[1] KIMBROUGH D E, COHEN Y, WINER A M, et al. A critical assessment of chromium in the environment[J]. Critical Reviews in Environmental Science and Technology, 1999, 29: 1-46. doi: 10.1080/10643389991259164
[2] HERNANDEZ G A, TZOMPANTZI F, GOMEZ R. Enhanced photoreduction of Cr(VI) using ZnS(en)0.5 hybrid semiconductor[J]. Catalysis Communications, 2012, 19: 51-55. doi: 10.1016/j.catcom.2011.12.026
[3] REN Z X, LI L, LIU B B, et al. Cr(VI) reduction in presence of ZnS/RGO photocatalyst under full solar spectrum radiation from UV/Vis to near-infrared light[J]. Catalysis Today, 2018, 315: 46-51. doi: 10.1016/j.cattod.2018.01.021
[4] 王璐. 基于纳米硫化锌光催化材料的制备及性能研究[D]. 济南: 山东大学, 2016.
[5] 刘海瑞, 方力宇, 贾伟, 等. ZnS纳米球的水热法制备及其光催化性能研究[J]. 无机化学学报, 2015, 31(3): 459-464.
[6] 胡新军, 胡勇, 谢文玲, 等. ZnS/还原氧化石墨烯复合材料的制备及光催化性能[J]. 复合材料学报, 2019, 36(1): 207-212.
[7] CHAO M T, ABDUL R M. Roles of titanium dioxide and ion-doped titanium dioxide on photocatalytic degradation of organic pollutants (phenolic compounds and dyes) in aqueous solutions: A review[J]. Journal of Alloys and Compounds, 2011, 509: 1648-1660. doi: 10.1016/j.jallcom.2010.10.181
[8] SHAO G. Electronic structures of manganese-doped rutile TiO2 from first principles[J]. Journal of Physical Chemistry C, 2008, 112: 18677-18685. doi: 10.1021/jp8043797
[9] GOMATHI D L, GIRISH K S, NARASIMHA M B, et al. Influence of Mn2+ and Mo6+ dopants on the phase transformations of TiO2 lattice and its photo catalytic activity under solar illumination[J]. Catalysis Communications, 2009, 10: 794-798. doi: 10.1016/j.catcom.2008.11.041
[10] WANG L, WANG P, HUANG B B, et al. Synthesis of Mn-doped ZnS microspheres with enhanced visible light photocatalytic activity[J]. Applied Surface Science, 2017, 391: 557-564. doi: 10.1016/j.apsusc.2016.06.159
[11] 吕艳辉. 表面氧缺陷提高光催化性能的研究[D]. 北京: 清华大学, 2014.
[12] FANG Z B, WENG S X, YE X X. Defect engineering and phase junction architecture of wide-bandgap ZnS for conflicting visible light activity in photocatalytic H2 evolution[J]. ACS Applied Materials & Interfaces, 2015, 7: 13915-13924.
[13] WU D, WANG W, TSZ W N, et al. Visible-light-driven photocatalytic bacterial inactivation and the mechanism of zinc oxysulfide under LED light irradiation[J]. Journal of Materials Chemistry A, 2016, 4: 1052-1059. doi: 10.1039/C5TA08044D
[14] MALEKI A, HAYATI B, NAGHIZADEH M, et al. Adsorption of hexavalent chromium by metal organic frameworks from aqueous solution[J]. Journal of Industrial and Engineering Chemistry, 2015, 28: 211-216. doi: 10.1016/j.jiec.2015.02.016
[15] 王新娟, 肖洋, 徐斐, 等. 形貌可控ZnO微纳米结构的水热合成及光催化性能[J]. 无机化学学报, 2014, 30(8): 1821-1826.
[16] RAMZI N, HABIB E, MOKHTAR F. Effect of Mn doping on structural, optical and photocatalytic behaviors of hydrothermal Zn1-xMnxS nanocrystals[J]. Applied Surface Science, 2015, 351: 1122-1130. doi: 10.1016/j.apsusc.2015.06.096
[17] YANG H, HOLLOWAY P H, RATNA B B. Photoluminescent and electroluminescent properties of Mn-doped ZnS nanocrystals[J]. Journal of Applied Physics, 2003, 93: 586-592. doi: 10.1063/1.1529316
[18] SAHU M, SUTTIPONPARNIT K, SUVACHITTANONT S, et al. Characterization of doped TiO2 nanoparticle dispersions[J]. Chemical Engineering Science, 2011, 66: 3482-3490. doi: 10.1016/j.ces.2011.04.003
[19] LI X C, YU Q J, YU C L, et al. Zinc-doped SnO2 nanocrystals as photoanode materials for highly efficient dye-sensitized solar cells[J]. Journal of Materials Chemistry A, 2015, 3: 8076-8082. doi: 10.1039/C5TA01176K
[20] RAMASAMY E, LEE J. Ordered mesoporous Zn-doped SnO2 synthesized by exotemplating for efficient dye-sensitized solar cells[J]. Energy Environmental Science, 2011, 4: 2529-2536. doi: 10.1039/c1ee01123e
[21] ZHOU Z P, LI T, XU W Z, et al. Synthesis and characterization of fluorescence molecularly imprinted polymers as sensor for highly sensitive detection of dibutyl phthalate from tap water samples[J]. Sensors and Actuators B: Chemical, 2017, 240: 1114-1122. doi: 10.1016/j.snb.2016.09.092
[22] LYU X Y, WANG Y H, WANG Y J, et al. Study on photocatalytic degradation of 2, 4-dichlorophenol by ZnS microsphere[J]. Journal of Nanoscience and Nanotechnology, 2016, 16: 1060-1066. doi: 10.1166/jnn.2016.9617
[23] HUANG R F, Ma X G, LI X, et al. A novel ion-imprinted polymer based on graphene oxide-mesoporous silica nanosheet for fast and efficient removal of chromium (VI) from aqueous solution[J]. Journal of Colloid and Interface Science, 2018, 514: 544-553. doi: 10.1016/j.jcis.2017.12.065
[24] 赵文玉, 易赋淘, 甘慧慧, 等. 氯掺杂g-C3N4纳米片光催化氧化染料污染物与还原六价铬的协同处理研究[J]. 材料导报, 2019, 33(20): 3377-3382. doi: 10.11896/cldb.18090036
[25] 李莉莉, 陈翠柏, 兰华春, 等. g-C3N4协同光催化还原Cr(Ⅵ)及氧化磺基水杨酸[J]. 环境科学, 2017, 38(4): 1483-1489.
[26] 包欣, 尹志凡, 胡霞, 等. Ti3C2纳米层状材料对废水中Cr(Ⅵ)的光催化去除性能[J]. 化工环保, 2019, 39(6): 689-694. doi: 10.3969/j.issn.1006-1878.2019.06.015
[27] DENG X M, CHEN Y, WEN J Y, et al. Polyaniline-TiO2 composite photocatalysts for light-driven hexavalent chromium ions reduction[J]. Science Bulletin, 2020, 65: 105-112. doi: 10.1016/j.scib.2019.10.020
[28] ZHAO M L, WANG W N, HUANG C X, et al. Facile synthesis of UCNPs/ZnxCd1-xS nanocomposites excited by near-infrared light for photochemical reduction and removal of Cr(VI)[J]. 2018, 39: 1240-1248.
[29] ZHOU Y C, XU X Y, WANG P, et al. Facile fabrication and enhanced photocatalytic performance of visible light responsive UiO-66-NH2/Ag2CO3 composite[J]. Chinese Journal of Catalysis, 2019, 40: 1912-1923. doi: 10.1016/S1872-2067(19)63433-9
[30] ZHAO F P, LIU Y P, HAMMOUDA S B, et al. MIL-101(Fe)/g-C3N4 for enhanced visible-light-driven photocatalysis toward simultaneous reduction of Cr(VI) and oxidation of bisphenol A in aqueous media[J]. Applied Catalysis B: Environmental, 2020, 272: 119033. doi: 10.1016/j.apcatb.2020.119033
[31] WEI X, WANG P, Fu H F, et al. Boosted photocatalytic elimination toward Cr(VI) and organic pollutants over BUC-21/Cd0.5Zn0.5S under LED visible light[J]. Materials Research Bulletin, 2020, 129: 110903. doi: 10.1016/j.materresbull.2020.110903
[32] LI N, TIAN Y, ZHAO J H, et al. Efficient removal of chromium from water by Mn3O4@ZnO/Mn3O4 composite under simulated sunlight irradiation: Synergy of photocatalytic reduction and adsorption[J]. Applied Catalysis B: Environmental, 2017, 214: 126-136. doi: 10.1016/j.apcatb.2017.05.041
[33] LIU Y, GONG X J, GAO Y F, et al. Carbon-based dots co-doped with nitrogen and sulfur for Cr(VI) sensing and bioimaging[J]. RSC Advances, 2016, 6: 28477-28483. doi: 10.1039/C6RA02653B
[34] CHAWLA S, SHARMA S, SHAH J, Fabrication of ZnS∶Cr nanoparticles with superparamagnetism and fluorescence properties[J]. Materials Letters, 2013, 108: 189-192.
[35] PRAYAS C P, SURAJIT G, SRIVASTAVA P C. Unusual ferromagnetic to paramagnetic change and bandgap shift in ZnS∶Cr nanoparticles[J]. Journal of Electronic Materials, 2019, 48: 7031-7039. doi: 10.1007/s11664-019-07507-w
[36] PEREZ Y P, MARTINEZ O A, PENA P A, et al. Novel ZnS-ZnO composite synthesized by the solvothermal method through the partial sulfidation of ZnO for H2 production without sacrificial agent[J]. Applied Catalysis B: Environmental, 2018, 230: 125-134. doi: 10.1016/j.apcatb.2018.02.047
[37] ZHANG Q S, XIAO Y, LI Y M, et al. Efficient photocatalytic overall water splitting by synergistically enhancing bulk charge separation and surface reaction kinetics in Co3O4-decorated ZnO@ZnS core-shell structures[J]. Chemical Engineering Journal, 2020, 393: 124681. doi: 10.1016/j.cej.2020.124681