-
六价铬(Cr(Ⅵ))是一种对环境有持久性危害的重金属离子,主要来源于工业生产,可引起肺癌、导致皮肤敏感、造成基因缺陷等[1]。在众多的Cr(Ⅵ)处理方法中,光催化法是一种对环境友好的技术,可将剧毒的Cr(Ⅵ)还原成低毒性三价铬(Cr(Ⅲ))。硫化锌(ZnS)作为重要的直接宽带隙过渡金属硫化物半导体材料,具有光生载流子产生效率高,导带位置相对更负等优点,被广泛应用在光催化还原Cr(Ⅵ)[2-3]。但是,ZnS本身也存在诸多缺点,如带宽太大(块体约为3.7 eV),使其只能吸收占太阳光只有4%左右的紫外光[4]。此外,目前,用于光催化的ZnS粒径较大,导致其比表面积小以及活性位点不足,从而影响了其光催化的效果[5-6]。因此,改善ZnS的光催化能力对于去除Cr(Ⅵ)具有重要的意义。
掺杂可以在材料的晶格内部形成空位等缺陷能级,调节光催化剂的禁带宽度,促进光吸收,是提高光催化剂性能的有效方法[7]。Mn作为过渡金属元素,其自身能级4T1→6A1的跃迁能够在可见光下产生光电子,且具有多种氧化态,不仅可将吸收边带拓展至可见光范围,还能够促进光生载流子的有效分离[8-9]。此外,MnS具有与ZnS相似的晶体结构以及相近的晶格常数,使得Mn更容易掺杂进入ZnS晶格[10]。对于ZnS粒径较大产生的负面效应,则可将材料制备成纳米颗粒。当材料的粒径逐渐减小时:一方面,其比表面积增大,有利于材料吸附水体中的污染物;另一方面,材料表面暴露的原子开始增加,尤其对于量子点材料(3个维度的尺寸均在纳米级别),其表面暴露的原子比例很大,因此,量子点材料表面存在大量的悬挂键和缺陷。有研究[11]表明,缺陷的存在有利于促进光催化反应:缺陷的存在可以为光催化提供更多的活性位点;缺陷能够提高光生电子空穴对的分离效率,有利于光催化反应;表面缺陷会在靠近价带顶的位置形成浅能级,降低禁带宽度,导致光催化剂吸收边带红移[12]。因此,制备锰掺杂硫化锌量子点(ZnS∶Mn QDs)有望改善ZnS的光催化性能。
目前,虽然有大量光催化剂用于还原Cr(Ⅵ),但所用光源大部分为高耗能的汞灯与氙灯(120 W以上),这阻碍了他们在实际工程中的应用。LED灯相对于汞灯和氙灯,具有低能耗和高寿命的优点,故其更有实际应用价值。尽管有部分研究[13]使用LED灯激发ZnS光催化降解有机污染物,但使用蓝光LED灯激发ZnS光催化还原Cr(Ⅵ)的研究却鲜见报道。鉴于此,本研究采用共沉淀法制备了锰掺杂硫化锌量子点(ZnS∶Mn QDs),与纯ZnS相比,ZnS∶Mn QDs具有更窄的禁带宽度,吸收边带延伸至可见光区域,可在450 nm的LED蓝光灯下光催化还原Cr(Ⅵ)并且吸附产物Cr(Ⅲ),从而彻底去除溶液中的铬离子。分别考察了不同因素对光催化的影响,并对光催化机理进行了探讨。本研究可为利用低能耗LED灯光催化还原Cr(Ⅵ)提供参考。
锰掺杂硫化锌量子点LED蓝光灯光催化还原六价铬
Photocatalytic reduction of hexavalent chromium by manganese-doped zinc sulfide quantum dots under the LED bule light irradiation
-
摘要: 通过共沉淀法合成了锰掺杂硫化锌量子点(ZnS∶Mn QDs),该催化剂可在450 nm LED蓝光灯下光催化还原Cr(Ⅵ)。采用TEM、XRD、PL分别对ZnS∶Mn QDs的形貌、物相和发光特性进行了表征,结果表明:ZnS∶Mn QDs的尺寸小于10 nm;Mn掺杂没有改变ZnS的晶体结构;ZnS在掺杂Mn后,可在598 nm处产生橘黄色荧光。UV-vis表征结果显示,与纯ZnS相比,ZnS∶Mn QDs具有更强的光吸收能力。考察了不同因素对光催化效果的影响。结果表明,Mn掺杂浓度3%较为合适,酸性pH有利于光催化反应。当Cr(Ⅵ)浓度为25 mg·L−1,pH为5.8时,光催化25 min后Cr(Ⅵ)去除率为99%。与其他光催化剂还原Cr(Ⅵ)相比,ZnS: Mn QDs使用低能耗LED灯作为光源,催化速率高,且能够吸附还原产物Cr(Ⅲ)。探究了光催化机理,发现在450 nm光激发下,Mn2+自身能级4T1→6A1发生跃迁产生光生电子,Cr(Ⅵ)捕获光生电子被还原,价带上余留的空穴参与水的氧化。结合表征结果,ZnS可通过掺杂Mn离子改善光吸收能力提高光催化还原Cr(Ⅵ)的性能。Abstract: The manganese-doped zinc sulfide quantum dots (ZnS∶Mn QDs) were synthesized by co-precipitation method, this catalysts had a good photocatalytic performance on photoreduction of Cr(Ⅵ) under 450 nm blue light irradiation. TEM images showed that the size of ZnS∶Mn QDs was below 10 nm. XRD patterns indicated that Mn doping did not change the crystal structure of ZnS. From the PL spectrum, the ZnS∶Mn QDs produced orange fluorescence at 598 nm under light irradiation. UV-vis characterization showed that ZnS∶Mn QDs had stronger light absorption capacity than pure ZnS. The influences of different factors on photocatalysis were investigated. The results showed that the suitable Mn dopant concentration was 3%, and acidic pHs were conducive to photocatalysis. When the concentration of Cr(Ⅵ) was 25 mg·L−1 and pH was 5.8, the removal rate of Cr(Ⅵ) was 99% after 25 min photocatalysis. Compared with other photocatalysts, ZnS∶Mn QDs could use low-energy LED lamps as light sources, had higher catalytic rate to Cr(Ⅵ) reduction, and could adsorb the reduction product Cr(Ⅲ). Photocatalytic mechanism was following: the 4T1→6A1 transition of Mn2+ was excited to generate photogenerated electrons under 450 nm light irradiation, then Cr(Ⅵ) could capture the photogenerated electrons for itself reduction. Meanwhile, the photogenerated holes left in the valence band participated in water oxidation. Combined with the characterization results, Mn ions doping could improve the ZnS light absorption capacity and enhance the performance of photoreduction of Cr(Ⅵ).
-
Key words:
- manganese-doped zinc sulfide /
- quantum dots /
- photocatalysis /
- Cr(Ⅵ) /
- Cr(Ⅲ)
-
表 1 不同光催化剂还原Cr(Ⅵ)的对比
Table 1. Comparison of Cr(Ⅵ) reduction by different photocatalysts
光催化剂 光源 功率/W 波长/nm 催化剂浓度/
(g·L−1)pH Cr(VI)浓度/
(mg·L−1)还原时间/
min是否吸附
产物Cr(Ⅲ)UClCNa[24] LED灯 72 >420 0.5 — 5 40 — g-C3N4[25] 氙灯 300 — 0.5 2.0 10 120 — Ti3C2[26] 氙灯 300 — 0.2 2.0 14 240 — PANI/MTb[27] LED灯 — 365 1.0 3.0 10 6 否 UCNPs@ZnxCd1-xS/TiO2c[28] 氙灯 — 近红外 0.3 — 20 >30 — UAC-Xd[29] LED灯 5 可见光 0.25 2.0 10 50 — MIL-101(Fe)/g-C3N4[30] 卤素灯 150 >420 0.5 3 20 40 — BUC-21/Cd0.5Zn0.5Se[31] LED灯 5 >420 0.4 5 10 10 — Mn3O4@ZnO/Mn3O4[32] 氙灯 300 >450 0.15 6.5 10 110 是 球形ZnS:Mn[10] 氙灯 300 >400 1.0 — 50 20 — ZnS:Mn量子点(本研究) LED灯 10 450 0.5 5.8 25 25 是 注:a表示氯掺杂g-C3N4纳米片;b表示聚苯胺-介孔二氧化钛复合物;c表示上转换纳米颗粒@ZnxCd1-xS/TiO2复合物;d表示氨基修饰UiO-66(Zr)/Ag2CO3复合物;e表示二维配位聚合物Zn(bpy)L/Cd0.5Zn0.5S复合物;—表示原文未提及该内容。 -
[1] KIMBROUGH D E, COHEN Y, WINER A M, et al. A critical assessment of chromium in the environment[J]. Critical Reviews in Environmental Science and Technology, 1999, 29: 1-46. doi: 10.1080/10643389991259164 [2] HERNANDEZ G A, TZOMPANTZI F, GOMEZ R. Enhanced photoreduction of Cr(VI) using ZnS(en)0.5 hybrid semiconductor[J]. Catalysis Communications, 2012, 19: 51-55. doi: 10.1016/j.catcom.2011.12.026 [3] REN Z X, LI L, LIU B B, et al. Cr(VI) reduction in presence of ZnS/RGO photocatalyst under full solar spectrum radiation from UV/Vis to near-infrared light[J]. Catalysis Today, 2018, 315: 46-51. doi: 10.1016/j.cattod.2018.01.021 [4] 王璐. 基于纳米硫化锌光催化材料的制备及性能研究[D]. 济南: 山东大学, 2016. [5] 刘海瑞, 方力宇, 贾伟, 等. ZnS纳米球的水热法制备及其光催化性能研究[J]. 无机化学学报, 2015, 31(3): 459-464. [6] 胡新军, 胡勇, 谢文玲, 等. ZnS/还原氧化石墨烯复合材料的制备及光催化性能[J]. 复合材料学报, 2019, 36(1): 207-212. [7] CHAO M T, ABDUL R M. Roles of titanium dioxide and ion-doped titanium dioxide on photocatalytic degradation of organic pollutants (phenolic compounds and dyes) in aqueous solutions: A review[J]. Journal of Alloys and Compounds, 2011, 509: 1648-1660. doi: 10.1016/j.jallcom.2010.10.181 [8] SHAO G. Electronic structures of manganese-doped rutile TiO2 from first principles[J]. Journal of Physical Chemistry C, 2008, 112: 18677-18685. doi: 10.1021/jp8043797 [9] GOMATHI D L, GIRISH K S, NARASIMHA M B, et al. Influence of Mn2+ and Mo6+ dopants on the phase transformations of TiO2 lattice and its photo catalytic activity under solar illumination[J]. Catalysis Communications, 2009, 10: 794-798. doi: 10.1016/j.catcom.2008.11.041 [10] WANG L, WANG P, HUANG B B, et al. Synthesis of Mn-doped ZnS microspheres with enhanced visible light photocatalytic activity[J]. Applied Surface Science, 2017, 391: 557-564. doi: 10.1016/j.apsusc.2016.06.159 [11] 吕艳辉. 表面氧缺陷提高光催化性能的研究[D]. 北京: 清华大学, 2014. [12] FANG Z B, WENG S X, YE X X. Defect engineering and phase junction architecture of wide-bandgap ZnS for conflicting visible light activity in photocatalytic H2 evolution[J]. ACS Applied Materials & Interfaces, 2015, 7: 13915-13924. [13] WU D, WANG W, TSZ W N, et al. Visible-light-driven photocatalytic bacterial inactivation and the mechanism of zinc oxysulfide under LED light irradiation[J]. Journal of Materials Chemistry A, 2016, 4: 1052-1059. doi: 10.1039/C5TA08044D [14] MALEKI A, HAYATI B, NAGHIZADEH M, et al. Adsorption of hexavalent chromium by metal organic frameworks from aqueous solution[J]. Journal of Industrial and Engineering Chemistry, 2015, 28: 211-216. doi: 10.1016/j.jiec.2015.02.016 [15] 王新娟, 肖洋, 徐斐, 等. 形貌可控ZnO微纳米结构的水热合成及光催化性能[J]. 无机化学学报, 2014, 30(8): 1821-1826. [16] RAMZI N, HABIB E, MOKHTAR F. Effect of Mn doping on structural, optical and photocatalytic behaviors of hydrothermal Zn1-xMnxS nanocrystals[J]. Applied Surface Science, 2015, 351: 1122-1130. doi: 10.1016/j.apsusc.2015.06.096 [17] YANG H, HOLLOWAY P H, RATNA B B. Photoluminescent and electroluminescent properties of Mn-doped ZnS nanocrystals[J]. Journal of Applied Physics, 2003, 93: 586-592. doi: 10.1063/1.1529316 [18] SAHU M, SUTTIPONPARNIT K, SUVACHITTANONT S, et al. Characterization of doped TiO2 nanoparticle dispersions[J]. Chemical Engineering Science, 2011, 66: 3482-3490. doi: 10.1016/j.ces.2011.04.003 [19] LI X C, YU Q J, YU C L, et al. Zinc-doped SnO2 nanocrystals as photoanode materials for highly efficient dye-sensitized solar cells[J]. Journal of Materials Chemistry A, 2015, 3: 8076-8082. doi: 10.1039/C5TA01176K [20] RAMASAMY E, LEE J. Ordered mesoporous Zn-doped SnO2 synthesized by exotemplating for efficient dye-sensitized solar cells[J]. Energy Environmental Science, 2011, 4: 2529-2536. doi: 10.1039/c1ee01123e [21] ZHOU Z P, LI T, XU W Z, et al. Synthesis and characterization of fluorescence molecularly imprinted polymers as sensor for highly sensitive detection of dibutyl phthalate from tap water samples[J]. Sensors and Actuators B: Chemical, 2017, 240: 1114-1122. doi: 10.1016/j.snb.2016.09.092 [22] LYU X Y, WANG Y H, WANG Y J, et al. Study on photocatalytic degradation of 2, 4-dichlorophenol by ZnS microsphere[J]. Journal of Nanoscience and Nanotechnology, 2016, 16: 1060-1066. doi: 10.1166/jnn.2016.9617 [23] HUANG R F, Ma X G, LI X, et al. A novel ion-imprinted polymer based on graphene oxide-mesoporous silica nanosheet for fast and efficient removal of chromium (VI) from aqueous solution[J]. Journal of Colloid and Interface Science, 2018, 514: 544-553. doi: 10.1016/j.jcis.2017.12.065 [24] 赵文玉, 易赋淘, 甘慧慧, 等. 氯掺杂g-C3N4纳米片光催化氧化染料污染物与还原六价铬的协同处理研究[J]. 材料导报, 2019, 33(20): 3377-3382. doi: 10.11896/cldb.18090036 [25] 李莉莉, 陈翠柏, 兰华春, 等. g-C3N4协同光催化还原Cr(Ⅵ)及氧化磺基水杨酸[J]. 环境科学, 2017, 38(4): 1483-1489. [26] 包欣, 尹志凡, 胡霞, 等. Ti3C2纳米层状材料对废水中Cr(Ⅵ)的光催化去除性能[J]. 化工环保, 2019, 39(6): 689-694. doi: 10.3969/j.issn.1006-1878.2019.06.015 [27] DENG X M, CHEN Y, WEN J Y, et al. Polyaniline-TiO2 composite photocatalysts for light-driven hexavalent chromium ions reduction[J]. Science Bulletin, 2020, 65: 105-112. doi: 10.1016/j.scib.2019.10.020 [28] ZHAO M L, WANG W N, HUANG C X, et al. Facile synthesis of UCNPs/ZnxCd1-xS nanocomposites excited by near-infrared light for photochemical reduction and removal of Cr(VI)[J]. 2018, 39: 1240-1248. [29] ZHOU Y C, XU X Y, WANG P, et al. Facile fabrication and enhanced photocatalytic performance of visible light responsive UiO-66-NH2/Ag2CO3 composite[J]. Chinese Journal of Catalysis, 2019, 40: 1912-1923. doi: 10.1016/S1872-2067(19)63433-9 [30] ZHAO F P, LIU Y P, HAMMOUDA S B, et al. MIL-101(Fe)/g-C3N4 for enhanced visible-light-driven photocatalysis toward simultaneous reduction of Cr(VI) and oxidation of bisphenol A in aqueous media[J]. Applied Catalysis B: Environmental, 2020, 272: 119033. doi: 10.1016/j.apcatb.2020.119033 [31] WEI X, WANG P, Fu H F, et al. Boosted photocatalytic elimination toward Cr(VI) and organic pollutants over BUC-21/Cd0.5Zn0.5S under LED visible light[J]. Materials Research Bulletin, 2020, 129: 110903. doi: 10.1016/j.materresbull.2020.110903 [32] LI N, TIAN Y, ZHAO J H, et al. Efficient removal of chromium from water by Mn3O4@ZnO/Mn3O4 composite under simulated sunlight irradiation: Synergy of photocatalytic reduction and adsorption[J]. Applied Catalysis B: Environmental, 2017, 214: 126-136. doi: 10.1016/j.apcatb.2017.05.041 [33] LIU Y, GONG X J, GAO Y F, et al. Carbon-based dots co-doped with nitrogen and sulfur for Cr(VI) sensing and bioimaging[J]. RSC Advances, 2016, 6: 28477-28483. doi: 10.1039/C6RA02653B [34] CHAWLA S, SHARMA S, SHAH J, Fabrication of ZnS∶Cr nanoparticles with superparamagnetism and fluorescence properties[J]. Materials Letters, 2013, 108: 189-192. [35] PRAYAS C P, SURAJIT G, SRIVASTAVA P C. Unusual ferromagnetic to paramagnetic change and bandgap shift in ZnS∶Cr nanoparticles[J]. Journal of Electronic Materials, 2019, 48: 7031-7039. doi: 10.1007/s11664-019-07507-w [36] PEREZ Y P, MARTINEZ O A, PENA P A, et al. Novel ZnS-ZnO composite synthesized by the solvothermal method through the partial sulfidation of ZnO for H2 production without sacrificial agent[J]. Applied Catalysis B: Environmental, 2018, 230: 125-134. doi: 10.1016/j.apcatb.2018.02.047 [37] ZHANG Q S, XIAO Y, LI Y M, et al. Efficient photocatalytic overall water splitting by synergistically enhancing bulk charge separation and surface reaction kinetics in Co3O4-decorated ZnO@ZnS core-shell structures[J]. Chemical Engineering Journal, 2020, 393: 124681. doi: 10.1016/j.cej.2020.124681