新型复合脱硫杀菌剂的制备及其对油井中含硫化氢气体的处理效果

付博睿, 周立辉, 张璇, 许路, 柴铖, 吴晨曦, 金鹏康. 新型复合脱硫杀菌剂的制备及其对油井中含硫化氢气体的处理效果[J]. 环境工程学报, 2021, 15(5): 1783-1791. doi: 10.12030/j.cjee.202008258
引用本文: 付博睿, 周立辉, 张璇, 许路, 柴铖, 吴晨曦, 金鹏康. 新型复合脱硫杀菌剂的制备及其对油井中含硫化氢气体的处理效果[J]. 环境工程学报, 2021, 15(5): 1783-1791. doi: 10.12030/j.cjee.202008258
FU Borui, ZHOU Lihui, ZHANG Xuan, XU Lu, CHAI Cheng, WU Chenxi, JIN Pengkang. Development of a new composite desulfurization fungicide and its application in the treatment of oil wells containing hydrogen sulfide[J]. Chinese Journal of Environmental Engineering, 2021, 15(5): 1783-1791. doi: 10.12030/j.cjee.202008258
Citation: FU Borui, ZHOU Lihui, ZHANG Xuan, XU Lu, CHAI Cheng, WU Chenxi, JIN Pengkang. Development of a new composite desulfurization fungicide and its application in the treatment of oil wells containing hydrogen sulfide[J]. Chinese Journal of Environmental Engineering, 2021, 15(5): 1783-1791. doi: 10.12030/j.cjee.202008258

新型复合脱硫杀菌剂的制备及其对油井中含硫化氢气体的处理效果

    作者简介: 付博睿(1994—),男,硕士研究生。研究方向:油田硫化氢气体综合治理。E-mail:172519658@qq.com
    通讯作者: 金鹏康(1974—),男,博士,教授。研究方向:水与废水的深度处理技术。E-mail:pkjin@hotmail.com
  • 中图分类号: X511;TE39

Development of a new composite desulfurization fungicide and its application in the treatment of oil wells containing hydrogen sulfide

    Corresponding author: JIN Pengkang, pkjin@hotmail.com
  • 摘要: 以静态脱硫和杀菌性能评价为依据,通过脱硫主剂与杀菌主剂的筛选、优化及复配,最终研制出一种新型复合脱硫杀菌剂。实验结果表明,该药剂的表观硫容与杀菌效率分别达800 mg·L−1和99%,且不具有金属腐蚀性,与原油及油田各类助剂的配伍性良好。现场应用结果表明,油井硫化氢质量浓度可由8 000 mg·m−3降至0,硫酸盐还原菌的数量由100 000 个·mL−1降至10 个·mL−1以下,并能维持1~7 d,治理效果显著。上述结果可为油气田硫化氢的高效、低成本防治提供参考。
  • 近年来,全球温室气体排放量持续上升,2018年已达到553×108 tCO2当量(包括森林砍伐等土地利用变化产生的碳排量)[1]。根据麦肯锡《应对气候变化:中国对策》报告,2016年中国的净碳排放量达16×108 tCO2当量,约占全球的1/5[2]。而世界资源研究所2016年统计全球温室气体排放的来源显示,废物处置占3.2%(垃圾填埋场占1.9%、废水占1.3%)[3]。因此,生活垃圾处理作为影响全球气候变化的重要碳源,近年来受到越来越多的关注。1997年联合国《<气候变化框架公约>京都议定书》[4]和2015年《巴黎协定》[5]均要求或鼓励削减垃圾处理的碳排放;同时,我国不断完善环境保护、循环经济、清洁生产和节约能源等相关法律法规。2020年4月,新修订的《固体废物污染环境防治法》[6]明确推行生活垃圾分类制度。2020年9月,我国郑重宣布,将力争于2030年前实现碳达峰,2060年前实现碳中和。2021年9月,中共中央、国务院印发《关于完整准确全面贯彻新发展理念做好碳达峰碳中和工作的意见》[7],要求加快形成绿色生产生活方式,加强资源综合利用;2021年10月,国务院印发《2030年前碳达峰行动方案》[8],具体部署了推进生活垃圾减量化资源化,发挥减少资源消耗和降碳协同作用的任务要求。本综述在回顾总结生活垃圾处理过程的碳排放及其核算方法的基础上,指出了当前我国垃圾处理碳排放核算体系的有关问题,并结合国内外“无废城市”理念与探索,分析论述了生活垃圾处理低碳化发展的法规政策方向,系统性梳理了资源回收、生物质利用和焚烧填埋等3个方面的技术路径,可为有关部门决策提供参考,以助力实现碳中和的目标。

    生活垃圾产率及其成分因不同国家和地区的经济状况、人口数量、生活方式及垃圾管理制度等差异而不同。我国城市生活垃圾人均产生量已达1.17 kg·d−1(2016年),低于美国的2.02 kg·d−1(2014年)[9]。生活垃圾中通常包含一定量的化石碳(如塑料、橡胶、纺织品、电子废弃物以及纸张、皮革中)和可降解有机碳(DOC,如剩菜剩饭、废弃食品、果皮菜叶等中的糖类、蛋白质),而化石碳和有机碳的化学转化、生物降解以及垃圾收集压缩转运处理等过程的能源、资源(如电、煤、油、水)消耗都直接或间接的产生CH4、CO2以及较少量的N2O、NOX、CO[10-12]

    垃圾填埋排放的CH4量占人类活动排放总量的12%[13],是全球第三大CH4排放源,且全球变暖潜势(global warming potential,GWP)是CO2的29.8倍(100年)[14]。在填埋初期,产气主要为CO2;随着时间延长,CH4产气量也逐渐上升,通常在1~3 a后达到高峰,CH4和CO2浓度也会随着封场年数的增加而减少[15-16]。此外,渗滤液在调节池及处理过程中也会释放CH4和NO2等;同时,卫生填埋作业设备的电力和燃料的消耗会增加CO2排放量[11]。王敏等[17]认为,垃圾组成、有机质含量、含水量、温度和pH均是影响甲烷产生的重要因素;NIE等[18]发现,N2O排放通量与土壤温度呈正相关,而与土壤含水量呈负相关;聂发辉等[19]、王晓琳等[20]综述分析了甲烷好氧氧化和甲烷厌氧氧化的机理,以说明垃圾填埋场覆土具有甲烷氧化能力,从而导致甲烷释放量明显减少。

    垃圾燃烧或加入化石燃料助燃过程会产生NO2、CO2、CO等,而在储坑中发酵和渗滤液处理时则产生CH4、CO2等。垃圾焚烧的碳排放量与垃圾中的DOC和化石碳含量(占比)密切相关,其能否实现碳减排则取决于焚烧发电效率(EF)和本地基准的燃煤发电参照值[10-11];何品晶等[21]认为,降低入炉垃圾的含水率、提高其热值及发电量是提高垃圾焚烧厂碳汇的关键;PAPAGEORGIOU等[22]认为,通过机械-生物干燥预处理(回收材料或制备衍生燃料)、热电联产等可以提高垃圾焚烧的碳减排效益。

    生物处理主要分为好氧堆肥和厌氧发酵。好氧堆肥产生的温室气体来源于动力消耗和微生物分解有机物产生的CO2及少量的N2O、CH4[12,23]。例如,好氧堆肥产物用于农林种植或土壤改良,可以替代部分化肥,并因腐殖质的固碳、固氮等作用减少温室气体排放[24];垃圾厌氧发酵时会产生大量的CO2和CH4,其中CH4体积分数占40%~60%[11],如果厌氧发酵产气稳定并用于发电,则具有显著的碳减排效益[23-25]

    主要的碳排放核算方法可分为:实测法、质量平衡法(物料衡算法)和排放因子法(清单指南法)[26-28]。在垃圾处理中应用较多的核算指南(模型)有:IPCC(联合国政府间气候变化专门委员会)发布的国家温室气体清单指南(简称IPCC清单指南)、生命周期评价法(LCA)、清洁发展机制(CDM)、《温室气体排放企业核算与报告准则》(GHG Protocol)、上游—操作—下游(UOD)表格法等[29-31]

    IPCC清单指南(2006年)通过对主要的碳排放源进行分类,再构建子目录,并提供了垃圾处理温室气体排放量的计算方法[32],以及DOC、DOCf(分解的可降解有机碳比例)、F(CH4在垃圾填埋气体中的比例)、t1/2(垃圾的半衰期,a−1)、K(CH4产生率)、MCF(CH4修正转化因子)等缺省值[29,31],主要用于国家、城市(地区)等层面的核算。如张涛等[11]核算得出苏州市垃圾处理的碳排放随着垃圾总量增加而提高,但因焚烧比例的提高使单位排放量有所下降;李文涛等[33]利用IPCC法核算了2011年我国城市生活垃圾处理CH4和CO2排放总量为0.77×108 t CO2当量;AMIRHOSSEIN[34]采用IPCC方法比较了马来西亚垃圾填埋、资源回收+厌氧消化与焚烧发电3种情景的碳减排效益,其中,资源回收+厌氧消化的单位净排量为−489 kg CO2当量。2019年5月,IPCC通过了《IPCC 2006年国家温室气体清单指南2019修订版》[32,35],更新补充了固废及废水处理的排放因子和相关参数,基本覆盖了所有排放源,并完整提出基于遥感测量和地面基站测量的大气浓度反演的做法[35],这有利于我国建立完善从微观(企业)到宏观(城市或区域)碳排放监测、报告、核查体系,提高“自下而上”的减排核算及验证能力。

    LCA模型可以核算垃圾处理全过程中的碳排放,或用于计算某个项目(企业)、一个地区或者一个国家尺度的碳排放[29]。基于LCA原则,ISO(国际标准化组织)发布了ISO14040[36]、ISO14044[36]、ISO14064[37]和ISO14067[37]等标准,欧美国家开发了EASEWASTE、LCA-IWM、IWM2、ORWARE、WISARD、WRATE、CO2ZW、MSW-DST、ARES、EPIC/CSR、UMBERTO、SWOLF、WARM、WASTED等多种核算工具[38-40];国内学者也采用LCA法研究了不同垃圾处理工艺的碳排放[24,41-42],但由于原始数据的缺失、缺省值与各地实际的差异性、系统边界条件的不一致性或不确定性,都可能造成截然不同的核算结果。因此,LCA法难以作为权威的核算方法,往往需要结合IPCC国家清单数据、城市生活垃圾管理行业数据库等使用。

    CDM法是指《<气候变化公约>京都议定书》[4]框架下的一种灵活履约机制之一,它通过核实CDM项目监测报告中的实际排放数据,然后用基准线情形下的排放量减去项目的实际排放量,并根据泄漏进行调整,得到“核证减排量”(CERs)[43]。对于垃圾处理项目,CDM执行理事会提供了一套方法学指南,如ACM0001(填埋气体回收利用项目)[43-44]、ACM0022(替代废物处理工艺)[45]和AMS-Ⅲ.AO(利用可控制的厌氧发酵回收甲烷)[46]等,而项目基准线设定是CDM法的关键核心和计算减排增量成本的基础[43-46]。2012年起,我国逐步建立了自愿减排碳信用交易市场,经过第三方核证和主管部门备案签发的核证自愿减排量CCER可以在国内市场交易,而CCER的方法多由CDM转化而来,其基本计算原则是,项目减排量=基准线减排量-项目排放量-泄漏量[47],如垃圾焚烧项目的基准线排放主要包括由项目活动替代的垃圾填埋处理产生的沼气排放。

    在垃圾处理碳排量的实际核算工作中,由于各地管理模式、垃圾组分、工艺参数及核算方法等不同,加之各类能源消费统计及碳排放因子测度容易出现较大偏差,故碳排放核算量差别较大。如赵磊等[39]用LCA法核算的吨垃圾焚烧处理的温室气体减排量为597~660 kgCO2当量,略低于IPCC2006指南法核算量(648~747 kgCO2当量),但与杨卫华等[48]采用CDM整合基准线和AM0025检测方法学计算的某垃圾焚烧厂平均减排量(约每吨垃圾286 kgCO2当量)有较大差距。KUMAR等[49]发现,工业元素分析所得的初始碳、化石碳和生物碳含量等是进行碳排量精确模型分析的必要参数,而我国还缺乏统一规范的、覆盖各地区和全生命周期的垃圾处理碳排量核算标准体系、工具模型及特征数据库,各地也需要加强碳排放现状调查及长期监测,尽快制定科学合理、切实可行的垃圾处理碳达峰或碳减排目标。

    低碳化是通过政策法规、制度改革、技术创新、节能降耗、资源循环和新能源开发等各种手段,尽量减少化石能源消耗和温室气体排放的可持续发展形态,它与减量化、资源化和无害化的原则相辅相成、相互促进,已成为生活垃圾处理的重要发展目标[50]。而且,低碳化与“无废”、循环经济的理念高度契合,建设“无废城市”、推进生活垃圾污染防治和资源循环利用,“一头连着减污,一头连着降碳”[51],也是实现低碳化发展的内在要求和主要途径。

    1)发达国家的低碳化管理经验。根据欧盟《废弃物框架指令》(2008)[52]的规定,固废处理优先采用预防产生、友好替代等源头减量的策略,其次鼓励物品的重复使用和材料的回收再生,再次要通过清洁高效的焚烧或制沼回收能源,将最终填埋处置量及其危害最小化,如图1所示。

    图 1  欧盟固废处理金字塔
    Figure 1.  Solid waste treatment hierarchy in Europe

    2014-2015年,欧盟正式提出了“零废物”计划和循环经济一揽子计划[53-54]。日本在2001年实施了《循环型社会形成推进基本法》[55],并出台了《资源有效利用促进法》[55]和《废弃物处理法》[55],强调废物充分减量化及资源化、建设“无废社会”。21世纪以来,旧金山、温哥华、斯德哥尔摩和新加坡等城市(国家)也提出“无废城市”[52-53];C40城市集团中的23个城市签署了《迈向零废物宣言》[56]。主要采取的政策包括:禁令(塑料、一次性物品)、绿色设计(包装)、公众教育、垃圾强制分类、按量计费(差别化收费)、生产者责任延伸(如押金返还、强制回收)、对垃圾堆肥或循环利用等给予财政补贴,或对垃圾填埋、塑料包装等增收税费等[57]

    2)我国生活垃圾低碳化管理体系还不健全。近年来,我国先后出台或修订了《环境保护法》[58]、《固体废物污染防治法》[6]、《循环经济促进法》[59]、《清洁生产促进法》[60]、《反食品浪费法》[61]、《再生资源回收管理办法》[62]等政策法规,并积极推行生活垃圾分类制度[63]、“无废城市”建设试点[64]、禁止洋垃圾入境[65]、加强塑料污染治理[66]、建立健全绿色低碳循环发展经济体系[67]、推进非居民厨余垃圾处理计量收费[68]等,部分省、市也出台了相应的地方性法规、规章或方案。特别是2016年以来,46个重点城市生活垃圾分类和11+5个“无废城市”试点积累了经验,如深圳、三亚等城市推进垃圾少排放、资源全回用和末端趋零填埋[55];2021年12月生态环境部等印发《“十四五”时期“无废城市”建设工作方案》[69],强调要求:倡导“无废”理念,深入推进生活垃圾分类工作,加快构建废旧物资循环利用体系,提升厨余垃圾资源化利用和生活垃圾焚烧能力,促进减污降碳协同增效。

    但目前,我国在生活垃圾源头减量、“两网融合”、生产者责任延伸、碳排放交易和绿色低碳金融等方面还缺乏综合性法律,现有法规的协同性、针对性和约束性不强,建议借鉴欧美日等经验,尽快出台产品包装法、固体废弃物强制回收目录、生活垃圾按量计费制度、碳排放权交易管理条例等法规,完善相关标准规范、财税金融和奖惩激励体系;限制塑料包装、一次性用品,优先采用可循环、可再生的材料(包装)并实行逆向物流强制回收;同时,通过按量计费、低碳认证、以奖代补等政策,鼓励市民(产废单位)从源头做好垃圾减量和分类。

    国内外对生活垃圾低碳化处理技术的研究已逐步深入到全生命周期过程。表1列举了碳减排的主要技术路径,主要包括3个方面。

    表 1  生活垃圾处理碳减排技术路径
    Table 1.  Technical paths of carbon emission reduction for municipal solid waste treatment
    生命周期过程主要技术路径参考文献
    1产生源头物尽其用、多次重复使用;少用或不用塑料袋、一次性用品;家庭厨余垃圾沥水后再投放;使用家庭厨余粉碎机[38,50,72,74]
    2收集运输优化收运(转运)系统;使用新能源汽车;分类收集有机垃圾;完善可回收物、有害垃圾等回收网点,分类回收玻璃金属塑料纸类和织物[70-72,74]
    3预处理转运站压缩减水;压榨干湿分离;人工或机械拆解、破碎、分选(分类、分质)[74-76]
    4资源利用替代原生资源,降低水耗、能耗和污染;生产高附加值再生产品[72,78]
    5生物处理分布式好氧堆肥;湿热处理,集中式厌氧消化,利用沼气发电或制备甲醇等;与剩余污泥等其他有机废物协同处理,提高沼气产率;沼渣沼液处理利用[23-25,42]
    6焚烧处理降低入炉含水率;优化工艺和设备,提高发电效率;热电联产(余热充分利用);降低能耗、二次污染控制;焚烧烟气碳捕获、碳封存[21-22,48,50]
    7综合利用制备垃圾衍生燃料(RDF);堆肥回田或改良土壤;飞灰、炉渣综合利用[22,31,79-80]
    8填埋处置避免或减少原生垃圾填埋;采用生物反应器填埋技术加速填埋场稳定;收集提纯填埋气体发电;渗滤液立体导排+渗滤液处理;采用好氧(兼氧)填埋方式、生物活性覆盖技术、改良填埋覆盖土壤、利用甲烷氧化菌复合微生物菌剂,提高日覆盖和中间覆盖材料的甲烷氧化率等碳捕集、甲烷氧化技术[18-20,31,81-83]
     | Show Table
    DownLoad: CSV

    1)加大资源回收力度,促进源头减量。CALABRN[70]、COUTH[71]等认为,合理设置资源回收容器,从源头(家庭)或前端(收集点)分类回收玻璃、金属、塑料、纸类、织物等可用物质,这不仅减少了垃圾量,而且替代了产品再生产所需的部分原生材料,从而减少了化石资源能源的消耗、污染和垃圾中的化石碳含量,具有显著的碳减排效应[34,72-73]。但是,由于玻璃、塑料等附加值较低,市场动力往往不足,政府宜给予一定的补贴资金或税费减免,对资源回收处理过程的二次污染也要加以监管。此外,运输距离和运输车辆的燃料或动力消耗对碳排放影响较大[72],如BASTIN等[74]比较了英国城镇分布式处理与集中式处理2种情景,集中收运(转运)处理模式会产生更多的交通流量、燃料成本和碳排放。因此,要合理规划满足垃圾分类功能的转运站,以便短途收集与中长途转运衔接,并逐步推广使用清洁能源车辆。

    2)加强生物质的物质和能量利用。家庭厨余沥水或粉碎减量[24,42,75]、分类收集厨余(餐厨)垃圾。通过压榨脱水、湿热水解等预处理方式降低厌氧发酵的处理难度,以提高沼气、能源、油脂产率[76-78];或通过堆肥、饲料化、水热炭化等方式回收有机质[24,42,79]。陈海滨等[76]认为,通过压榨预处理可以使厨余垃圾干组分焚烧、湿组分厌氧发酵获得最大的碳减排潜力;边潇等[77]的研究表明,餐厨垃圾集中式厌氧发酵碳减排潜力是好氧堆肥的22倍,适合产量较大的城市,而分散式好氧堆肥适合在产量较小的地区推广,但应控制电耗;李欢等[24]指出,厨余垃圾处理的优先策略依次为,源头减量>饲料化>厌氧消化>好氧堆肥>混合焚烧,但对已有的焚烧设施,进炉垃圾中厨余含量在30%左右为宜;CHEN等[79]也提出,将厨余垃圾的分类收集率提高到60%以上,并不利于进一步削减碳排放。

    3)原生垃圾零填埋,控制温室气体排放。将剩余可燃垃圾焚烧[50]或通过机械生物、热处理转化为固体燃料用于发电和供热[22,72-73],并在焚烧炉渣中回收铁、铝、金、铜等金属,以及制作免烧砖、混凝土骨料或路基填充料[80]。此外,垃圾焚烧厂烟气碳捕集及封存(CCS)技术也值得探索。为减少填埋场CH4等温室气体排放,要尽量避免原生垃圾填埋,或采用生物反应器填埋或生物活性覆盖技术[19-20],以收集提纯填埋气体发电,防止沼气逸散(泄漏)或提高CH4氧化率[20, 81-83]

    相对于欧洲、日本,我国生活垃圾处理以焚烧和填埋为主[72-73]。目前还需加快完善可回收物、厨余(餐厨)垃圾的分类投放收运系统,建设分选、再生、堆肥或沼气发电等处理设施;同时,还要降低垃圾(污水、臭气)处理过程的能耗物耗和污染,以促进物质能量循环或梯级利用,提高垃圾(沼气)焚烧发电的净能量输出。

    考虑到不同城市的垃圾产量成分、处理设施建设运行情况和经济社会发展水平等,曹艳乐等[84]认为,要将生命周期评价与成本效益分析相结合,采取环境和经济综合效益更好的垃圾分类处理方式。周晓萃等[12]通过对比处理工艺的资源能源消耗、碳排放潜值与资源化率,并结合约束条件下的定量优化得到最佳的填埋、焚烧和堆肥处理比例。赵薇等[85]综合气候变化、酸化、O3层损耗、富营养化等6种生态影响以及生命周期成本分析,认为天津市采用“厨余垃圾堆肥+残余物卫生填埋”模式仍具有潜在最优生态效率。而MICHEL等[86]的研究表明,由于焚烧和机械生物处理技术在巴西的成本较高,其生态性能最低。因此,在“无废”“碳中和”背景下,各地要结合实际,开展不同处理情景下全生命周期的经济效益、环境影响、气候变化等多目标绩效评估,采取因地制宜、系统优化的技术路线。

    1)生活垃圾中的化石碳、可降解有机碳和氮元素是垃圾处理过程碳排放的根源,特别是垃圾填埋产气的无组织排放构成了重要的人为碳排放源。垃圾焚烧能否实现碳减排取决于焚烧发电效率和本地燃煤发电基准值;生物处理的减排效应主要基于生物质或其能量的资源化利用。

    2)垃圾处理碳排放核算方法主要有IPCC指南、LCA法和CDM法。在实际核算工作中,由于垃圾处理方式、能源消费统计及碳排放因子等参数、标准不同,故碳排放核算量可能与实际偏差较大。为更加准确、便捷地测算碳排放,我国还需建立符合国情的温室气体监测、报告、核查标准体系及工具模型。

    3)低碳化与“无废”、循环经济理念相辅相成,故需进一步完善垃圾源头减量、“两网融合”、生产者责任延伸、碳排放交易等方面的法律法规;此外,还需重点补齐可回收物和厨余垃圾分类处理短板,进一步提升焚烧产能和填埋气体利用率;为促进减污降碳协同增效,还需要开展全生命周期的多目标绩效评估和系统优化。

  • 图 1  静态脱硫装置

    Figure 1.  Static desulfurization device

    图 2  不同脱硫剂脱硫效果对比

    Figure 2.  Comparison of desulfurization effects of different desulfurizers

    图 3  优化前后脱硫主剂的性能对比

    Figure 3.  Performance comparison of main desulfurization agent before and after optimization

    图 4  不同杀菌剂的杀菌效果对比

    Figure 4.  Comparison of sterilization effects of different fungicides

    图 5  复配药剂性能评价

    Figure 5.  Performance evaluation of compound medicament

    图 6  配伍性实验效果

    Figure 6.  Experimental effect after mixing

    图 7  新型复合脱硫杀菌剂动态脱硫效率

    Figure 7.  Dynamic desulfurization efficiency of new composite desulfurization fungicides

    图 8  新型复合脱硫杀菌剂杀菌性能

    Figure 8.  Bactericidal performance of a new composite desulfurization fungicide

    图 9  新型复合脱硫杀菌剂与几种常见药剂的性能对比

    Figure 9.  Performance comparison of new composite desulfurization fungicides with commonly used reagents

    图 10  新型复合脱硫杀菌剂现场应用效果

    Figure 10.  Field application effect of new composite desulfurization fungicide

    图 11  线性分析

    Figure 11.  Linear analysis

    表 1  正交试验的因素和水平

    Table 1.  Factors and levels of orthogonal experiment

    水平因素
    互溶剂表面活性剂水解抑制剂
    1H1M1S1
    2H2M2S2
    3H3M3
    水平因素
    互溶剂表面活性剂水解抑制剂
    1H1M1S1
    2H2M2S2
    3H3M3
    下载: 导出CSV

    表 2  正交表及实验结果

    Table 2.  Orthogonal experiment design and correponding results

    实验序号互溶剂表面活性剂水解抑制剂表观硫容/(mg·L−1)
    水相油相
    1H1M1S11 3191 122
    2H1M2S11 4821 362
    3H1M3S21 2211 068
    4H2M1S2926774
    5H2M2S1981850
    6H2M3S1948741
    7H3M1S1904817
    8H3M2S2959796
    9H3M3S1872730
    实验序号互溶剂表面活性剂水解抑制剂表观硫容/(mg·L−1)
    水相油相
    1H1M1S11 3191 122
    2H1M2S11 4821 362
    3H1M3S21 2211 068
    4H2M1S2926774
    5H2M2S1981850
    6H2M3S1948741
    7H3M1S1904817
    8H3M2S2959796
    9H3M3S1872730
    下载: 导出CSV

    表 3  水相表观硫容数据极差分析结果

    Table 3.  Range analysis result of water phase sulfur capacity data mg·L−1

    序列互溶剂表面活性剂水解抑制剂
    K14 0213 1496 506
    K22 8553 4223 106
    K32 7353 040
    k11 3401 0501 084
    k29521 1411 035
    k39121 013
    极差42912749
    序列互溶剂表面活性剂水解抑制剂
    K14 0213 1496 506
    K22 8553 4223 106
    K32 7353 040
    k11 3401 0501 084
    k29521 1411 035
    k39121 013
    极差42912749
    下载: 导出CSV

    表 4  油相表观硫容数据极差分析结果

    Table 4.  Range analysis result of oil phase sulfur capacity data mg·L−1

    序列互溶剂表面活性剂水解抑制剂
    K13 5532 7135 623
    K22 3653 0082 637
    K32 3432 539
    k11 184904937
    k27881 003879
    k3781846
    极差40315658
    序列互溶剂表面活性剂水解抑制剂
    K13 5532 7135 623
    K22 3653 0082 637
    K32 3432 539
    k11 184904937
    k27881 003879
    k3781846
    极差40315658
    下载: 导出CSV

    表 5  不同温度下脱硫剂腐蚀实验

    Table 5.  Corrosion test of desulfurizer at different temperatures

    实验温度/℃试片规格/(mm×mm×mm)面积/cm2试片质量/gΔm/g腐蚀速率/(mm·a−1)
    挂片前挂片后
    8050×13×316.7812.340 412.335 40.005 30.010 5
    9050×13×316.7813.658 013.653 70.004 30.008 5
    实验温度/℃试片规格/(mm×mm×mm)面积/cm2试片质量/gΔm/g腐蚀速率/(mm·a−1)
    挂片前挂片后
    8050×13×316.7812.340 412.335 40.005 30.010 5
    9050×13×316.7813.658 013.653 70.004 30.008 5
    下载: 导出CSV

    表 6  实验油井概况

    Table 6.  Overview of experimental oil wells

    油井编号液量/(m3·d−1)药剂体积浓度/(L·m−3)硫化氢质量浓度/(mg·m−3)初始SRB数量值/(个·mL−1)
    A-13016 2581 000
    A-23057 91610 000
    A-35108 14610 000
    A-45508 081100 000
    油井编号液量/(m3·d−1)药剂体积浓度/(L·m−3)硫化氢质量浓度/(mg·m−3)初始SRB数量值/(个·mL−1)
    A-13016 2581 000
    A-23057 91610 000
    A-35108 14610 000
    A-45508 081100 000
    下载: 导出CSV
  • [1] 胡廷. 渤海油田注水用液体脱硫剂的筛选和现场应用[J]. 油田化学, 2019, 36(2): 277-279.
    [2] 宜延军. 油气田硫化氢的危害与防范技术研究[J]. 中国石油和化工标准与质量, 2012, 32(3): 19-20. doi: 10.3969/j.issn.1673-4076.2012.03.009
    [3] 油气田开发与炼化企业硫化氢危害分析与预防[J]. 油气田开发与炼化企业硫化氢危害分析与预防[J]. 安全、健康和环境, 2006, 6(12): 16-20. doi: 10.3969/j.issn.1672-7932.2006.12.009
    [4] 尹忠, 廖刚, 梁发书, 等. 硫化氢的危害与防护[J]. 油田环境保护, 2004, 14(4): 37-39.
    [5] 何毅. 长庆油田硫化氢油区集输工艺技术研究[D]. 青岛: 中国石油大学(华东), 2017.
    [6] 王兴伟. 辽河油田杜84区块SAGD开发中硫化氢成因探究与防治[D]. 北京: 中国地质大学(北京), 2014.
    [7] 马志鑫, 王沛甫, 关文韬, 等. 彭阳油田硫化氢成因与防治对策[J]. 油气田地面工程, 2013, 32(6): 28-29. doi: 10.3969/j.issn.1006-6896.2013.6.014
    [8] 张鹏军, 丁保宏, 夏裴文, 等. 原油化学脱硫剂的研究进展[J]. 当代化工, 2018, 47(2): 338-340. doi: 10.3969/j.issn.1671-0460.2018.02.032
    [9] 吴松. 杀菌剂在油田含聚污水中使用效果的研究[D]. 大庆: 大庆石油学院, 2007.
    [10] 王加祥. 油溶性脱硫剂的合成及油田H2S治理研究[D]. 西安: 西安建筑科技大学, 2013.
    [11] 李岩, 刘沛华, 张璇, 等. 一种油井用有机类除硫剂的除硫率测定装置及测定方法: CN110376332A[P]. 2019-10-25.
    [12] 嵇文涛, 郝坚. 安塞油田注入水杀菌剂的效果评价[J]. 中国石油和化工标准与质量, 2013, 33(22): 144. doi: 10.3969/j.issn.1673-4076.2013.22.145
    [13] 王晗, 胡兴华, 张博廉. 复合配方杀菌剂在气田回注水应用研究[J]. 四川环境, 2016, 35(2): 10-13. doi: 10.3969/j.issn.1001-3644.2016.02.003
    [14] 张点. 三嗪除硫剂的合成与性能评价[D]. 西安: 西安石油大学, 2018.
    [15] 司伟, 王长守, 王军, 等. 原油H2S脱除剂YD的研制与应用[J]. 应用化工, 2018, 47(4): 746-749. doi: 10.3969/j.issn.1671-3206.2018.04.028
    [16] 刘洋, 郭兵兵, 祝月全. 脱硫剂的研究进展[J]. 当代化工, 2013, 42(6): 827-829. doi: 10.3969/j.issn.1671-0460.2013.06.041
    [17] 杨光, 薛岗, 蒋成银, 等. 国内外三嗪类液体脱硫剂的研究进展[J]. 石油化工应用, 2018, 37(10): 19-23. doi: 10.3969/j.issn.1673-5285.2018.10.005
    [18] 王峥, 王建国, 邴守启, 等. 石灰石-石膏湿法烟气脱硫效率影响因素[J]. 煤气与热力, 2011, 31(9): 1-4. doi: 10.3969/j.issn.1000-4416.2011.09.001
    [19] 李艳贵. 酸性天然气H2S脱除技术探讨[J]. 中国石油和化工标准与质量, 2012, 32(8): 37. doi: 10.3969/j.issn.1673-4076.2012.08.027
    [20] 王长守, 司伟, 王军, 等. 第三代液体硫化氢脱除剂YD-002的研制与应用[J]. 应用化工, 2018, 47(3): 545-547. doi: 10.3969/j.issn.1671-3206.2018.03.031
  • 加载中
图( 11) 表( 6)
计量
  • 文章访问数:  4819
  • HTML全文浏览数:  4819
  • PDF下载数:  64
  • 施引文献:  0
出版历程
  • 收稿日期:  2020-08-29
  • 录用日期:  2021-01-17
  • 刊出日期:  2021-05-10
付博睿, 周立辉, 张璇, 许路, 柴铖, 吴晨曦, 金鹏康. 新型复合脱硫杀菌剂的制备及其对油井中含硫化氢气体的处理效果[J]. 环境工程学报, 2021, 15(5): 1783-1791. doi: 10.12030/j.cjee.202008258
引用本文: 付博睿, 周立辉, 张璇, 许路, 柴铖, 吴晨曦, 金鹏康. 新型复合脱硫杀菌剂的制备及其对油井中含硫化氢气体的处理效果[J]. 环境工程学报, 2021, 15(5): 1783-1791. doi: 10.12030/j.cjee.202008258
FU Borui, ZHOU Lihui, ZHANG Xuan, XU Lu, CHAI Cheng, WU Chenxi, JIN Pengkang. Development of a new composite desulfurization fungicide and its application in the treatment of oil wells containing hydrogen sulfide[J]. Chinese Journal of Environmental Engineering, 2021, 15(5): 1783-1791. doi: 10.12030/j.cjee.202008258
Citation: FU Borui, ZHOU Lihui, ZHANG Xuan, XU Lu, CHAI Cheng, WU Chenxi, JIN Pengkang. Development of a new composite desulfurization fungicide and its application in the treatment of oil wells containing hydrogen sulfide[J]. Chinese Journal of Environmental Engineering, 2021, 15(5): 1783-1791. doi: 10.12030/j.cjee.202008258

新型复合脱硫杀菌剂的制备及其对油井中含硫化氢气体的处理效果

    通讯作者: 金鹏康(1974—),男,博士,教授。研究方向:水与废水的深度处理技术。E-mail:pkjin@hotmail.com
    作者简介: 付博睿(1994—),男,硕士研究生。研究方向:油田硫化氢气体综合治理。E-mail:172519658@qq.com
  • 1. 西安建筑科技大学环境与市政工程学院,西安 710055
  • 2. 长庆油田分公司油气工艺研究院,西安 710018

摘要: 以静态脱硫和杀菌性能评价为依据,通过脱硫主剂与杀菌主剂的筛选、优化及复配,最终研制出一种新型复合脱硫杀菌剂。实验结果表明,该药剂的表观硫容与杀菌效率分别达800 mg·L−1和99%,且不具有金属腐蚀性,与原油及油田各类助剂的配伍性良好。现场应用结果表明,油井硫化氢质量浓度可由8 000 mg·m−3降至0,硫酸盐还原菌的数量由100 000 个·mL−1降至10 个·mL−1以下,并能维持1~7 d,治理效果显著。上述结果可为油气田硫化氢的高效、低成本防治提供参考。

English Abstract

  • 硫化氢具有强毒性和腐蚀性,是油气开发过程中最为常见的有害气体。该气体不仅会腐蚀管道、设备[1],同时由于其剧毒性和挥发性,极易造成环境污染,并直接威胁着作业人员的健康和安全[2-4]。随着采油技术及工艺的发展,油井中硫化氢的成因也越来越复杂。硫化氢气体的产生一部分来自于地层物质在高温高压条件下的反应,另一部分则是由于油井内环境的变化,促进了硫酸盐还原菌生长进而滋生硫化氢。越来越多的油井受到生物和非生物成因共同作用产生硫化氢的威胁[5-7]。针对这类油井,只进行单独脱硫或者杀菌处理,已无法达到预期治理效果,而需同时进行高效脱硫与杀菌处理。然而,市场上的脱硫剂主要为胺类脱硫剂,不具备杀菌功能,并且脱硫后不稳定;而杀菌剂则主要是非氧化型杀菌剂,例如季铵盐类和杂环化合物类,但均无脱硫性能。因此,目前主流脱硫剂或杀菌剂均为单一性能药剂[8-9],无法满足复杂成因下的硫化氢治理需求。

    本研究中,通过药剂筛选与复配、脱硫与杀菌性能评价以及现场应用,研发出一种复合脱硫杀菌剂,以满足油井硫化氢治理中对于脱硫与杀菌的双重需求。

  • 1)主要试剂。羟乙基六氢均三嗪、杀菌剂1227、甲基六氢均三嗪、二乙醇胺以及乙醇胺均为工业级试剂;硫化钠、盐酸、碘、硫代硫酸钠以及淀粉指示剂等均为分析纯。

    2)主要仪器。硫酸盐还原菌测试瓶为北京华兴化学试剂厂生产的SRB-HX-7型细菌测试瓶。其他仪器有Smart pro10-H2S型泵吸式硫化氢检测仪、1 mL无菌注射器以及电热恒温培养箱等。

  • 1)静态脱硫装置及方法。药剂研制过程以静态脱硫实验为主,采用表观硫容[10]即单位体积药剂所吸收的硫化氢量为评价指标,对比不同药剂的脱硫性能。静态脱硫实验装置(见图1)主要由磨口平底烧瓶、瓶塞、分液漏斗、检测口以及泵吸式硫化氢检测仪等构成。实验方法:将1 mL浓度为5 g·L−1的硫化钠溶液加入到含有30 mL纯水或原油的锥形瓶中,并充分摇匀;向锥形瓶中加入1 mL盐酸并盖紧瓶塞,同时将测样口用止水夹密封;通过分液漏斗向锥形瓶中加入脱硫剂,并开启磁力搅拌器搅拌5 min,再静置1 min;打开测样口,使用硫化氢检测仪测定硫化氢浓度。

    2)动态脱硫装置及方法。现场投加药剂时,由于硫化氢气体在套管中会不断运动,脱硫剂由套管加入后与硫化氢气体的接触为动态过程,所以,为更好地评价脱硫剂的性能,在得到最佳的复合脱硫杀菌剂后,进一步使用动态脱硫装置对其脱硫效率进行分析。具体测定方法参考文献中的方法[11]进行。

  • 杀菌性能的评价根据中国石油天然气集团公司企业标准《油田用杀菌剂技术要求》(Q/SY 49-2010)及中华人民共和国石油天然气行业标准《油田注入水细菌分析方法绝迹稀释法》(SY/T 0532-2012)中的规定进行[12]。通过测定使用杀菌剂前后水样中细菌的含量来计算各药剂的杀菌效率[13](见式(1))。

    式中:C为杀菌剂的杀菌率;B0为加杀菌剂前水样中细菌含量,个·mL−1B1为加杀菌剂后水样中细菌含量,个·mL−1

  • 新型复合脱硫杀菌剂的基本性质包括外观、颜色、气味、pH、密度、水溶性、油溶性、腐蚀性以及配伍性等。通过目观鼻嗅法检验药剂的外观、颜色以及气味;参照《化学试剂pH值测定通则》(GB/T 9724-2007)检测药剂的pH;利用比重法检测药剂密度;将药剂与纯水和原油分别混合,判断其水溶和油溶性;依据石油天然气行业标准《油田采出水用缓蚀剂性能评价方法》(SY/T 5273-2000)和国家标准《金属和合金的腐蚀—腐蚀试体上腐蚀产物的清除》(GB/T 16545-1996)对药剂的腐蚀性进行测定[14];将药剂与油田助剂混合,观察是否发生反应,进而判断其配伍性的优劣[15]

  • 1)脱硫主剂的筛选与优化。根据市场调研以及文献资料[16-17],初步筛选出4种综合性能较好的脱硫剂,包括羟乙基六氢均三嗪、甲基六氢均三嗪、二乙醇胺以及乙醇胺。对4种脱硫主剂的静态脱硫性能进行分析与对比,结果如图2所示。羟乙基六氢均三嗪在水相和油相中的表观硫容分别为1 500 mg·L−1和500 mg·L−1,均明显优于其他3种备选脱硫主剂的表观硫容。由此说明,羟乙基六氢均三嗪在水相和油相中均具有较好的脱硫性能。因此,最终选择羟乙基六氢均三嗪作为最佳脱硫主剂开展后续研制。

    虽然羟乙基六氢均三嗪具备高选择性、反应迅速、产物无毒以及水溶性好等优点,但其在酸性条件下容易发生水解反应[18-19],且油溶性极差,这会影响其在实际应用中的脱硫效果。为弥补上述不足,尝试通过加入互溶剂、表面活性剂及水解抑制剂对纯羟乙基六氢均三嗪进行优化,并采用正交实验法对这3类助剂进行筛选[20],正交实验的因素和水平如表1所示,正交表及实验结果见表2

    表3表4中数据可知,互溶剂的极差最大,表面活性剂的极差次之,水解抑制剂的极差最小。这一结果表明,3类助剂中互溶剂对羟乙基六氢均三嗪脱硫性能的影响最大,而表面活性剂与水解抑制剂的影响相对较弱。进一步根据表中各助剂与其对应的k1k2k3数值进行分析可知,互溶剂为H1、表面活性剂为M2及水解抑制剂为S1时,得到优化后的脱硫剂具有最佳脱硫性能,其在水相和油相中的表观硫容分别高达1 482 mg·L−1和1 362 mg·L−1

    图3(a)为羟乙基六氢均三嗪在优化前后的脱硫性能对比,从该图可以看出,优化前后脱硫主剂在水相中的表观硫容略有下降,由1 500 mg·L−1降至1 482 mg·L−1。这主要是由于3类助剂的添加导致药剂中有效脱硫成分的含量有所降低。相反,优化后的脱硫剂在油相中的表观硫容由之前的500 mg·L−1大幅提高至1 362 mg·L−1,这可能与脱硫剂油溶性的提高有关。图3(b)表明,未优化主剂的亲油性较差,无法与原油均匀混合致使其与原油中的硫化氢接触难度大,进而导致纯的羟乙基六氢均三嗪在油相中的脱硫性能较差;在加入助剂优化后,药剂能与原油充分混合,其在油相中的脱硫性能得到大幅提升。

    2)杀菌主剂的筛选。经过调研,初步筛选出3种油田常用杀菌剂,包括杀菌剂1227、异噻唑啉酮以及戊二醛。在不同初始硫酸盐还原菌浓度下,对比了3种药剂的杀菌性能,结果如图4所示。在杀菌剂的质量浓度均为50 mg·L−1,初始硫酸盐还原菌含量分别为1 000、10 000及100 000 个·mL−1时,杀菌剂1227的杀菌效率分别为79.7%、75.2%以及69.44%,明显优于其他2种药剂的杀菌性能。因此,最终选择杀菌剂1227作为最佳杀菌主剂进行后续实验。

    3)脱硫剂与杀菌剂复配实验。2种药剂进行复配的脱硫效果如图5(a)所示。当脱硫主剂与杀菌主剂体积配比为9∶1,7∶3及5∶5时,复配药剂的表观硫容分别为1 000、800及600 mg·L−1;而当进一步改变其比例为3∶7和1∶9时,复配药剂的表观硫容进一步降低至300和100 mg·L−1。2种药剂进行复配的杀菌效果如图5(b)所示。脱硫主剂与杀菌主剂按照9∶1复配所得药剂的杀菌性能较差。对于初始浓度为10 000 个·mL−1的硫酸盐还原菌菌液的杀菌率仅为47.32%,而其余复配比例下所得药剂的杀菌效率基本可达到100%。综合考虑药剂的脱硫与杀菌性能,最终确定脱硫主剂与杀菌主剂的复配体积比为7∶3。

  • 根据上述实验与分析结果,最终确定新型复合脱硫杀菌剂的参考配方。药剂各组分的体积分数为:28%羟乙基六氢均三嗪,30%杀菌剂1227,7%互溶剂,4.2%表面活性剂,3.5%水解抑制剂及27.3%的水,其基本性质如下。

    1) 理化性质。新型复合脱硫杀菌剂为淡黄色透明液体,有极淡的刺激性气味,密度为1 g·mL−1,pH为9.6,并且水溶性、油溶性良好。

    2) 金属腐蚀性。表5为新型复合脱硫杀菌剂的金属腐蚀性评价结果。新型复合脱硫杀菌剂在80 ℃和90 ℃下对N80钢片的腐蚀速率分别仅为0.010 5 mm·a−1和0.008 5 mm·a−1,表明本研究中所制备的新型复合脱硫杀菌剂对碳钢的腐蚀性极弱,基本不具有金属腐蚀性。

    3) 配伍性。在不同温度下(30、50、80 ℃),将新型复合脱硫杀菌剂与油田现场使用的各类助剂按1∶1混合后,观察其是否发生明显变化来评价其配伍性。由图6可知,新型复合脱硫杀菌剂与阻垢剂、消防蜡剂和缓蚀剂等混合后,均未出现分层现象,同时混合液体均匀、清亮、无沉淀生成且流动性良好,证明新型复合脱硫杀菌剂具有良好的配伍性,现场使用不会对油气开发的正常作业产生负面影响。

  • 图7为新型复合脱硫杀菌剂的动态脱硫效率。先后5次测定了动态脱硫效率,结果分别为97.20%、98.90%、98.10%、97.80%和98.30%,平均脱硫效率高达98.10%,满足油田脱硫剂动态脱硫率大于95%的要求。结合静态脱硫实验结果,进一步证实了本研究中所制备的新型复合脱硫杀菌剂脱硫性能较好。此外,在动态脱硫实验中,复合脱硫杀菌剂的颜色及状态在吸收硫化氢前后均未发生改变,也未产生沉淀等杂质,说明该药剂在吸收硫化氢后不会对油田作业系统产生负面影响。

  • 在杀菌剂投加浓度为50 mg·L−1的条件下,新型复合脱硫杀菌剂的杀菌效率如图8所示。当初始硫酸盐还原菌数量分别为10、100和1 000 个·mL−1时,杀菌效率均可达到100%;当初始硫酸盐还原菌数量进一步提高至10 000和100 000 个·mL−1时,杀菌效率依然能保持在99%以上。说明新型复合脱硫杀菌剂的杀菌能力也十分突出。

  • 进一步对比新型复合脱硫杀菌剂与油田常用几种脱硫剂和杀菌剂的脱硫与杀菌性能,结果如图9所示。在初始硫酸盐还原菌菌液浓度为10 000 个·mL−1,杀菌剂投加浓度为50 mg·L−1的条件下,新型复合脱硫杀菌剂在水相和油相中的表观硫容分别为870 mg·L−1和760 mg·L−1,而其他3种脱硫剂的表观硫容均在600 mg·L−1以下。说明新型复合脱硫杀菌剂的脱硫性能较好。由图9(b)可知,在相同实验条件下,新型复合脱硫杀菌剂和杀菌剂1的杀菌率均在99%以上,而其余2种杀菌剂的杀菌率在90%以下,说明新型复合脱硫杀菌剂的杀菌性能也优于常用药剂。

  • 选取长庆油田某作业区的4口油井进行现场实验评价新型复合脱硫杀菌剂的实际应用效果。该油井的基本情况如表6所示。

    对比了加入药剂的体积浓度(分别为1、5、10、50 L·m−3,即每立方米产液投加的菌剂体积)对实际处理效果的影响,结果如图10所示。当加入药剂的体积浓度为1 L·m−3时,经过2 h的处理,油井硫化氢质量浓度由6 258 mg·m−3降低至0,维持了22 h后,硫化氢质量浓度开始回升;而硫酸盐还原菌数量由1 000 个·mL−1降至100 个·mL−1,之后开始增加。当加入药剂的体积浓度为5 L·m−3时,经过2 h的处理,油井硫化氢质量浓度由7 916 mg·m−3降至0,维持了46 h后,硫化氢质量浓度开始回升;而硫酸盐还原菌数量也由10 000 个·mL−1降至10 个·mL−1,维持了34 h。当加入药剂的体积浓度为10 L·m−3时,经过2 h的处理,硫化氢质量浓度由8 146 mg·m−3降低至0,并维持了94 h;而硫酸盐还原菌数量也由10 000 个·mL−1降至10 个·mL−1,维持了82 h,之后数量开始回升。当加入药剂的体积浓度为50 L·m−3时,经过2 h的处理,硫化氢质量浓度由8 081 mg·m−3降低至0,维持了142 h;而硫酸盐还原菌数量也由100 000 个·mL−1降至10 个·mL−1,并维持了130 h。基于以上结果,进一步分析了加入药剂的体积浓度和硫化氢质量浓度达标时长,以及硫酸盐还原菌数量达标时长的相关性,结果如图11所示。硫化氢质量浓度达标时长和硫酸盐还原菌浓度达标时长呈现一定的线性相关趋势(R2分别为0.816 4、0.751 6)。因此,若实行每天加药,则日最低加药体积浓度为1 L·m−3;若加药频率为每周1次,则单次需至少保持在50 L·m−3以上。

  • 1)将经优化后的脱硫主剂与杀菌主剂复配后得到兼具脱硫与杀菌双重功效的新型复合脱硫杀菌剂。药剂各组分体积分数为:28%均三嗪,30%杀菌剂1227,7%互溶剂,4.2%表面活性剂,3.5%水解抑制剂及27.3%的水。新型复合脱硫杀菌剂同时兼具高效脱硫、杀菌性能,动态脱硫效率高达98.1%,杀菌效率高达99%,均优于油田目前常用药剂。同时具有良好的配伍性,对金属无腐蚀性。

    2)在油田现场应用中,新型复合脱硫杀菌剂可将油井硫化氢质量浓度由8 000 mg·m−3降至0 mg·m−3,同时硫酸盐还原菌数量可由100 000 个·mL−1削减至10 个·mL−1以下。投加新型复合脱硫杀菌剂治理油井硫化氢时,如连续每日加药,需控制加入药剂的最低体积浓度为1 L·m−3,如采取每周加药1次,则单次需保持在50 L·m−3以上。

    3)新型复合脱硫杀菌剂治理油井硫化氢的原理为:一方面,药剂可以吸收油井内已存在的及基于非生物成因的硫化氢气体;另一方面,可杀死地层中的硫酸盐还原菌,抑制细菌生长,进而减少硫化氢的生成。

参考文献 (20)

返回顶部

目录

/

返回文章
返回