新型复合脱硫杀菌剂的制备及其对油井中含硫化氢气体的处理效果

付博睿, 周立辉, 张璇, 许路, 柴铖, 吴晨曦, 金鹏康. 新型复合脱硫杀菌剂的制备及其对油井中含硫化氢气体的处理效果[J]. 环境工程学报, 2021, 15(5): 1783-1791. doi: 10.12030/j.cjee.202008258
引用本文: 付博睿, 周立辉, 张璇, 许路, 柴铖, 吴晨曦, 金鹏康. 新型复合脱硫杀菌剂的制备及其对油井中含硫化氢气体的处理效果[J]. 环境工程学报, 2021, 15(5): 1783-1791. doi: 10.12030/j.cjee.202008258
FU Borui, ZHOU Lihui, ZHANG Xuan, XU Lu, CHAI Cheng, WU Chenxi, JIN Pengkang. Development of a new composite desulfurization fungicide and its application in the treatment of oil wells containing hydrogen sulfide[J]. Chinese Journal of Environmental Engineering, 2021, 15(5): 1783-1791. doi: 10.12030/j.cjee.202008258
Citation: FU Borui, ZHOU Lihui, ZHANG Xuan, XU Lu, CHAI Cheng, WU Chenxi, JIN Pengkang. Development of a new composite desulfurization fungicide and its application in the treatment of oil wells containing hydrogen sulfide[J]. Chinese Journal of Environmental Engineering, 2021, 15(5): 1783-1791. doi: 10.12030/j.cjee.202008258

新型复合脱硫杀菌剂的制备及其对油井中含硫化氢气体的处理效果

    作者简介: 付博睿(1994—),男,硕士研究生。研究方向:油田硫化氢气体综合治理。E-mail:172519658@qq.com
    通讯作者: 金鹏康(1974—),男,博士,教授。研究方向:水与废水的深度处理技术。E-mail:pkjin@hotmail.com
  • 中图分类号: X511;TE39

Development of a new composite desulfurization fungicide and its application in the treatment of oil wells containing hydrogen sulfide

    Corresponding author: JIN Pengkang, pkjin@hotmail.com
  • 摘要: 以静态脱硫和杀菌性能评价为依据,通过脱硫主剂与杀菌主剂的筛选、优化及复配,最终研制出一种新型复合脱硫杀菌剂。实验结果表明,该药剂的表观硫容与杀菌效率分别达800 mg·L−1和99%,且不具有金属腐蚀性,与原油及油田各类助剂的配伍性良好。现场应用结果表明,油井硫化氢质量浓度可由8 000 mg·m−3降至0,硫酸盐还原菌的数量由100 000 个·mL−1降至10 个·mL−1以下,并能维持1~7 d,治理效果显著。上述结果可为油气田硫化氢的高效、低成本防治提供参考。
  • 安全清洁的饮用水与人群健康息息相关,也是我国当前经济社会发展中的重大民生问题之一[1]。饮用水处理工艺经过百余年的发展,特别是消毒工艺的应用,为消除伤寒、霍乱等介水传播疾病做出了重大贡献。但随着检测技术的不断发展,耐氯性条件致病菌在饮用水系统中被不断检出[2-3]。有研究[4]显示,人类仍有50%的疾病与饮用水中病原微生物有关。因此,探究饮用水处理工艺中细菌群落的时空分布与动态变化,对病原微生物控制技术的开发,进而保障人群健康具有重要意义。

    高通量测序因其准确性高、成本低等优点,在供水系统微生物群落解析中应用广泛。目前,已有利用该技术对常规处理工艺[5]、臭氧-生物活性炭深度处理工艺[6]、炭砂滤池处理工艺[7]等工艺过程中细菌群落多样性进行解析的很多案例。但是,针对超滤工艺及其组合净水工艺过程中细菌群落变化的研究却鲜见报道[8]

    本研究以我国南方某基于活性炭-超滤深度处理工艺的自来水厂为采样地,采用NovaSeq6000高通量测序技术对夏季和冬季各工艺单元出水和活性炭生物膜的细菌群落进行解析,以探究细菌群落在工艺过程中的分布与变化规律;并了解主要条件致病菌属的组成,以期为全面保障饮用水安全提供参考。

    该自来水厂(以下简称“水厂”)设计规模为40 000 t·d−1,供水面积约4 km2,服务人口约160 000人。水源水来自水库。以机械混合池、穿孔旋流絮凝池、斜管沉淀池、活性炭滤池、超滤膜车间和清水池为主要工艺单元,工艺流程如图1所示。混凝剂选用聚合氯化铝,投加量为1.0~2.0 mg·L−1(以氧化铝计);预氧化剂和消毒剂均采用次氯酸钠,预氧化投加量为0.5~1.0 mg·L−1,主消毒投加量为1.5~2.0 mg·L−1,均以Cl2计。

    图 1  GAC-UF深度处理工艺流程图
    Figure 1.  Schematic diagram of GAC-UF advanced treatment process

    水样来自GAC-UF各工艺单元的出水,生物膜样品则采集自GAC-UF活性炭滤池中的活性炭,样品采集时各工艺单元设备运行状态良好。采样点如图1所示。样品名称分别为原水、沉后水、炭滤出水、超滤出水、出厂水和活性炭生物膜,对应的夏季(7月份)样品编号为S.RW、S.CSE、S.GACFE、S.UFE、S.FW和S.GACB;对应的冬季样品编号为W.RW、W.CSE、W.GACFE、W.UFE、W.FW和W.GACB。水样采集所用塑料桶须进行灭菌处理,活性炭样品置于无菌袋中。以上样品均需要采集3份平行样品,混合均匀后方可进行样品检测[9]。水样及活性炭样品要及时进行检测,如无条件立即进行检测,需于4 ℃条件下保存,并在24 h内完成检测。活性炭样品的处理步骤参考文献[10]。采用0.22 μm滤膜对水样和活性炭样品的处理上清液进行过滤,直到滤膜无法下滤为止。之后将滤膜置于灭菌处理的离心管中,于−80 ℃条件下保存。

    使用HACH HQd多参数水质分析仪对刚采集样品的pH、水温和溶解氧立即进行测定;使用HACH 2100AN浊度分析仪、GE Sievers 5310C总有机碳测定仪、VARIAN CARY50型号紫外-可见分光光度计对浊度、TOC/DOC、UV254进行检测;使用《生活饮用水标准检验方法》(GB/T 5750-2006)[11]的方法对总磷、氨氮、高锰酸盐指数(CODMn)、菌落总数等指标进行检测;生物可降解溶解性有机碳(BDOC)测定方法参考文献[12];异养菌平板计数(HPC)参考文献[13]。

    首先,各样品的基因组DNA使用十六烷基三甲基溴化铵(CTAB)法提取,采用无菌水将提取获得的DNA稀释至1 ng·μL−1,以此DNA为模板,选择515F和806R等16S V4区引物进行聚合酶链式反应(PCR)。然后,采用琼脂糖凝胶(浓度为2%)对PCR产物进行电泳检测,并用胶回收试剂盒(qiagen公司)对目的条带进行回收。最后,利用TruSeq® DNA PCR-Free Sample Preparation Kit建库试剂盒构建文库,通过Qubit和Q-PCR对文库进行定量,文库确认合格后,在NovaSeq6000平台上进行测序。

    在97%一致性水平上,将测序获得的有效数据采用Uparse软件聚类为OTUs(operational taxonomic units)。之后对OTUs通过Mothur方法与SILVA的SSUrRNA数据库注释分析其所代表的物种,并在门、纲、属水平上进行样品的群落组成分析。同时,将数据均一化,以分析细菌群落多样性。

    α多样性指数和PCA分析分别采用Qiime软件(Version 1.7.0)和R软件(Version 2.15.3)完成。

    表1为GAC-UF深度处理工艺过程的水质参数变化。通过分析表1可知,出厂水pH、浊度、CODMn、菌落总数等指标均能满足《生活饮用水卫生标准》(GB 5749-2006)[14]的要求。现行的美国饮用水水质标准中,对HPC的限值是500 CFU·mL−1[15],本研究中两个季节的数据均没有超标;但是,冬季出厂水的HPC已达323 CFU·mL−1。HPC作为微生物学指标,需要引起重视。此外,冬季各工艺单元HPC远高于菌落总数。由于与测定菌落总数的营养琼脂培养基相比,测定HPC的R2A培养基有机物组成更加广泛,更有利于受损细菌的修复生长,因此,冬季更应强化工艺运行,以保障饮用水微生物安全。

    表 1  GAC-UF深度处理工艺过程中水质参数变化
    Table 1.  Variations of water characteristics in GAC-UF advanced treatment process
    样品名称pH水温/℃浊度/NTU溶解氧/(mg·L−1)总磷/(mg·L−1)氨氮/(mg·L−1)UV254/cm−1TOC/(mg·L−1)CODMn/(mg·L−1)BDOC/(mg·L−1)菌落总数/(CFU·mL−1)HPC/(CFU·mL−1)
    S.RW7.8728.211.307.960.2060.1230.034 74.683.060.75260620
    S.CSE8.8428.31.628.241.49000.038 32.952.850.6511298
    S.GACFE7.8428.20.617.780.53200.025 42.402.480.452164
    S.UFE7.8228.40.118.650.10700.023 61.251.790.2330
    S.FW7.8828.30.108.620.10000.023 01.281.700.1912
    W.RW7.3117.22.949.290.1240.2100.028 62.782.500.521508800
    W.CSE8.1917.30.639.580.10500.019 02.682.300.43685700
    W.GACFE7.3017.20.399.050.12200.015 02.161.800.32421850
    W.UFE7.6017.40.049.920.13700.011 11.761.300.150370
    W.FW7.6517.30.079.930.09700.010 91.651.100.130323
     | Show Table
    DownLoad: CSV

    除pH、水温和溶解氧3项指标以外,工艺过程中的其他指标基本呈现下降趋势。其中,夏季和冬季对浊度、氨氮、BDOC、菌落总数的去除率基本相同,且与相关研究结果基本吻合[16]

    夏季和冬季的水样、生物膜样品α多样性指数如表2所示。由表2可知,Good’s coverage均在0.98以上。由此可以看出,对于水样、活性炭生物膜样品中细菌群落的覆盖率,16S rRNA测序均能达到较高。

    表 2  各样品OTUs数目和α多样性指数
    Table 2.  OTUs numbers and alpha diversity indexes of each sample
    样品名称OTUsα多样性指数
    ShannonSimpsonChao1ACEGood’s coverage
    S.RW1 6957.3190.9841 876.5061 956.0420.985
    S.CSE1 4113.0950.5881 506.9751 550.8960.991
    S.GACFE2 4358.2190.9902 370.5002 409.8060.988
    S.UFE1 6765.9400.9581 689.8521 721.6050.988
    S.FW8814.4150.718866.174875.6340.995
    S.GACB1 8966.4680.9281 858.2971 898.8540.993
    W.RW2 0607.3880.9841 916.5762 035.4720.985
    W.CSE1 5376.2890.9741 589.2561 651.1410.986
    W.GACFE2 4908.8340.9912 497.8892 517.3660.982
    W.UFE1 3307.2970.9761 382.9411 548.9650.990
    W.FW1 1835.8310.9411 225.5671 311.8260.987
    W.GACB2 2788.5110.9812 131.8752 227.6220.984
      注:Shannon和Simpson为菌群多样性指数,Chao1和ACE为菌群丰度指数。
     | Show Table
    DownLoad: CSV

    在水样方面,除在GAC工艺单元有大幅升高外,OTUs和Shannon、Chao1等α多样性指数在活性炭-超滤深度处理工艺过程中整体呈下降趋势,混凝沉淀工艺单元、UF工艺单元和消毒工艺单元对细菌多样性均起到削减作用。此外,夏季对OTUs、Shannon和Chao1的去除率(48.02%、39.68%、53.84%)明显高于冬季(42.57%、21.07%、36.05%)。其主要原因可能是,冬季水温较夏季低10 ℃左右,较低的温度影响了工艺运行效果。以上结果均表现了GAC-UF深度处理工艺中细菌群落明显的时空变化特性。此外,冬季水样和生物膜样品OTUs数目和α多样性指数均高于夏季。HOU等[7]对广州某炭砂滤池处理工艺水厂的研究结果与本文的结果一致;但任红星[17]对我国东部某臭氧-生物活性炭深度处理工艺的研究结果却与本文结果相反。以上内容表明,在不同地域水厂工艺过程中,细菌群落多样性的时间变化特性有所差异,产生这一结果可能与原水(水源水)中的营养物质组成有关[18]

    细菌群落多样性在GAC-UF深度处理工艺过程中整体呈下降趋势,但在GAC单元出水中明显升高,且活性炭生物膜细菌群落多样性亦高于原水。以上结果均表明,GAC滤池中细菌的大量孳生。BOON等[19]的研究也表明GAC滤池出水中大量微生物的存在。混凝沉淀工艺单元、UF工艺单元和消毒工艺单元均对细菌群落多样性起到削减作用,混凝沉淀工艺单元对细菌群落多样性的去除率在20%左右。但是,POITELON等[20]和LIN等[5]的研究结果表明,混凝沉淀工艺单元对细菌群落的影响作用较小,这与本文结果有一定出入。其可能的原因是,本研究中添加了次氯酸钠作为预氧化剂,强化了混凝沉淀工艺对细菌群落的去除。在UF工艺单元,2个季节对细菌多样性的去除作用均较为明显,表明了超滤膜对微生物的有效截留,这与乔铁军等[21]的研究结果一致。消毒工艺单元是保障饮用水微生物安全最主要的屏障,其在夏季对细菌群落多样性的去除率最高,但在冬季去除率较低,这可能与耐氯菌的存在有关。

    1)门水平上的细菌群落组成。门水平上的细菌群落组成如图2所示。由图2可知,2个季节水样的主要菌门组成基本相同;不同的是,变形菌门(Proteobacteria)在夏季样品中占绝对优势,而放线菌门(Actinobacteria)在冬季各水样中相对丰度略高于变形菌门(Proteobacteria)。相较各水样而言,在活性炭生物膜样品(S.GACB和W.GACB)中,变形菌门(Proteobacteria)在夏季(60.79%)和冬季(72.15%)均占绝对优势;夏季主要菌门还包括浮霉菌门(Planctomycetes,12.79%)、酸杆菌门(Acidobacteria,5.06%)和奇古菌门(Thaumarchaeota,3.62%),冬季还包括软壁菌门(Tenericutes,4.83%)、放线菌门(Actinobacteria,4.04%)和浮霉菌门(Planctomycetes,3.12%)。

    图 2  各样品在门水平上细菌群落组成
    Figure 2.  Bacterial community composition of each sample at phylum level

    综上所述,水样和生物膜样品细菌群落组成在门水平上存在一定差异,且生物膜样品差异更为明显;但综合这两种样品来看,占有绝对优势的菌门仍为变形菌门(Proteobacteria)。

    2)属水平上的细菌群落组成。夏、冬两季在属水平上的细菌群落组成如图3所示。由图3可知,在属水平组成上,2个季节的细菌群落组成差异性更为明显,如在S.FW中绝对优势菌属为鞘氨醇单胞菌属(Sphingomonas,15.15%),在W.FW中绝对优势菌属为分支杆菌属(Mycobacterium,63.32%)。根据祝泽兵[3]的研究,这2种菌属均具有一定的耐氯性。此外,可能正是由于大量分支杆菌属(Mycobacterium)等耐氯菌的存在,造成了冬季消毒工艺对细菌多样性的去除率较低。

    图 3  各样品在属水平细菌群落组成
    Figure 3.  Bacterial community composition of each sample at genus level

    根据相关研究[22]报道,分支杆菌属(Mycobacterium)和假单胞菌属(Pseudomonas)为条件致病菌属。这2种条件致病菌属在冬季样品中的相对丰度高于夏季,且分支杆菌属(Mycobacterium)在活性炭池中更易孳生,出水丰度较沉淀池出水有所增加,特别是冬季样品增加较多。此外,在常规处理工艺[5]、臭氧-生物活性炭深度处理工艺[6]、炭砂滤池处理工艺[7]中亦发现不动杆菌属(Acinetobacter)、梭菌属(Clostridium)、军团菌属(Legionella)、气单胞菌属(Aeromonas)、沙门菌属(Salmonella)、链球菌属(Streptococcus)等多种条件致病菌属,且在供水管网系统中也有检出[23]。虽然大多数条件致病菌属相对丰度均较低,但其也包含非致病菌种[24],这仍需引起关注,后续应加强致病菌种水平和更有效灭活方式的研究。

    采用主成分分析对细菌群落的组成变化进行了研究,结果如图4所示。由图4可知,除冬季超滤出水(W.UFE)外,夏、冬两季样品分别分布在第一主成分(横坐标)两侧,这表明细菌群落组成的季节性变化非常明显。冬季超滤出水(W.UFE)远离所有样品,这说明其与其他样品细菌群落组成差异较大。与冬季相比,夏季各样品之间距离均较远,这说明各工艺单元之间的细菌群落组成差异亦更大。

    图 4  细菌群落变化主成分分析
    Figure 4.  Principal component analysis of bacterial community change

    为明确工艺过程中的核心微生物,对夏、冬两季工艺水样共有和特有OTUs进行花瓣图分析,结果如图5所示。由图5可知,所有水样共有的OTUs数目是72,这说明一部分细菌不仅稳定存在于水样中,不受季节的影响;而且最终可能会进入龙头水,对人群健康造成危害。在核心微生物72个OTUs中,条件致病菌属分支杆菌属(Mycobacterium)和假单胞菌属(Pseudomonas)所占数目为1和3,所占比例合计为5.56%。

    图 5  水样间基于OTUs的花瓣图
    Figure 5.  Flower diagram based on OTUs among water samples

    1)出厂水中浊度、菌落总数等水质指标均符合国标GB 5749-2006的要求。

    2)细菌群落多样性在工艺过程中呈明显的时空分布变化,混凝沉淀、UF和消毒是去除细菌群落多样性的主要工艺单元,且夏季去除率明显高于冬季。

    3)主要菌门组成为变形菌门(Proteobacteria)、放线菌门(Actinobacteria)等;在属水平上细菌群落组成差异较大。

    4)条件致病菌属主要包括分支杆菌属(Mycobacterium)和假单胞菌属(Pseudomonas),其在核心微生物中合计占比为5.56%。

  • 图 1  静态脱硫装置

    Figure 1.  Static desulfurization device

    图 2  不同脱硫剂脱硫效果对比

    Figure 2.  Comparison of desulfurization effects of different desulfurizers

    图 3  优化前后脱硫主剂的性能对比

    Figure 3.  Performance comparison of main desulfurization agent before and after optimization

    图 4  不同杀菌剂的杀菌效果对比

    Figure 4.  Comparison of sterilization effects of different fungicides

    图 5  复配药剂性能评价

    Figure 5.  Performance evaluation of compound medicament

    图 6  配伍性实验效果

    Figure 6.  Experimental effect after mixing

    图 7  新型复合脱硫杀菌剂动态脱硫效率

    Figure 7.  Dynamic desulfurization efficiency of new composite desulfurization fungicides

    图 8  新型复合脱硫杀菌剂杀菌性能

    Figure 8.  Bactericidal performance of a new composite desulfurization fungicide

    图 9  新型复合脱硫杀菌剂与几种常见药剂的性能对比

    Figure 9.  Performance comparison of new composite desulfurization fungicides with commonly used reagents

    图 10  新型复合脱硫杀菌剂现场应用效果

    Figure 10.  Field application effect of new composite desulfurization fungicide

    图 11  线性分析

    Figure 11.  Linear analysis

    表 1  正交试验的因素和水平

    Table 1.  Factors and levels of orthogonal experiment

    水平因素
    互溶剂表面活性剂水解抑制剂
    1H1M1S1
    2H2M2S2
    3H3M3
    水平因素
    互溶剂表面活性剂水解抑制剂
    1H1M1S1
    2H2M2S2
    3H3M3
    下载: 导出CSV

    表 2  正交表及实验结果

    Table 2.  Orthogonal experiment design and correponding results

    实验序号互溶剂表面活性剂水解抑制剂表观硫容/(mg·L−1)
    水相油相
    1H1M1S11 3191 122
    2H1M2S11 4821 362
    3H1M3S21 2211 068
    4H2M1S2926774
    5H2M2S1981850
    6H2M3S1948741
    7H3M1S1904817
    8H3M2S2959796
    9H3M3S1872730
    实验序号互溶剂表面活性剂水解抑制剂表观硫容/(mg·L−1)
    水相油相
    1H1M1S11 3191 122
    2H1M2S11 4821 362
    3H1M3S21 2211 068
    4H2M1S2926774
    5H2M2S1981850
    6H2M3S1948741
    7H3M1S1904817
    8H3M2S2959796
    9H3M3S1872730
    下载: 导出CSV

    表 3  水相表观硫容数据极差分析结果

    Table 3.  Range analysis result of water phase sulfur capacity data mg·L−1

    序列互溶剂表面活性剂水解抑制剂
    K14 0213 1496 506
    K22 8553 4223 106
    K32 7353 040
    k11 3401 0501 084
    k29521 1411 035
    k39121 013
    极差42912749
    序列互溶剂表面活性剂水解抑制剂
    K14 0213 1496 506
    K22 8553 4223 106
    K32 7353 040
    k11 3401 0501 084
    k29521 1411 035
    k39121 013
    极差42912749
    下载: 导出CSV

    表 4  油相表观硫容数据极差分析结果

    Table 4.  Range analysis result of oil phase sulfur capacity data mg·L−1

    序列互溶剂表面活性剂水解抑制剂
    K13 5532 7135 623
    K22 3653 0082 637
    K32 3432 539
    k11 184904937
    k27881 003879
    k3781846
    极差40315658
    序列互溶剂表面活性剂水解抑制剂
    K13 5532 7135 623
    K22 3653 0082 637
    K32 3432 539
    k11 184904937
    k27881 003879
    k3781846
    极差40315658
    下载: 导出CSV

    表 5  不同温度下脱硫剂腐蚀实验

    Table 5.  Corrosion test of desulfurizer at different temperatures

    实验温度/℃试片规格/(mm×mm×mm)面积/cm2试片质量/gΔm/g腐蚀速率/(mm·a−1)
    挂片前挂片后
    8050×13×316.7812.340 412.335 40.005 30.010 5
    9050×13×316.7813.658 013.653 70.004 30.008 5
    实验温度/℃试片规格/(mm×mm×mm)面积/cm2试片质量/gΔm/g腐蚀速率/(mm·a−1)
    挂片前挂片后
    8050×13×316.7812.340 412.335 40.005 30.010 5
    9050×13×316.7813.658 013.653 70.004 30.008 5
    下载: 导出CSV

    表 6  实验油井概况

    Table 6.  Overview of experimental oil wells

    油井编号液量/(m3·d−1)药剂体积浓度/(L·m−3)硫化氢质量浓度/(mg·m−3)初始SRB数量值/(个·mL−1)
    A-13016 2581 000
    A-23057 91610 000
    A-35108 14610 000
    A-45508 081100 000
    油井编号液量/(m3·d−1)药剂体积浓度/(L·m−3)硫化氢质量浓度/(mg·m−3)初始SRB数量值/(个·mL−1)
    A-13016 2581 000
    A-23057 91610 000
    A-35108 14610 000
    A-45508 081100 000
    下载: 导出CSV
  • [1] 胡廷. 渤海油田注水用液体脱硫剂的筛选和现场应用[J]. 油田化学, 2019, 36(2): 277-279.
    [2] 宜延军. 油气田硫化氢的危害与防范技术研究[J]. 中国石油和化工标准与质量, 2012, 32(3): 19-20. doi: 10.3969/j.issn.1673-4076.2012.03.009
    [3] 油气田开发与炼化企业硫化氢危害分析与预防[J]. 油气田开发与炼化企业硫化氢危害分析与预防[J]. 安全、健康和环境, 2006, 6(12): 16-20. doi: 10.3969/j.issn.1672-7932.2006.12.009
    [4] 尹忠, 廖刚, 梁发书, 等. 硫化氢的危害与防护[J]. 油田环境保护, 2004, 14(4): 37-39.
    [5] 何毅. 长庆油田硫化氢油区集输工艺技术研究[D]. 青岛: 中国石油大学(华东), 2017.
    [6] 王兴伟. 辽河油田杜84区块SAGD开发中硫化氢成因探究与防治[D]. 北京: 中国地质大学(北京), 2014.
    [7] 马志鑫, 王沛甫, 关文韬, 等. 彭阳油田硫化氢成因与防治对策[J]. 油气田地面工程, 2013, 32(6): 28-29. doi: 10.3969/j.issn.1006-6896.2013.6.014
    [8] 张鹏军, 丁保宏, 夏裴文, 等. 原油化学脱硫剂的研究进展[J]. 当代化工, 2018, 47(2): 338-340. doi: 10.3969/j.issn.1671-0460.2018.02.032
    [9] 吴松. 杀菌剂在油田含聚污水中使用效果的研究[D]. 大庆: 大庆石油学院, 2007.
    [10] 王加祥. 油溶性脱硫剂的合成及油田H2S治理研究[D]. 西安: 西安建筑科技大学, 2013.
    [11] 李岩, 刘沛华, 张璇, 等. 一种油井用有机类除硫剂的除硫率测定装置及测定方法: CN110376332A[P]. 2019-10-25.
    [12] 嵇文涛, 郝坚. 安塞油田注入水杀菌剂的效果评价[J]. 中国石油和化工标准与质量, 2013, 33(22): 144. doi: 10.3969/j.issn.1673-4076.2013.22.145
    [13] 王晗, 胡兴华, 张博廉. 复合配方杀菌剂在气田回注水应用研究[J]. 四川环境, 2016, 35(2): 10-13. doi: 10.3969/j.issn.1001-3644.2016.02.003
    [14] 张点. 三嗪除硫剂的合成与性能评价[D]. 西安: 西安石油大学, 2018.
    [15] 司伟, 王长守, 王军, 等. 原油H2S脱除剂YD的研制与应用[J]. 应用化工, 2018, 47(4): 746-749. doi: 10.3969/j.issn.1671-3206.2018.04.028
    [16] 刘洋, 郭兵兵, 祝月全. 脱硫剂的研究进展[J]. 当代化工, 2013, 42(6): 827-829. doi: 10.3969/j.issn.1671-0460.2013.06.041
    [17] 杨光, 薛岗, 蒋成银, 等. 国内外三嗪类液体脱硫剂的研究进展[J]. 石油化工应用, 2018, 37(10): 19-23. doi: 10.3969/j.issn.1673-5285.2018.10.005
    [18] 王峥, 王建国, 邴守启, 等. 石灰石-石膏湿法烟气脱硫效率影响因素[J]. 煤气与热力, 2011, 31(9): 1-4. doi: 10.3969/j.issn.1000-4416.2011.09.001
    [19] 李艳贵. 酸性天然气H2S脱除技术探讨[J]. 中国石油和化工标准与质量, 2012, 32(8): 37. doi: 10.3969/j.issn.1673-4076.2012.08.027
    [20] 王长守, 司伟, 王军, 等. 第三代液体硫化氢脱除剂YD-002的研制与应用[J]. 应用化工, 2018, 47(3): 545-547. doi: 10.3969/j.issn.1671-3206.2018.03.031
  • 加载中
    Created with Highcharts 5.0.7访问量Chart context menu近一年内文章摘要浏览量、全文浏览量、PDF下载量统计信息摘要浏览量全文浏览量PDF下载量2024-052024-062024-072024-082024-092024-102024-112024-122025-012025-022025-032025-040Highcharts.com
    Created with Highcharts 5.0.7Chart context menu访问类别分布DOWNLOAD: 3.0 %DOWNLOAD: 3.0 %HTML全文: 88.0 %HTML全文: 88.0 %摘要: 9.0 %摘要: 9.0 %DOWNLOADHTML全文摘要Highcharts.com
    Created with Highcharts 5.0.7Chart context menu访问地区分布其他: 78.0 %其他: 78.0 %Ashburn: 4.5 %Ashburn: 4.5 %Beijing: 8.0 %Beijing: 8.0 %Hangzhou: 1.1 %Hangzhou: 1.1 %Langfang: 0.8 %Langfang: 0.8 %Mountain View: 0.4 %Mountain View: 0.4 %Newark: 1.1 %Newark: 1.1 %Shanghai: 0.8 %Shanghai: 0.8 %Shijiazhuang: 1.1 %Shijiazhuang: 1.1 %XX: 1.5 %XX: 1.5 %内网IP: 0.4 %内网IP: 0.4 %北京: 0.4 %北京: 0.4 %张家口: 0.4 %张家口: 0.4 %杭州: 0.4 %杭州: 0.4 %深圳: 1.1 %深圳: 1.1 %其他AshburnBeijingHangzhouLangfangMountain ViewNewarkShanghaiShijiazhuangXX内网IP北京张家口杭州深圳Highcharts.com
图( 11) 表( 6)
计量
  • 文章访问数:  4799
  • HTML全文浏览数:  4799
  • PDF下载数:  64
  • 施引文献:  0
出版历程
  • 收稿日期:  2020-08-29
  • 录用日期:  2021-01-17
  • 刊出日期:  2021-05-10
付博睿, 周立辉, 张璇, 许路, 柴铖, 吴晨曦, 金鹏康. 新型复合脱硫杀菌剂的制备及其对油井中含硫化氢气体的处理效果[J]. 环境工程学报, 2021, 15(5): 1783-1791. doi: 10.12030/j.cjee.202008258
引用本文: 付博睿, 周立辉, 张璇, 许路, 柴铖, 吴晨曦, 金鹏康. 新型复合脱硫杀菌剂的制备及其对油井中含硫化氢气体的处理效果[J]. 环境工程学报, 2021, 15(5): 1783-1791. doi: 10.12030/j.cjee.202008258
FU Borui, ZHOU Lihui, ZHANG Xuan, XU Lu, CHAI Cheng, WU Chenxi, JIN Pengkang. Development of a new composite desulfurization fungicide and its application in the treatment of oil wells containing hydrogen sulfide[J]. Chinese Journal of Environmental Engineering, 2021, 15(5): 1783-1791. doi: 10.12030/j.cjee.202008258
Citation: FU Borui, ZHOU Lihui, ZHANG Xuan, XU Lu, CHAI Cheng, WU Chenxi, JIN Pengkang. Development of a new composite desulfurization fungicide and its application in the treatment of oil wells containing hydrogen sulfide[J]. Chinese Journal of Environmental Engineering, 2021, 15(5): 1783-1791. doi: 10.12030/j.cjee.202008258

新型复合脱硫杀菌剂的制备及其对油井中含硫化氢气体的处理效果

    通讯作者: 金鹏康(1974—),男,博士,教授。研究方向:水与废水的深度处理技术。E-mail:pkjin@hotmail.com
    作者简介: 付博睿(1994—),男,硕士研究生。研究方向:油田硫化氢气体综合治理。E-mail:172519658@qq.com
  • 1. 西安建筑科技大学环境与市政工程学院,西安 710055
  • 2. 长庆油田分公司油气工艺研究院,西安 710018

摘要: 以静态脱硫和杀菌性能评价为依据,通过脱硫主剂与杀菌主剂的筛选、优化及复配,最终研制出一种新型复合脱硫杀菌剂。实验结果表明,该药剂的表观硫容与杀菌效率分别达800 mg·L−1和99%,且不具有金属腐蚀性,与原油及油田各类助剂的配伍性良好。现场应用结果表明,油井硫化氢质量浓度可由8 000 mg·m−3降至0,硫酸盐还原菌的数量由100 000 个·mL−1降至10 个·mL−1以下,并能维持1~7 d,治理效果显著。上述结果可为油气田硫化氢的高效、低成本防治提供参考。

English Abstract

  • 硫化氢具有强毒性和腐蚀性,是油气开发过程中最为常见的有害气体。该气体不仅会腐蚀管道、设备[1],同时由于其剧毒性和挥发性,极易造成环境污染,并直接威胁着作业人员的健康和安全[2-4]。随着采油技术及工艺的发展,油井中硫化氢的成因也越来越复杂。硫化氢气体的产生一部分来自于地层物质在高温高压条件下的反应,另一部分则是由于油井内环境的变化,促进了硫酸盐还原菌生长进而滋生硫化氢。越来越多的油井受到生物和非生物成因共同作用产生硫化氢的威胁[5-7]。针对这类油井,只进行单独脱硫或者杀菌处理,已无法达到预期治理效果,而需同时进行高效脱硫与杀菌处理。然而,市场上的脱硫剂主要为胺类脱硫剂,不具备杀菌功能,并且脱硫后不稳定;而杀菌剂则主要是非氧化型杀菌剂,例如季铵盐类和杂环化合物类,但均无脱硫性能。因此,目前主流脱硫剂或杀菌剂均为单一性能药剂[8-9],无法满足复杂成因下的硫化氢治理需求。

    本研究中,通过药剂筛选与复配、脱硫与杀菌性能评价以及现场应用,研发出一种复合脱硫杀菌剂,以满足油井硫化氢治理中对于脱硫与杀菌的双重需求。

  • 1)主要试剂。羟乙基六氢均三嗪、杀菌剂1227、甲基六氢均三嗪、二乙醇胺以及乙醇胺均为工业级试剂;硫化钠、盐酸、碘、硫代硫酸钠以及淀粉指示剂等均为分析纯。

    2)主要仪器。硫酸盐还原菌测试瓶为北京华兴化学试剂厂生产的SRB-HX-7型细菌测试瓶。其他仪器有Smart pro10-H2S型泵吸式硫化氢检测仪、1 mL无菌注射器以及电热恒温培养箱等。

  • 1)静态脱硫装置及方法。药剂研制过程以静态脱硫实验为主,采用表观硫容[10]即单位体积药剂所吸收的硫化氢量为评价指标,对比不同药剂的脱硫性能。静态脱硫实验装置(见图1)主要由磨口平底烧瓶、瓶塞、分液漏斗、检测口以及泵吸式硫化氢检测仪等构成。实验方法:将1 mL浓度为5 g·L−1的硫化钠溶液加入到含有30 mL纯水或原油的锥形瓶中,并充分摇匀;向锥形瓶中加入1 mL盐酸并盖紧瓶塞,同时将测样口用止水夹密封;通过分液漏斗向锥形瓶中加入脱硫剂,并开启磁力搅拌器搅拌5 min,再静置1 min;打开测样口,使用硫化氢检测仪测定硫化氢浓度。

    2)动态脱硫装置及方法。现场投加药剂时,由于硫化氢气体在套管中会不断运动,脱硫剂由套管加入后与硫化氢气体的接触为动态过程,所以,为更好地评价脱硫剂的性能,在得到最佳的复合脱硫杀菌剂后,进一步使用动态脱硫装置对其脱硫效率进行分析。具体测定方法参考文献中的方法[11]进行。

  • 杀菌性能的评价根据中国石油天然气集团公司企业标准《油田用杀菌剂技术要求》(Q/SY 49-2010)及中华人民共和国石油天然气行业标准《油田注入水细菌分析方法绝迹稀释法》(SY/T 0532-2012)中的规定进行[12]。通过测定使用杀菌剂前后水样中细菌的含量来计算各药剂的杀菌效率[13](见式(1))。

    式中:C为杀菌剂的杀菌率;B0为加杀菌剂前水样中细菌含量,个·mL−1B1为加杀菌剂后水样中细菌含量,个·mL−1

  • 新型复合脱硫杀菌剂的基本性质包括外观、颜色、气味、pH、密度、水溶性、油溶性、腐蚀性以及配伍性等。通过目观鼻嗅法检验药剂的外观、颜色以及气味;参照《化学试剂pH值测定通则》(GB/T 9724-2007)检测药剂的pH;利用比重法检测药剂密度;将药剂与纯水和原油分别混合,判断其水溶和油溶性;依据石油天然气行业标准《油田采出水用缓蚀剂性能评价方法》(SY/T 5273-2000)和国家标准《金属和合金的腐蚀—腐蚀试体上腐蚀产物的清除》(GB/T 16545-1996)对药剂的腐蚀性进行测定[14];将药剂与油田助剂混合,观察是否发生反应,进而判断其配伍性的优劣[15]

  • 1)脱硫主剂的筛选与优化。根据市场调研以及文献资料[16-17],初步筛选出4种综合性能较好的脱硫剂,包括羟乙基六氢均三嗪、甲基六氢均三嗪、二乙醇胺以及乙醇胺。对4种脱硫主剂的静态脱硫性能进行分析与对比,结果如图2所示。羟乙基六氢均三嗪在水相和油相中的表观硫容分别为1 500 mg·L−1和500 mg·L−1,均明显优于其他3种备选脱硫主剂的表观硫容。由此说明,羟乙基六氢均三嗪在水相和油相中均具有较好的脱硫性能。因此,最终选择羟乙基六氢均三嗪作为最佳脱硫主剂开展后续研制。

    虽然羟乙基六氢均三嗪具备高选择性、反应迅速、产物无毒以及水溶性好等优点,但其在酸性条件下容易发生水解反应[18-19],且油溶性极差,这会影响其在实际应用中的脱硫效果。为弥补上述不足,尝试通过加入互溶剂、表面活性剂及水解抑制剂对纯羟乙基六氢均三嗪进行优化,并采用正交实验法对这3类助剂进行筛选[20],正交实验的因素和水平如表1所示,正交表及实验结果见表2

    表3表4中数据可知,互溶剂的极差最大,表面活性剂的极差次之,水解抑制剂的极差最小。这一结果表明,3类助剂中互溶剂对羟乙基六氢均三嗪脱硫性能的影响最大,而表面活性剂与水解抑制剂的影响相对较弱。进一步根据表中各助剂与其对应的k1k2k3数值进行分析可知,互溶剂为H1、表面活性剂为M2及水解抑制剂为S1时,得到优化后的脱硫剂具有最佳脱硫性能,其在水相和油相中的表观硫容分别高达1 482 mg·L−1和1 362 mg·L−1

    图3(a)为羟乙基六氢均三嗪在优化前后的脱硫性能对比,从该图可以看出,优化前后脱硫主剂在水相中的表观硫容略有下降,由1 500 mg·L−1降至1 482 mg·L−1。这主要是由于3类助剂的添加导致药剂中有效脱硫成分的含量有所降低。相反,优化后的脱硫剂在油相中的表观硫容由之前的500 mg·L−1大幅提高至1 362 mg·L−1,这可能与脱硫剂油溶性的提高有关。图3(b)表明,未优化主剂的亲油性较差,无法与原油均匀混合致使其与原油中的硫化氢接触难度大,进而导致纯的羟乙基六氢均三嗪在油相中的脱硫性能较差;在加入助剂优化后,药剂能与原油充分混合,其在油相中的脱硫性能得到大幅提升。

    2)杀菌主剂的筛选。经过调研,初步筛选出3种油田常用杀菌剂,包括杀菌剂1227、异噻唑啉酮以及戊二醛。在不同初始硫酸盐还原菌浓度下,对比了3种药剂的杀菌性能,结果如图4所示。在杀菌剂的质量浓度均为50 mg·L−1,初始硫酸盐还原菌含量分别为1 000、10 000及100 000 个·mL−1时,杀菌剂1227的杀菌效率分别为79.7%、75.2%以及69.44%,明显优于其他2种药剂的杀菌性能。因此,最终选择杀菌剂1227作为最佳杀菌主剂进行后续实验。

    3)脱硫剂与杀菌剂复配实验。2种药剂进行复配的脱硫效果如图5(a)所示。当脱硫主剂与杀菌主剂体积配比为9∶1,7∶3及5∶5时,复配药剂的表观硫容分别为1 000、800及600 mg·L−1;而当进一步改变其比例为3∶7和1∶9时,复配药剂的表观硫容进一步降低至300和100 mg·L−1。2种药剂进行复配的杀菌效果如图5(b)所示。脱硫主剂与杀菌主剂按照9∶1复配所得药剂的杀菌性能较差。对于初始浓度为10 000 个·mL−1的硫酸盐还原菌菌液的杀菌率仅为47.32%,而其余复配比例下所得药剂的杀菌效率基本可达到100%。综合考虑药剂的脱硫与杀菌性能,最终确定脱硫主剂与杀菌主剂的复配体积比为7∶3。

  • 根据上述实验与分析结果,最终确定新型复合脱硫杀菌剂的参考配方。药剂各组分的体积分数为:28%羟乙基六氢均三嗪,30%杀菌剂1227,7%互溶剂,4.2%表面活性剂,3.5%水解抑制剂及27.3%的水,其基本性质如下。

    1) 理化性质。新型复合脱硫杀菌剂为淡黄色透明液体,有极淡的刺激性气味,密度为1 g·mL−1,pH为9.6,并且水溶性、油溶性良好。

    2) 金属腐蚀性。表5为新型复合脱硫杀菌剂的金属腐蚀性评价结果。新型复合脱硫杀菌剂在80 ℃和90 ℃下对N80钢片的腐蚀速率分别仅为0.010 5 mm·a−1和0.008 5 mm·a−1,表明本研究中所制备的新型复合脱硫杀菌剂对碳钢的腐蚀性极弱,基本不具有金属腐蚀性。

    3) 配伍性。在不同温度下(30、50、80 ℃),将新型复合脱硫杀菌剂与油田现场使用的各类助剂按1∶1混合后,观察其是否发生明显变化来评价其配伍性。由图6可知,新型复合脱硫杀菌剂与阻垢剂、消防蜡剂和缓蚀剂等混合后,均未出现分层现象,同时混合液体均匀、清亮、无沉淀生成且流动性良好,证明新型复合脱硫杀菌剂具有良好的配伍性,现场使用不会对油气开发的正常作业产生负面影响。

  • 图7为新型复合脱硫杀菌剂的动态脱硫效率。先后5次测定了动态脱硫效率,结果分别为97.20%、98.90%、98.10%、97.80%和98.30%,平均脱硫效率高达98.10%,满足油田脱硫剂动态脱硫率大于95%的要求。结合静态脱硫实验结果,进一步证实了本研究中所制备的新型复合脱硫杀菌剂脱硫性能较好。此外,在动态脱硫实验中,复合脱硫杀菌剂的颜色及状态在吸收硫化氢前后均未发生改变,也未产生沉淀等杂质,说明该药剂在吸收硫化氢后不会对油田作业系统产生负面影响。

  • 在杀菌剂投加浓度为50 mg·L−1的条件下,新型复合脱硫杀菌剂的杀菌效率如图8所示。当初始硫酸盐还原菌数量分别为10、100和1 000 个·mL−1时,杀菌效率均可达到100%;当初始硫酸盐还原菌数量进一步提高至10 000和100 000 个·mL−1时,杀菌效率依然能保持在99%以上。说明新型复合脱硫杀菌剂的杀菌能力也十分突出。

  • 进一步对比新型复合脱硫杀菌剂与油田常用几种脱硫剂和杀菌剂的脱硫与杀菌性能,结果如图9所示。在初始硫酸盐还原菌菌液浓度为10 000 个·mL−1,杀菌剂投加浓度为50 mg·L−1的条件下,新型复合脱硫杀菌剂在水相和油相中的表观硫容分别为870 mg·L−1和760 mg·L−1,而其他3种脱硫剂的表观硫容均在600 mg·L−1以下。说明新型复合脱硫杀菌剂的脱硫性能较好。由图9(b)可知,在相同实验条件下,新型复合脱硫杀菌剂和杀菌剂1的杀菌率均在99%以上,而其余2种杀菌剂的杀菌率在90%以下,说明新型复合脱硫杀菌剂的杀菌性能也优于常用药剂。

  • 选取长庆油田某作业区的4口油井进行现场实验评价新型复合脱硫杀菌剂的实际应用效果。该油井的基本情况如表6所示。

    对比了加入药剂的体积浓度(分别为1、5、10、50 L·m−3,即每立方米产液投加的菌剂体积)对实际处理效果的影响,结果如图10所示。当加入药剂的体积浓度为1 L·m−3时,经过2 h的处理,油井硫化氢质量浓度由6 258 mg·m−3降低至0,维持了22 h后,硫化氢质量浓度开始回升;而硫酸盐还原菌数量由1 000 个·mL−1降至100 个·mL−1,之后开始增加。当加入药剂的体积浓度为5 L·m−3时,经过2 h的处理,油井硫化氢质量浓度由7 916 mg·m−3降至0,维持了46 h后,硫化氢质量浓度开始回升;而硫酸盐还原菌数量也由10 000 个·mL−1降至10 个·mL−1,维持了34 h。当加入药剂的体积浓度为10 L·m−3时,经过2 h的处理,硫化氢质量浓度由8 146 mg·m−3降低至0,并维持了94 h;而硫酸盐还原菌数量也由10 000 个·mL−1降至10 个·mL−1,维持了82 h,之后数量开始回升。当加入药剂的体积浓度为50 L·m−3时,经过2 h的处理,硫化氢质量浓度由8 081 mg·m−3降低至0,维持了142 h;而硫酸盐还原菌数量也由100 000 个·mL−1降至10 个·mL−1,并维持了130 h。基于以上结果,进一步分析了加入药剂的体积浓度和硫化氢质量浓度达标时长,以及硫酸盐还原菌数量达标时长的相关性,结果如图11所示。硫化氢质量浓度达标时长和硫酸盐还原菌浓度达标时长呈现一定的线性相关趋势(R2分别为0.816 4、0.751 6)。因此,若实行每天加药,则日最低加药体积浓度为1 L·m−3;若加药频率为每周1次,则单次需至少保持在50 L·m−3以上。

  • 1)将经优化后的脱硫主剂与杀菌主剂复配后得到兼具脱硫与杀菌双重功效的新型复合脱硫杀菌剂。药剂各组分体积分数为:28%均三嗪,30%杀菌剂1227,7%互溶剂,4.2%表面活性剂,3.5%水解抑制剂及27.3%的水。新型复合脱硫杀菌剂同时兼具高效脱硫、杀菌性能,动态脱硫效率高达98.1%,杀菌效率高达99%,均优于油田目前常用药剂。同时具有良好的配伍性,对金属无腐蚀性。

    2)在油田现场应用中,新型复合脱硫杀菌剂可将油井硫化氢质量浓度由8 000 mg·m−3降至0 mg·m−3,同时硫酸盐还原菌数量可由100 000 个·mL−1削减至10 个·mL−1以下。投加新型复合脱硫杀菌剂治理油井硫化氢时,如连续每日加药,需控制加入药剂的最低体积浓度为1 L·m−3,如采取每周加药1次,则单次需保持在50 L·m−3以上。

    3)新型复合脱硫杀菌剂治理油井硫化氢的原理为:一方面,药剂可以吸收油井内已存在的及基于非生物成因的硫化氢气体;另一方面,可杀死地层中的硫酸盐还原菌,抑制细菌生长,进而减少硫化氢的生成。

参考文献 (20)

返回顶部

目录

/

返回文章
返回