全、职责明确、人员得力,指挥系统才能有效整合资源,形成应急合力,成功应对突发环境事件。

    3)预警防控体系健全是防范突发环境事件升级的关键环节。通过健全的环境预警防控体系,可早发现、早识别突发环境事件的征兆,洞察潜伏的风险因素,提前制定有效的应对预案,为突发环境事件处置赢得先机。2018年山东博兴县化工园区发生一起甲醇泄漏事件,由于该化工园区有毒有害气体预警体系较完备,发现苗头仅用时10 s,消除隐患用时仅197 s,成功避免了一起更大事件的发生。反观同年陕西韩城西昝工业园区一氧化碳和硫化氢气体泄漏事件中,由于工业园未建立有毒有害气体环境风险预警体系,有毒气体泄漏17 h后,当地政府才获知信息,造成38名群众因身体不适紧急就医。近年来,我国积极推进化工园区有毒有害气体预警体系[27]、流域环境风险预警防控体系建设[28],在台风、地震、汛期、雨雪冰冻等自然灾害发生前后,开展预警研判和风险防范,提前部署应急准备工作,有效保障了重点领域和特殊时期的环境安全。我国大力兴修水利设施,在减缓洪灾风险的同时,客观上也为突发环境事件拦污降污提供了有力的防控条件。2012年广西龙江河镉污染事件中,通过上游电站加大下泄流量, 下游电站层层蓄水并投放消减化学品的方式, 从而实现有效拦蓄、稀释、防控镉污染水体[29];2018年河南南阳淇河污染事件利用引水式电站实施清污分流,处置成效明显。实践证明,预警防控体系有效是实现风险成功化解的关键环节,必须不断完善环境应急监测预警体系,加强风险防控设施建设,完善环境应急预案,增强环境应急反应能力,努力把突发环境事件消灭在始发状态。

    4)科技支撑有力是科学妥善应对突发环境事件的重要抓手。现代科技在突发环境事件风险预警、污染源溯源、应急监测、态势研判、工程削污、供水保障等环节中发挥了不可替代的支撑作用。在2015年甘陕川锑污染事件中,现场专家利用无人机、遥感卫星、污染扩散模型等科技手段,为应急处置提供了全面有效的信息和技术支持。在2010年北江流域铊污染事件[30]、2012年龙江河镉污染事件[31]、2013年山西长治苯胺泄漏事件[32]等重大突发环境事件现场处置中,现场专家充分发挥科技支撑作用,指导开展应急监测、研判污染态势、提出科学处置方案。在近年发生的天津港[33]、响水[34]两起爆炸事件中,生态环境部组织专家就地开展技术攻关,为科学妥善处置复杂废水,防控地下水、土壤污染风险提供了坚强保障。近年来,国家十分重视高科技在突发环境事件应对方面的应用,积极建立环境应急科技支撑体系,大力培养环境应急科技人才,开发环境应急技术及装备,在基础性系统建设和关键技术研发方面的投入显著增长。实践证明,有效发挥科技抓手的作用已成为妥善应对突发环境事件的重要举措。

    5)物资储运保障有力是战胜各类突发环境事件的强大后盾。环境应急物资储备充足、运送及时、供应到位,应急处置工作就会有条不紊。2012年辽宁昌图 “11·10”中石油管道公司输油管线原油泄漏事件,中石油管道公司紧急调集全国各地十余支共计1 000余人的救援队伍和大量的救援物资开展抢险救援。相反,2016年218国道新疆伊犁州柴油泄漏事件发生后,由于当地应急物资储备严重不足,影响了先期处置效果,后因自治区党委、政府紧急协调空运大批吸油毡、活性炭等物资,高效建成21道截污屏,成功避免了一起跨国境突发环境事件,物资调运在本次事件中发挥了巨大作用。目前,国家正在全面推动建设环境应急物资储备库和信息库。实践证明,只有物资储备充分、供给及时,才能赢得时间,争取最好的处置效果,掌握环境应急的主动权。

    6)信息公开机制健全是降低突发环境事件负面影响的基本要求。从过往突发环境事件的应对中可以看出,事故原因、处置情况、调查结果等信息发布工作,同样是突发环境事件应对全流程中极为重要的环节。2015年福建漳州“4·6”腾龙芳烃(漳州)有限公司重大爆炸起火事故发生后,当地政府及时发布信息,组织主流媒体记者进行现场采访,每天召开新闻发布会,正确引导舆论,对“漳州古雷PX化工项目发生爆炸起火死人”等网络谣言果断处置,从而避免引起群众恐慌。在2019年江苏响水天嘉宜公司“3·21”特别重大爆炸事故发生后,当地政府反应迅速,组成由市长带队的新闻发布团队多次举行新闻发布会,为公众获取第一手信息提供了权威路径,给舆论留下了深刻印象。反观2018年福建泉港“11·4”碳九泄漏事件[35],当日泉州市泉港区环保局表示“基本完成海面油污基本清理,大气挥发性有机物浓度指标也达到安全状态”,但这明显与当地民众的感受不同。之后,随着“渔民因碳九中毒住院” “事发水域存大面积薄油层”“清理工人基本戴着防毒面具”等媒体调查报道的曝光,导致相关负面舆情持续高涨。实践证明,建立健全信息公开机制,及时主动、公开透明地发布信息,正确引导舆论和公众行为,有助于及时消除社会上不正确信息造成的负面影响,从而体现政府工作的透明度,更有助于公信力的树立。

  • 1)深刻认识和防范潜在的环境风险,以“防”为主。我国重化工行业占国民经济比重较大,行业企业的结构性、布局性环境风险比较突出。我国现有危险化学品生产经营企业超过2.1×105 家,全国道路运输危险货物量每天近3×106 t,油气管道总里程超过1.3×105 km,各类尾矿库近万座。沿江、沿河区域高环境风险行业企业集聚,人居活动与高风险工业活动区域交织。这些结构性、布局性带来的环境风险因素短时间内难以得到根本。历史是一面镜子,处理近年几起重大突发环境事件的经验深刻警示我们:在我国经济处于转型升级、爬坡过坎的关键期,可以预见和难以预见的环境风险彼此之间错综复杂、相互诱发,客观上又受特殊自然条件影响,如果防范不及、应对不力,诸多新旧问题和局部环境风险传导、叠加、演变、升级为重特大突发环境事件的可能性就会增加。因此,必须要增强环境风险防控意识,常观大势、常思大局,既聚焦重点、又统揽全局,从宏观和微观结合的层面深刻把握各类环境风险的发展走势和重大环境风险形成演化的特点规律,有效防范各类环境风险连锁联动。要注重运用系统思维,不断健全环境风险预警研判、决策评估、源头化解和协同防控等环境风险防控体系,持续提高防范化解重大环境风险的整体效能。

    2)聚焦重大及敏感突发环境事件应对。重大突发环境事件一旦发生,往往会超出某一行政区域和部门的应对能力范围,对生态环境造成重大损害,因而需要各方通力协作加以应对。而且,重特大突发环境事件往往是现代媒体和公众舆论关注的焦点,一旦应对失误或失败,公众就会对政府的执政能力大加质疑。总之,重特大突发环境事件事关公众生命财产安全,事关国家生态环境安全和生态文明建设进程,是政府应该重点思谋如何应对的对象。但是,我国环境应急管理长期存在以简单应对复杂、以不变应万变的问题,常规应急和非常规应急能力不均衡,导致现有应急模式难以有效应对高度复杂与高度不确定的突发环境事件。因此,要高度重视和聚焦重特大与高度复杂性突发环境事件的应对,不断提高对新形势下重大突发环境事件特点及发生、发展规律的理解和认识能力,强化底线思维,将风险的情境设想得足够复杂,从最坏处着眼,做最充分的准备;要组织实施国家重大突发环境事件应急规划情景研究,总结多类型重大突发环境事件情景,并作为国家环境应急准备战略最优先考虑的应对目标,使环境应急准备的重心更加聚焦于应对重特大或高度复杂性突发环境事件。

    3)强化各级领导干部环境应急能力培养。重大突发环境事件对经济、社会以及生态文明发展产生巨大的影响,是地方政府必须面对的挑战。因此,大力提高各级领导干部应对突发环境事件的能力显得十分重要和紧迫。从以往应对处置各类突发环境事件来看,很多时候,正是一些领导干部有敏锐的鉴别能力,善于捕捉那些初露端倪的表面现象,因而能较好地把问题化解在始发状态;同时,领导干部也需要具有快速应变决断的能力,能掌握处置突发环境事件的关键节点,在最短的时间内控制住局势;领导干部还需要具有较强的组织协调能力,能短时间内将人力、物力、财力等各种要素聚集到位,充分调动各方面积极性,有条不紊、高效有序的应对。以往的环境应急处置中也暴露出一些领导干部能力不足的问题,如对有关法律法规了解不多,甚至无知而为;缺乏环境应急管理运行机制和基本处置原则的把握,错失良机;媒体应对与信息交互能力不强,与公众沟通不通畅,甚至引发对立与激化等等。提高领导干部应对复杂局面、处理突发环境事件的能力既需要领导干部自我学习和注重实践,更需要有系统性的专门培训。一方面要组织领导干部系统性地学习新理论、新知识、新技能,尤其是掌握现代科学技术在环境应急领域的应用,另一方面要通过外派、“上挂”、“下派”、轮岗交流、调整分工等形式,有计划地安排领导干部、业务骨干进行培训锻炼,积累领导经验,提高组织能力和现场处置能力。

    4)深化环境应急管理体制机制创新。自2005年松花江水污染事件以来,我国环境应急管理体制机制建设取得了长足进展和显著成效,“一案三制”起到了巨大的推动作用[36]。但是,面对日益复杂、不确定的环境安全风险,原有环境应急管理机制体制协调性、灵活性、适应性和响应性不足的弊端日益显现。以“一案三制”为核心的环境应急管理模式在强化自上而下标准化的应急规则、流程、制度设计的同时,赋予各相关部门、主体的灵活、创新的权力不足,这在一定程度上制约了一线应急响应人员自主、创新决策的积极性。此外,实践部门经常抱怨预案“不管用”“不顶用”,其背后的根本原因是预案设计简单,情境与突发环境事件现场的复杂、不确定情境相去甚远。这就要求我们要敢于创新、打破成规,超越“一案三制”的框架约束,从宏观上强化制度化建设,坚持“摸着石头过河”与顶层设计相结合,坚持问题导向和目标导向相统一,在实践中探索创新环境应急管理机制体制。一是建立防处一体化机制,特别是针对重大环境风险防范要构建风险研判、防控协调、防控责任等机制,将任务层层分解、逐级落实;二是持续推进跨地区、跨部门、跨行业的环境应急联动机制建设,建立起科学化、标准化的应急指挥体系;三是进一步强化属地政府与行业管理部门齐抓共管突发环境事件应对,建立起责、权、利相结合的联合管理机制;四是要建立相对清晰的责任边界意识并广为宣传,环境应急管理是庞杂、复杂的事务,应成为全政府、全社会的共同职责,不应将生态环境部门作为“万能部门”;五是进一步创新环境应急管理理论研究,借鉴国外先进经验,从顶层设计的层面上体现世界环境应急管理的最先进理念,鼓励大胆创新,对机制体制改革难题进行重点探索和研究。

参考文献 (36)

返回顶部

目录

/

返回文章
返回