湿壁介质阻挡放电强化浮石载羟基氧化铁降解水中避蚊胺

郑雪松, 孙亚兵, 於仲清, 孙浩, 陈鸣. 湿壁介质阻挡放电强化浮石载羟基氧化铁降解水中避蚊胺[J]. 环境工程学报, 2021, 15(2): 512-521. doi: 10.12030/j.cjee.202005062
引用本文: 郑雪松, 孙亚兵, 於仲清, 孙浩, 陈鸣. 湿壁介质阻挡放电强化浮石载羟基氧化铁降解水中避蚊胺[J]. 环境工程学报, 2021, 15(2): 512-521. doi: 10.12030/j.cjee.202005062
ZHENG Xuesong, SUN Yabing, YU Zhongqing, SUN Hao, CHEN Ming. Degradation of DEET in aqueous solution with Fe-coated pumice enhanced by wetted-wall dielectric barrier discharge plasma[J]. Chinese Journal of Environmental Engineering, 2021, 15(2): 512-521. doi: 10.12030/j.cjee.202005062
Citation: ZHENG Xuesong, SUN Yabing, YU Zhongqing, SUN Hao, CHEN Ming. Degradation of DEET in aqueous solution with Fe-coated pumice enhanced by wetted-wall dielectric barrier discharge plasma[J]. Chinese Journal of Environmental Engineering, 2021, 15(2): 512-521. doi: 10.12030/j.cjee.202005062

湿壁介质阻挡放电强化浮石载羟基氧化铁降解水中避蚊胺

    作者简介: 郑雪松(1996—),男,硕士研究生。研究方向:水污染技术。E-mail:742816982@qq.com
    通讯作者: 孙亚兵(1964—),男,博士,副教授。研究方向:水污染控制工程。E-mail:sybnju@163.com
  • 基金项目:
    南京市环境保护科学研究院“功能化改性除磷吸附剂的研究”项目(0211-151662)
  • 中图分类号: X703

Degradation of DEET in aqueous solution with Fe-coated pumice enhanced by wetted-wall dielectric barrier discharge plasma

    Corresponding author: SUN Yabing, sybnju@163.com
  • 摘要: 以避蚊胺(DEET)为模型污染物,研究了湿壁介质阻挡放电(DBD)协同浮石载羟基氧化铁去除污染物的可行性。采用浸渍法制备了浮石载羟基氧化铁复合材料,并对其进行了SEM、XRF、XRD、FT-IR和BET表征。同时研究了放电电压、初始pH、催化剂投加量等参数对DEET的去除率的影响。结果表明:在DEET初始浓度为20 mg·L−1、初始pH=7、放电电压为15 kV、催化剂添加量为0.45 g时,反应27 min后,DEET的去除率为90.52%,且经过4次循环使用后,材料对DEET仍然具有较高的去除率;相比于单一的湿壁介质阻挡放电,DEET去除率提高了13.22%,一级动力学反应速率提高了62.26%。最后讨论了DBD强化浮石载羟基氧化铁去除DEET的可能机制。以上研究结果可为DBD技术去除水中有机污染物的应用提供参考。
  • 多环芳烃 (polycyclic aromatic hydrocarbons,PAHs)是一类由2个及2个以上苯环组成的有机污染物,原型及其衍生物达400多种[1]。美国环保局(USEPA)将16种对人体健康危害较大的PAHs列入了优先控制污染物名单[2],其中苯并[a]芘(BaP)被确定为强致癌物质。

    多环芳烃广泛分布在各种环境介质中。由于具有疏水性和亲脂性,PAHs在水中的溶解性较差,主要被悬浮颗粒物吸附,并可随悬浮颗粒物沉降至沉积物,沉积物中的PAHs经过解吸和再悬浮作用重新进入水体,成为新的污染源,同时通过生物积累和生物放大对生态系统和人体健康构成潜在危害。随着研究工作的广泛开展,不同类型地表水和沉积物中PAHs研究取得较大进展。我国对水体和沉积物中PAHs的研究主要集中在水库[3-4]、河流[5-7]、湖泊[8-10]、江海[11]及地下河[12]等,积累了大量数据;浅层地下水中PAHs的研究较少,主要集中在江苏[13]、河北[14]、安徽[15]和河南[16];然而在我国广大农村地区,沟塘数量众多且分布广泛。2016—2018年在淮河流域5个区县调查显示,49.7%(1272/2559)的农村居民报告住宅周边有沟塘,而且报告沟塘水体质量较差,24.3%(622/2559)的沟塘有异味。我国尚未开展农村地区沟塘水和沉积物中PAHs水平及其对周边浅层地下水影响的研究。

    本文选取地处河南省西平县的5个沟塘水、3个沉积物和21户居民家中的浅层地下水作为研究对象,在2016年8月采集浅层地下水、沟塘水及沉积物样品,测定16种PAHs(各多环芳烃化合物的缩写详见表1)的含量,分析PAHs的空间分布特征和组分特征,评价农村地区沟塘水对其周边浅层地下水的影响,评估沟塘水和沉积物的生态风险及浅层地下水的人群健康风险。

    表 1  浅层地下水、沟塘水及沉积物中PAHs含量
    Table 1.  Concentration of PAHs in the surface sediment, surrounding shallow groundwater and ditch pond water
    化合物Compounds环数RingsTEF浅层地下水Shallow groundwater(N=21)沟塘水Ditch pond water(N=5)沉积物Surface sediment(N=3)
    检出率/%Detection ration平均值/(ng·L−1)Average concentration范围/(ng·L−1)Concentration range检出率/%Detection ration平均值/(ng·L−1)Average concentration范围/(ng·L−1)Concentration range检出率/%Detection ration平均值/(ng·kg−1)Average concentration范围/(ng·kg−1)Concentration range
    奈 (Nap)2环0.00195.23.17ND.—10.260.03.88N.D.—13.61008.491.07—12.2
    苊烯(Acy)3环0.00176.24.73ND.—39.20.00N.D.ND.1005.571.36—12.2
    苊(Ace)3环0.00195.214.3ND.—83.71005.560.299—25.610012. 610.3—15.1
    芴(Flu)3环0.00185.79.42ND.—55.91002.060.245—5.3966.73.13ND.—5.59
    菲(Phe)3环0.00110051.10.61—34910045.77.09—18066.713.7ND.—22.3
    蒽(Ant)3环0.0185.713.1ND.—10140.011.4ND.—54.91002.770.167—4.81
    荧蒽(Fl)4环0.00110040.61.39—24310082.72.59—39010028.21.63—74.7
    芘(Pyr)4环0.00110040.50.782—35610048.41.35—22810023.10.0940—61.9
    苯并(a)蒽(BaA)4环0.110014.50.706—12210025.00.710—1151007.701.53—18.8
    䓛(Chr)4环0.0110015.90.601—1156028.9ND.—136.10020.97.74—39.0
    苯并(b)荧蒽(BbF)5环0.11003.930.547—27.810011.10.825—50.566.714.4ND.—37.5
    苯并(k)荧蒽(BkF)5环0.11001.340.203—7.741005.180.295—23.81007.841.74—19.0
    苯并芘(BaP)5环11002.720.164—17.310011.10.0420—55.010016.02.18—41.4
    二苯并[a,h]蒽(DBA)5环11000.830.111—5.3310011.20.274—50.210055.30.624—161
    苯并[g,h,i]芘(BP)6环0.011001.810.168—10.280.017.2ND.—85.110025.40.0520—67.8
    茚并[1,2,3-cd]芘(InP)6环0.11000.810.320—2.871007.300.633—28.310010.92.27—26.2
    7PAHs40.03.36—29899.72.84—41413321.9—191
    16PAHs2198.39—123431715.4—1372256101—458
    TEQ(BaP)75.770.727—39.827.50.568—83.175.64.01—167
    TEQ(BaP)166.090.763—41.828.00.589—85.376.04.16—167
      注:1) 粗体为国际癌症研究机构(IARC)划定的7种致癌性PAHs;2) ND.表示未检出;3) TEF表示毒性当量。  Note: 1) In bold means the seven carcinogenic PAHs as defined by the International Agency for Research on Cancer (IARC); 2) ND.means no detected; 3) TEF means toxic equivalent.
     | Show Table
    DownLoad: CSV

    研究区域位于河南省西平县的滞洪区内,浅层地下水埋藏深度为30—45 m,含水层中含水介质导水性差,地下水径流缓慢,径流方向由西北和西南向东南。

    选择5个常年有水、周围居住人群较为密集的沟塘为研究对象,沟塘水体面积约为100—200 m2. 沟塘水体均呈现重度浑浊并伴有较强的嗅味,表面漂浮大量绿藻和生活垃圾(塑料、餐盒、秸秆、农药瓶等);调查的21户居民中有13户(占61.9%)报告会将生活垃圾和生活污水直接倾倒或排放到附近沟塘里,有9户(占42.9%)在沟塘里或周围养殖禽畜,其中2家直接将养殖废水排放到沟塘中。

    在拟定沟塘和距离1500 m范围内采集水样,浅层地下水的采集以沟塘为原点向南或东南方向布设,在拟定点位附近的住户家中采样,沟塘水和沉积物的采集点位尽量布设在靠近沟塘中心部位,点位布设参见图1。共采集浅层地下水样21个、沟塘水样5个、沉积物3个,浅层地下水的平均井深为34 m(10.0—50.0 m)。采样方法参照《地表水和污水监测技术规范》(HJ/T91—2002)、《地下水环境监测技术规范》(HJ/T164—2004)和《土壤环境监测技术规范》(HJ/T166—2004)。采样器和盛水容器用稀盐酸 (优级纯)清洗,采样前用目标水样清洗3次。测量记录pH值和温度等基本信息后,用2.5L棕色广口瓶采集水样2瓶。以纯净水作为现场采样和样品运输保存的空白样。

    图 1  浅层地下水、沟塘水及沉积物采样示意图
    Figure 1.  Sampling sites of in the surface sediment, surrounding shallow groundwater and ditch pond water

    Waters alliance e2695高效液相色谱仪,配备Waters 2998光电二极管阵列检测器、Waters 2475多波长荧光检测器和四元泵(美国Waters公司);Waters PAH C18色谱柱,4.6 mm×250 mm×5.0 μm(Part No. 186001265,美国Waters公司);Mettler Toledo XS205十万分之一分析天平;IKA MS3 basic旋涡振荡器(德国IKA);KQ-250DV超声仪(昆山市超声仪器有限公司);N-EVAPTM112氮吹浓缩仪(美国Organomation Associates公司);0.22 μm有机系针筒式微孔滤膜过滤器(天津津腾公司);50 mL聚丙烯离心管。

    16种多环芳烃混合标准溶液(100 μg·mL−1溶于甲醇,美国Chem Service公司),存放于-20 ℃冰箱中。乙腈(色谱纯,德国Merck公司)。实验用水为Milli-Q Plus超纯水制备系统(美国Millipore公司)临用现制的超纯水(电阻率>18 MΩ·cm)。氮气(纯度大于99.999%)。

    底泥样品在通风柜中自然干燥后磨至80目以下,干燥、阴凉密封保存。称取5 g样品于50 mL离心管(聚丙烯材质)中,加入8 mL乙腈,震荡摇匀。30 ℃下超声30 min后,4000 r·min−1离心2 min. 提取上清液至15 mL的离心管(聚丙烯材质),再用5 mL乙腈萃取残余淤泥,震荡摇匀,同样的条件下超声、离心,重复2次,提取液移到同一离心管中,氮吹浓缩至0.5 mL以下,再用乙腈定容至1.5 mL. 用振荡器将定容后的提取液摇匀,过0.22 μm的滤膜,存于2 mL的色谱瓶中,−20 ℃冷冻保存待测。

    取1000 mL沟塘水或浅层地下水样品缓慢加入经二氯甲烷、甲醇活化的C18 SPE小柱过滤,小柱4℃冰箱保存。用13 mL甲醇洗脱,经氮吹浓缩至0.5 mL以下,加入3 mL乙腈,氮吹浓缩至0.5 mL以下,再精确定容至0.5 mL,存于2 mL的色谱瓶中,−20 ℃冷冻保存待测。样品实行平行操作测定。

    采用乙腈-水梯度洗脱,进样量为20 μL,以色谱保留时间和各通道响应信号的一致程度定性,采用外标法峰面积定量。分别进行高、低浓度的加标回收试验,相对标准偏差(RSD) 为5.2%—8.6%。试验结果满足样品分析质量控制的要求,表明分析方法准确可靠。

    采用SPSS 10.0进行数据的处理及相关统计分析.

    浅层地下水、沟塘水及沉积物中PAHs含量、TEQ(BaP)(Toxic Equivalent Quantity, BaP毒性当量浓度)如表1所示。

    沉积物中PAHs单体的检出率均高于浅层地下水和沟塘水。浅层地下水中,∑16PAHs(16种PAHs总量)为219 ng·L−1(8.39—1234 ng·L−1),其中Phe、Fl和Pyr对∑16PAHs的贡献大,合计占比为60.4%,w(Bap)(Bap的质量分数)为2.72 ng·L−1 (0.164—17.3 ng·L−1),其中1个点位高于我国地下水环境质量标准(GB /T 14848—2017)中Ⅲ类水质规定的限值(10 ng·L−1),超标倍数为0.733倍,与国内其他区域的研究结果相比较发现,该研究中浅层地下水中∑16PAHs和w(Bap)较低;沟塘水中,∑16PAHs为317 ng·L−1 (15.4—1372 ng·L−1),同浅层地下水一样,Phe、Fl和Pyr对∑16PAHs的贡献大,合计占比为55.8%,w(Bap)为11.1 ng·L−1 (0.0420—55.0 ng·L−1),其中1个样品高于我国地表水环境质量标准(GB 3838—2002)限值(2.8 ng·L−1),超标倍数为18.6倍;沉积物中,∑16PAHs为256 ng·kg−1 (101—458 ng·kg−1),其中DBA、Fl、BP、Pyr和Chr对∑16PAHs的贡献大,合计占比为59.7%,w(Bap)为16.0 ng·kg−1 (2.18—41.4 ng·kg−1)。

    国际癌症研究机构(IARC)划定7种致癌性PAHs[17]。本研究浅层地下水中,这7种PAHs的质量分数(∑7PAHs)为40.0 ng·L−1 (3.36—298 ng·L−1),占∑16PAHs的18.3%;沟塘水的∑7PAHs为99.7 ng·L−1 (2.84—414 ng·L−1),占∑16PAHs的31.5%.;沉积物的∑7PAHs为133 ng·kg−1 (21.9—191 ng·kg−1),占∑16PAHs的52.0%。

    采用毒性当量因子计算浅层地下水、沟塘水及沉积物中PAHs的TEQ(BaP),结果显示,浅层地下水中,TEQ(Bap)7为5.77 ng·L−1 (0.727—39.8 ng·L−1),TEQ(Bap)16为6.09 ng·L−1 (0.763—41.8 ng·L−1);沟塘水中,TEQ(Bap)7为27.5 ng·L−1 (0.568—83.1 ng·L−1),TEQ(Bap)16为28.0 ng·L−1 (0.589—85.3 ng·L−1);沉积物中,TEQ(Bap)7为75.6 ng·kg−1 (4.01—167 ng·kg−1),TEQ(Bap)16为76.0 ng·kg−1 (4.16—167 ng·kg−1). BaP含量、TEQ(BaP)含量、∑7PAHs占比依次为:沉积物>沟塘水>浅层地下水。

    图2为沟塘1南向浅层地下水中PAHs单体的情况. 可以明显看出,距离沟塘越近,浅层地下水中PAHs含量越高,其中Fl的相关系数为0.9464,BaP的相关系数为0.7359,∑16PAHs的相关系数为0.9011,TEQ(BaP)16的相关系数为0.9541,表明沟塘水质对浅层地下水中PAHs的影响较大。

    图 2  浅层地下水中PAHs水平与其距沟塘1距离的散点图
    Figure 2.  The scatter plots of PAHs in the shallow groundwater and their distances to the ditch pond1

    环境中PAHs的来源可分为天然和人为两种,绝大部分环境中的PAHs都与人类的生产生活紧密相关[18],其中,人为来源主要包括未经燃烧的煤和石油类产品(如石油挥发和泄漏、公路建设材料等)和各种不充分燃烧(如机动车尾气的排放、工业炼焦、电解铝、炼油、火力发电、煤炭、秸秆与薪材燃烧和吸烟等)。不同分子量的PAHs在土壤中的分布与其来源密切相关[19]。高环(4环及以上)PAHs主要来源于煤和石油类等化石燃料的高温燃烧,低环(2—3环)PAHs主要来源于有机物的低温转化和石油产品的泄露[20-22]因此通过不同环数PAHs的分析比较可以解析其来源。该研究将16种PAHs单体分为2—3环、4环、5—6环3组进行分析比较(见图3)。浅层地下水PAHs组分中,2—3环PAHs占38.42%(9.63%—79.27%),4环PAHs占51.78%(17.36%—79.80%),5—6环PAHs占9.80%(1.60%—28.32%);沟塘水中2—3环PAHs占45.09%(18.55%—68.12%),4环PAHs占35.80%(21.63%—63.40%),5—6环PAHs占19.11%(8.31%—42.29%);沉积物中2—3环PAHs占25.74%(7.69%—54.80%),4环PAHs占25.57%(9.78%—42.45%),5—6环PAHs占48.69%(20.73%—82.53%)。从整体来看,浅层地下水中PAHs以4环居多,沟塘水中PAHs以2—3环居多,沉积物中PAHs以5—6环居多. 5—6环PAHs占比依次为沉积物>沟塘水>浅层地下水,说明PAHs在环境介质之间迁移分配的过程中,具有致癌性的5—6环PAHs化合物更容易存蓄在沉积物中。在采样过程中观察到从事家庭养殖活动的沟塘占40.00%,PAHs亲脂疏水特性使其可以在生物体内大量富集,通过食物链最终进入人体,从而对人体健康产生影响,因此需要对沟塘PAHs污染开展防治工作,特别需要对日积月累堆积的含高环的致癌性PAHs较多的沉积物加以治理。

    图 3  浅层地下水、沟塘水及沉积物中不同环数PAHs组成
    Figure 3.  The composition of PAHs with different rings in the surface sediment, surrounding shallow groundwater and ditch pond water

    Ant/(Ant+Phe)和Fl/(Fl+Pyr)的比值可用来判断环境中PAHs污染物的来源[23-25]。研究表明[25],当Ant/(Ant+Phe)比值小于0.10为石油源,大于0.10为燃烧源;Fl/(Fl+Pyr)比值小于0.40,表明PAHs主要来自石油源,大于0.50表明PAHs主要是生物质和煤炭的燃烧源,介于0.40—0.50则是石油燃烧源。图4为浅层地下水、沟塘水及沉积物中PAHs的Ant/(Ant+Phe)和Fl/(Fl+Pyr)分子比率图,浅层地下水中Ant/(Ant+Phe)比率为0.16(0.00—0.48),沟塘水为0.07(0.00—0.23),沉积物为0.40(0.01—1.00);浅层地下水中Fl/(Fl+Pyr)比率为0.59(0.15—0.64),沟塘水为0.64(0.60—0.66),沉积物为0.68(0.54—0.95)。除了浅层地下水一个点位,其余所有采样点的Fl/(Fl+Pyr)值都大于0.5,说明污染主要来源于燃烧,并以生物质和煤炭燃烧为主。浅层地下水、沟塘水及沉积物中PAHs有相似的来源,在采样过程中发现有40.00%的沟塘中有纳污现象,当地居民用燃烧煤炭和生物质来做饭和取暖,直接将底灰倾倒在沟塘内,或者直接在沟塘边燃烧秸杆和枯枝树叶等生物质,这些可能与浅层地下水、沟塘水及沉积物中PAHs的存在有密切关系。

    图 4  浅层地下水、沟塘水及沉积物中PAHs异构体比值源解析
    Figure 4.  Cross plot for the isomeric rations of Ant/(Ant+Phe)vs. Fl/(Fl+Pyr)in the surrounding shallow groundwater,ditch pond water and surface sediment

    浅层地下水曾经广泛作为农村地区的饮用水,目前仍有局部区域人群以其作为饮用水。因此,在健康风险评估时仅考虑经口摄入的暴露途径,健康风险评估方法参考美国国家科学院(NAS)提出的四步法[26],采用US EPA模型计算当地人群的浅层地下水PAHs经口暴露剂量,公式如下:

    ADD=C×IR×EF××EDBW×AT (1)

    式中,ADD为PAHs的日平均暴露剂量[mg·(kg·d)−1];C为浅层地下水中PAHs的浓度(mg·L−1);IR为日均饮水摄入量(L·d−1);EF为暴露频率(d·a−1),本文中为365 d·a−1;ED为暴露持续时间(a),成人的ED为30 a[26];BW为人群体重(kg);AT为平均接触时间(d),对于致癌风险AT为:70 a×365 d·a−1,对于非致癌风险,AT为ED×365 d·a−1。IR和BW分别参照河南省数据[27-29]

    非致癌健康风险和致癌风险的计算公式(2)和(3)如下:

    HQ=ADDRfD (2)
    RI=ADD×SF (3)

    式中,HQ为发生某种特定有害健康效应而造成的危险度;RI为人群患癌终身超额危险度;RfD为PAHs经口暴露的非致癌毒性参考剂量[mg·(kg·d)−1];SF为PAHs经口暴露的致癌斜率系数,[mg·(kg·d)−1]−1。RfD、SF和关键效应来源于美国EPA的风险评估信息系统(RAIS)[30]和综合风险信息系统(IRIS)[31]

    9 种非致癌PAHs的暴露剂量的P95非致癌风险(HQ)在6.1×10−4—1.9×10−2之间,远小于1,见图5,表明饮用此浅层地下水摄入的9种PAHs的非致癌风险为可接受水平。

    图 5  不同人群经饮水入PAHs的非致癌健康风险(HQ)和致癌健康风险(RI)
    Figure 5.  Non-carcinogenic health risks (HQ) and carcinogenic health risks (R) of PAHs through drinking water for different subpopulations

    PAHs的P95致癌风险(RI)在1.8×10−8—7.0×10−6之间,如果从出生就开始饮用该浅层地下水,在6岁时RI为1.1×10−6,且女孩高于男孩,超出一般可接受的致癌风险水平(1×10−6),主要产生致癌风险的污染物为BaP和BaA(图6)。2018年,我们开展的问卷调查中,西平县有23.5%的农村居民饮用浅层地下水,以浅层地下水作为饮用水的健康风险亟需关注。

    图 6  总致癌风险贡献比
    Figure 6.  The contribution rates of carcinogenic risk

    污染物的暴露途径一般包括经口摄入(饮水)、呼吸和皮肤的3种. 本文只讨论了16种PAHs单体经饮水途径的健康风险,没有考虑经污染的水产品或农副产品摄入所致健康风险,也没有考虑另外两种途径(呼吸和皮肤)的暴露;而且健康风险评估仅涉及9种非致癌和7种致癌的PAHs,因此可能低估其非致癌和致癌健康风险。

    本研究中沟塘水中BaP含量变化范围为0.042—54.974 ng·L−1,均值为11.12 ng·L−1。参照国家《地表水环境质量标准》(GB 3838—2002),20.00%沟塘水体中BaP含量高于标准限值(2.8 ng·L−1)。然而,上述标准仅能对BaP的生态风险作出评价,未能充分考虑16种PAHs单体的生态风险。为全面了解沟塘内水体中∑PAHs的综合毒性,采用风险商值法[16] (risk quotient,RQ),综合评价沟塘水中PAHs的生态风险,结果见表2。沟塘水中BaA和BbF的RQMPCs≥1,表明沟塘水中这些单体为高风险,另外12种多环芳烃的RQMPCs<1,而RQNCs≥1,表明上覆水中Ace、Flu、Phe、Ant、Fl、Pyr、Chr、BkF、BaP、DBA、BP和InP均为中等风险。B4沟塘水中有6种PAHs单体(Fl、Pyr、BaA、BbF、BaP和BP)的RQMPCs≥1,且RQΣ PAHs(MPCs)≥1,RQΣPAHs(NCs)≥800,表明B4沟塘水中多环芳烃处于高风险水平,应当重点关注该类污染物. 在采样过程中发现,该沟塘主要用于纳污,需立即采取必要措施,B4沟塘水中BaA对生态风险RQMPCs的贡献最大,达到40.69%,虽然B4沟塘水中Fl的浓度最高,但是其对生态风险RQMPCs的贡献较小。B3沟塘水中有12种PAHs单体(Ace、Flu、Phe、Ant、Fl、Pyr、BaA、Chr、BbF、BkF、DBA和BP)的RQNCs≥1,DBA的RQMPCs≥1,且RQΣPAHs(MPCs)≥1,RQΣPAHs(NCs)<800,表明B3沟塘水中PAHs处于中等风险2水平,应予以关注。在采样过程中也发现,该沟塘主要用于纳污,需考虑控制和修复措施。B3沟塘水中DBA和BaA对生态风险RQMPCs的贡献最大,分别达到36.89%和23.60%。

    表 2  风险评价参数及评价结果
    Table 2.  Risk evaluation parameters and results
    PAHs经口摄入非致癌参考剂量RfDo/(mg·(kg·d)−1)经口摄入致癌斜率因子SFo/ (kg·d ·mg−1)沟塘水Ditch pond water沉积物Surface sediment
    中国标准China standardEPA标准EPA standard水体Water body评价结果Evaluation result质量基准法阈值/(ng·g−1)Quality reference method threshold评价结果Evaluation result质量标准法阈值/(ng·g−1)Quality reference method threshold评价结果Evaluation result
    NCsMPCsRQNCsRQMPCsERLERMRCF>1RELTELOELPELFEL区间Range点位Point position
    奈(Nap)4.0×10−212.012000.3240.00324160210017351203901200
    苊烯(Acy)6.0×10−21.2×1060.77000165003.35.930130340TEL-OELC3
    苊(Ace)6.0×10−20.7707.940.0794446403.76.72189940TEL-OELC1、C2、C3
    芴(Flu)4.0×10−21.3×1060.7702.940.0294195401021611401200
    菲(Phe)3.0×10−23.030015.20.152240150025421305201100
    蒽(Ant)3.0×10−19.6×1060.77016.20.16285.3110016471102401100
    荧蒽(Fl)4.0×10−23×1053.030027.60.27660051004711045024004900REL-TELC3
    芘(Pyr)3.0×10−29.6×1050.77069.20.692665260029532308801500TEL-OELC3
    苯并(a)蒽(BaA)7.3×10−14.40.1102502.5026116001432120390760REL-TELC3
    䓛(Chr)7.3×10−34.43.43408.490.0849384280026572408601600REL-TELC3
    苯并(b)荧蒽(BbF)7.3×10−14.40.1101101.10N.A.N.A.
    苯并(k)荧蒽(BkF)7.3×10−24.40.44012.90.129N.A.N.A.
    苯并芘(BaP)7.32.84.40.55022.20.222430160011321507803200TEL-OELC3
    二苯并[a,h]蒽(DBA)7.34.40.55022.40.22463.4260C13.36.243140200REL-FELC1、C3
    苯并[g,h,i]芘(BP)3.0×10−20.33057.20.572
    茚并[1,2,3-cd]芘(InP)7.3×10−14.40.44018.30.183
    ∑PAHs6416.41
      1) “—”表示无数据;2) NCs表示沟塘水中PAHs最低风险标准值,MPCs表示沟塘水中PAHs最高风险标准值.  1) “—” means no data;2) NCs means minimum risk standard value of PAHs in ditch pond water, MPCs means maximum risk standard value of PAHs in ditch pond water.
     | Show Table
    DownLoad: CSV

    本研究采用质量基准法[32]和质量标准法[33]评估沉积物中PAHs潜在生态风险,评价结果见表2。质量基准法分为效应低值(ERL)对生物体毒副作用发生的风险几率<10%和对生物体毒副作用发生的风险几率>50%的效应中值(ERM),相对污染系数RCF是对沉积物中PAHs污染的定量表征,RCF为沉积物中PAHs浓度与效益低值的比值;质量标准法分为5个阈值REL、TEL、OEL、PEL和FEL,分别表示罕见效应、临界效应、偶然效应、可能效应以及频繁效应的浓度阈值,将16种PAHs任一种超过最高限值的点位给标注出。

    质量基准法评价结果显示,沟塘沉积物中只有DBA在C1超出ERL,介于ERL—ERM之间,证明沟塘沉积物中PAHs潜在生态风险发生几率不大。但在沟塘沉积物中无最低安全阈值的致癌PAHs单体BkF和InP在沟塘沉积物中检出率均高达100%,无最低安全阈值的PAHs只要存在于环境中就会对生物体产生毒副作用。

    质量标准法评价结果显示,C2介于TEL和OEL之间,对生物的不良影响概率较低;C1、C3介于REL和FEL之间,且PAHs含量也较高,需要引起关注,并对沉积物毒性风险进行评估,对PAHs污染采取治理措施。沟塘沉积物中检出的PAHs浓度效应值都低于FEL值,表明沟塘对生物体潜在风险不高,但C1和C2沟塘从事家庭养殖活动,PAHs势必会通过食物链进入人体,影响人体健康,因此该区域需要重点开展清淤工作,清淤后的底泥需要妥善处置,以免引起二次污染。结合质量基准法和质量标准法可以看出,沟塘沉积物中最易对生物造成危害的PAHs单体化合物是DBA以及没有最低安全限值的BbF和BkF,对生物的不良影响概率最高处是C1.

    (1)本研究中BaP含量、TEQ(BaP)含量、∑7PAHs、高环PAHs占比依次为:沉积物>沟塘水>浅层地下水。浅层地下水、沟塘水及沉积物中PAHs有相似的来源,主要源于燃烧,并以生物质和煤炭燃烧为主;沟塘水对浅层地下水中PAHs的影响较大,采样点距离沟塘越近,浅层地下水中PAHs含量越高。

    (2)经饮水摄入浅层地下水中7种致癌PAHs的P95致癌风险在1.8×10−8—7.0×10−6之间,在6岁时为1.1×10−6,且女孩高于男孩,超出一般可接受的致癌风险水平(1×10−6),主要产生致癌风险的污染物为BaP和BaA,以浅层地下水作为饮用水的健康风险亟需关注;P95非致癌风险在6.1×10−4—1.9×10−2之间,HQ均小于1,为可接受水平。

    (3)纳污的4号沟塘水中PAHs处于高生态风险水平,对生态风险贡献最大的污染物是BaA,达40.69%,需立即采取必要措施。同样纳污的3号沟塘水中PAHs处于中等风险2水平,对生态风险贡献最大的污染物是DBA和BaA,分别达到了36.89%和23.60%。

    (4)沟塘沉积物中各PAHs化合物的浓度只有C1超过效应区间中值(ERM),所有沉积物中PAHs均超过了TEL,说明沟塘沉积物的PAHs污染已经具有一定程度的“临界效应”,需要采取相应的措施进行污染控制和削减,尤其是C1沟塘需要立即停止养殖活动,采取清淤治理。

  • 图 1  实验装置示意图

    Figure 1.  Schematics of experimental system

    图 2  浮石和浮石载羟基氧化铁的扫描电镜图

    Figure 2.  SEM images of pumice and Fe-coated pumice

    图 3  浮石和浮石载羟基氧化铁的氮吸附等温线

    Figure 3.  Nitrogen sorption isotherm of pumice and Fe-coated pumice

    图 4  催化剂的XRD图

    Figure 4.  XRD patterns of catalysts

    图 5  催化剂的FT-IR图

    Figure 5.  FT-IR spectra of catalysts

    图 6  浮石载羟基氧化铁投加量对DEET去除速率的影响

    Figure 6.  Effect of Fe-coated pumice dosage on the removal rate of DEET

    图 7  不同催化剂对DEET去除率的影响

    Figure 7.  Effect of different catalysts on the removal efficiency of DEET

    图 8  初始pH和放电电压对DEET去除率的影响

    Figure 8.  Effect of initial pH and discharge voltage on the removal efficiency of DEET

    图 9  催化剂循环次数对DEET去除率和铁浸出的影响

    Figure 9.  Effect of catalyst recirculation on the removal efficiency of DEET and the Fe leaching

    图 10  不同模式协同浮石载羟基氧化铁和自由基清除剂对DEET去除的影响

    Figure 10.  Effects of different modes combined Fe-coated pumice and radical scavengers on the removal of DEET

    表 1  浮石和浮石载羟基氧化铁的比表面积和孔容

    Table 1.  Surface area and pore volume for pumice and Fe-coated pumice

    样品比表面积/(m2·g−1)孔径/nm孔容/(cm3·g−1)
    浮石0.5622.340.003
    浮石载羟基氧化铁9.655.990.014
    样品比表面积/(m2·g−1)孔径/nm孔容/(cm3·g−1)
    浮石0.5622.340.003
    浮石载羟基氧化铁9.655.990.014
    下载: 导出CSV
  • [1] COSTANZO S D, WATKINSON A J, MURBY E J, et al. Is there a risk associated with the insect repellent DEET(N,N-diethyl-m-toluamide) commonly found in aquatic environments?[J]. Science of the Total Environment, 2007, 384(1/2/3): 214-220.
    [2] SONG W, COOPER W J, PEAKE B M, et al. Free-radical-induced oxidative and reductive degradation of N,N′-diethyl-m-toluamide (DEET): Kinetic studies and degradation pathway[J]. Water Research, 2009, 43(3): 635-642. doi: 10.1016/j.watres.2008.11.018
    [3] MEREL S, NIKIFOROV A I, SNYDER S A. Potential analytical interferences and seasonal variability in diethyltoluamide environmental monitoring programs[J]. Chemosphere, 2015, 127: 238-245. doi: 10.1016/j.chemosphere.2015.02.025
    [4] KOLPIN D W, FURLONG E T, MEYER M T, et al. Pharmaceuticals, hormones, and other organic wastewater contaminants in U. S. streams, 1999-2000: A national reconnaissance[J]. Environmental Science & Technology, 2002, 36(6): 1202-1211.
    [5] SUN J, LUO Q, WANG D, et al. Occurrences of pharmaceuticals in drinking water sources of major river watersheds, China[J]. Ecotoxicology and Environmental Safety, 2015, 117: 132-140. doi: 10.1016/j.ecoenv.2015.03.032
    [6] TISCH M, SCHMEZER P, FAULDE M, et al. Genotoxicity studies on permethrin, DEET and diazinon in primary human nasal mucosal cells[J]. European Archives of Oto-Rhino-Laryngology, 2002, 259(3): 150-153. doi: 10.1007/s004050100406
    [7] ROSSNER A, SNYDER S A, KNAPPE D R U. Removal of emerging contaminants of concern by alternative adsorbents[J]. Water Research, 2009, 43(15): 3787-3796. doi: 10.1016/j.watres.2009.06.009
    [8] SCHOLTZ V, PAZLAROVA J, SOUSKOVA H, et al. Nonthermal plasma: A tool for decontamination and disinfection[J]. Biotechnology Advances, 2015, 33(6): 1108-1119. doi: 10.1016/j.biotechadv.2015.01.002
    [9] YU Z, SUN Y, ZHANG G, et al. Degradation of DEET in aqueous solution by water falling film dielectric barrier discharge: Effect of three operating modes and analysis of the mechanism and degradation pathway[J]. Chemical Engineering Journal, 2017, 317: 90-102. doi: 10.1016/j.cej.2017.02.068
    [10] AKBAL F. Adsorption of basic dyes from aqueous solution onto pumice powder[J]. Journal of Colloid and Interface Science, 2005, 286(2): 455-458. doi: 10.1016/j.jcis.2005.01.036
    [11] YAVUZ M, GODE F, PEHLIVAN E, et al. An economic removal of Cu2+ and Cr3+ on the new adsorbents: Pumice and polyacrylonitrile/pumice composite[J]. Chemical Engineering Journal, 2008, 137(3): 453-461. doi: 10.1016/j.cej.2007.04.030
    [12] HUANG H C, HUANG G L, CHEN H L, et al. Immobilization of TiO2 nanoparticles on Fe-filled carbon nanocapsules for photocatalytic applications[J]. Thin Solid Films, 2006, 515(3): 1033-1037. doi: 10.1016/j.tsf.2006.07.071
    [13] RAO K V S, SUBRAHMANYAM M, BOULE P. Immobilized TiO2 photocatalyst during long-term use: Decrease of its activity[J]. Applied Catalysis B: Environmental, 2004, 49(4): 239-249. doi: 10.1016/j.apcatb.2003.12.017
    [14] KITIS M, KAPLAN S S. Advanced oxidation of natural organic matter using hydrogen peroxide and iron-coated pumice particles[J]. Chemosphere, 2007, 68(10): 1846-1853. doi: 10.1016/j.chemosphere.2007.03.027
    [15] HEIBATI B, RODRIGUEZ-COUTO S, TURAN N G, et al. Removal of noxious dye: Acid orange 7 from aqueous solution using natural pumice and Fe-coated pumice stone[J]. Journal of Industrial and Engineering Chemistry, 2015, 31: 124-131. doi: 10.1016/j.jiec.2015.06.016
    [16] ZHANG T, LI C, MA J, et al. Surface hydroxyl groups of synthetic α-FeOOH in promoting OH generation from aqueous ozone: Property and activity relationship[J]. Applied Catalysis B: Environmental, 2008, 82(1/2): 131-137.
    [17] SUI M, SHENG L, LU K, et al. FeOOH catalytic ozonation of oxalic acid and the effect of phosphate binding on its catalytic activity[J]. Applied Catalysis B: Environmental, 2010, 96(1/2): 94-100.
    [18] YUAN L, SHEN J, CHEN Z, et al. Role of Fe/pumice composition and structure in promoting ozonation reactions[J]. Applied Catalysis B: Environmental, 2016, 180: 707-714. doi: 10.1016/j.apcatb.2015.07.016
    [19] 朱秋实, 陈进富, 姜海洋, 等. 臭氧催化氧化机理及其技术研究进展[J]. 化工进展, 2014, 33(4): 1010-1014.
    [20] 刘莹, 何宏平, 吴德礼, 等. 非均相催化臭氧氧化反应机制[J]. 化学进展, 2016, 28(7): 1112-1120.
    [21] IGISU M, KOMIYA T, KAWASHIMA M, et al. FT-IR microspectroscopy of Ediacaran phosphatized microfossils from the Doushantuo Formation, Weng'an, South China[J]. Gondwana Research, 2014, 25(3): 1120-1138. doi: 10.1016/j.gr.2013.05.002
    [22] LI X B, ZHAO D F, YANG S S, et al. Influence of thermal history on conversion of aluminate species in sodium aluminate solution[J]. Transactions of Nonferrous Metals Society of China, 2014, 24(10): 3348-3355. doi: 10.1016/S1003-6326(14)63476-2
    [23] KREHULA S, MUSIĆ S. Influence of copper ions on the precipitation of goethite and hematite in highly alkaline media[J]. Journal of Molecular Structure, 2007, 834: 154-161.
    [24] LEI L C, ZHANG Y, ZHANG X W, et al. Degradation performance of 4-chlorophenol as a typical organic pollutant by a pulsed high voltage discharge system[J]. Industrial & Engineering Chemistry Research, 2007, 46(17): 5469-5477.
    [25] ZHANG H, HUANG Q, KE Z, et al. Degradation of microcystin-LR in water by glow discharge plasma oxidation at the gas-solution interface and its safety evaluation[J]. Water Research, 2012, 46(19): 6554-6562. doi: 10.1016/j.watres.2012.09.041
    [26] PELEG M. The chemistry of ozone in the treatment of water[J]. Water Research, 1976, 10(5): 361-365. doi: 10.1016/0043-1354(76)90052-X
    [27] ZHANG T, LI W, CROU J P. catalytic ozonation of oxalate with a cerium supported palladium oxide: An efficient degradation not relying on hydroxyl radical oxidation[J]. Environmental Science & Technology, 2011, 45(21): 9339-9346.
    [28] ZHANG R, ZHANG C, CHENG X, et al. Kinetics of decolorization of azo dye by bipolar pulsed barrier discharge in a three-phase discharge plasma reactor[J]. Journal of Hazardous Materials, 2007, 142(1): 105-110.
    [29] WANG J, SUN Y B, JIANG H, et al. Removal of caffeine from water by combining dielectric barrier discharge (DBD) plasma with goethite[J]. Journal of Saudi Chemical Society, 2017, 21(5): 545-557. doi: 10.1016/j.jscs.2016.08.002
  • 加载中
    Created with Highcharts 5.0.7访问量Chart context menu近一年内文章摘要浏览量、全文浏览量、PDF下载量统计信息摘要浏览量全文浏览量PDF下载量2024-052024-062024-072024-082024-092024-102024-112024-122025-012025-022025-032025-04020406080Highcharts.com
    Created with Highcharts 5.0.7Chart context menu访问类别分布DOWNLOAD: 4.0 %DOWNLOAD: 4.0 %HTML全文: 89.9 %HTML全文: 89.9 %摘要: 6.1 %摘要: 6.1 %DOWNLOADHTML全文摘要Highcharts.com
    Created with Highcharts 5.0.7Chart context menu访问地区分布其他: 100.0 %其他: 100.0 %其他Highcharts.com
图( 10) 表( 1)
计量
  • 文章访问数:  5095
  • HTML全文浏览数:  5095
  • PDF下载数:  74
  • 施引文献:  0
出版历程
  • 收稿日期:  2020-05-13
  • 录用日期:  2020-06-29
  • 刊出日期:  2021-02-10
郑雪松, 孙亚兵, 於仲清, 孙浩, 陈鸣. 湿壁介质阻挡放电强化浮石载羟基氧化铁降解水中避蚊胺[J]. 环境工程学报, 2021, 15(2): 512-521. doi: 10.12030/j.cjee.202005062
引用本文: 郑雪松, 孙亚兵, 於仲清, 孙浩, 陈鸣. 湿壁介质阻挡放电强化浮石载羟基氧化铁降解水中避蚊胺[J]. 环境工程学报, 2021, 15(2): 512-521. doi: 10.12030/j.cjee.202005062
ZHENG Xuesong, SUN Yabing, YU Zhongqing, SUN Hao, CHEN Ming. Degradation of DEET in aqueous solution with Fe-coated pumice enhanced by wetted-wall dielectric barrier discharge plasma[J]. Chinese Journal of Environmental Engineering, 2021, 15(2): 512-521. doi: 10.12030/j.cjee.202005062
Citation: ZHENG Xuesong, SUN Yabing, YU Zhongqing, SUN Hao, CHEN Ming. Degradation of DEET in aqueous solution with Fe-coated pumice enhanced by wetted-wall dielectric barrier discharge plasma[J]. Chinese Journal of Environmental Engineering, 2021, 15(2): 512-521. doi: 10.12030/j.cjee.202005062

湿壁介质阻挡放电强化浮石载羟基氧化铁降解水中避蚊胺

    通讯作者: 孙亚兵(1964—),男,博士,副教授。研究方向:水污染控制工程。E-mail:sybnju@163.com
    作者简介: 郑雪松(1996—),男,硕士研究生。研究方向:水污染技术。E-mail:742816982@qq.com
  • 1. 南京大学环境学院,污染控制与资源化研究国家重点实验室,南京 210046
  • 2. 南京市生态环境保护科学研究院,南京 210013
基金项目:
南京市环境保护科学研究院“功能化改性除磷吸附剂的研究”项目(0211-151662)

摘要: 以避蚊胺(DEET)为模型污染物,研究了湿壁介质阻挡放电(DBD)协同浮石载羟基氧化铁去除污染物的可行性。采用浸渍法制备了浮石载羟基氧化铁复合材料,并对其进行了SEM、XRF、XRD、FT-IR和BET表征。同时研究了放电电压、初始pH、催化剂投加量等参数对DEET的去除率的影响。结果表明:在DEET初始浓度为20 mg·L−1、初始pH=7、放电电压为15 kV、催化剂添加量为0.45 g时,反应27 min后,DEET的去除率为90.52%,且经过4次循环使用后,材料对DEET仍然具有较高的去除率;相比于单一的湿壁介质阻挡放电,DEET去除率提高了13.22%,一级动力学反应速率提高了62.26%。最后讨论了DBD强化浮石载羟基氧化铁去除DEET的可能机制。以上研究结果可为DBD技术去除水中有机污染物的应用提供参考。

English Abstract

  • 由于避蚊胺(DEET)对蚊子、苍蝇、跳蚤、蜱和其他叮咬昆虫有着显著的驱散效果,且具有成本低廉的优点,自20世纪50年代以来,被广泛的应用于军队和居民中[1]。据报道,美国平均每年要消耗1 800 t的避蚊胺[2]。随着DEET的广泛使用,其在全球的水环境中普遍可见,浓度为ng·L−1~μg·L−1[3]。例如,在美国54条河流中,其中74%的河流都可以检测到DEET,部分河流中DEET的浓度甚至高达1.1 μg·L−1[4];在中国5条主要河流流域的饮用水源中也检测到避蚊胺[5]。DEET具有毒性,在人鼻黏膜细胞中具有潜在的致癌性和遗传毒性[6],因此,对水中DEET的高效去除的研究变得极为重要。

    近年来,有研究表明,传统的水处理过程对DEET几乎没有去除效果,ROSSNER等[7]研究表明,吸附剂种类会影响DEET去除率,但整体效果并不明显。而低温等离子体技术由于其具有高效率、优良的环境兼容性等优势,逐渐被广泛用于去除水体中的污染物[8]。在之前的研究中,湿壁介质阻挡放电(DBD)被应用于DEET的降解[9],虽然该技术将产生的等离子气体导入到溶液,但并没有充分的利用等离子气体中的臭氧,因此,单一的DBD等离子体的效果存在进一步的提高。

    水中的臭氧可通过铁基材料催化,天然浮石是一种自然界中大量存在的多孔性火山岩,其成本低廉,是理想的天然原料。目前,对于浮石在水处理中应用的研究主要在于其吸附性能或作为一种催化剂载体[10-13]。同时为了进一步提高浮石的性能[14-15],通常负载铁。一些研究结果表明,羟基氧化铁能够催化臭氧,这是因为其表面的羟基官能团能促进臭氧分解并产生羟基自由基[16-17]。然而,纯浮石的催化效率比较有限,且羟基氧化铁的分离又比较困难,YUAN等[18]成功的制备了一种用于催化臭氧的材料α-FeOOH,提高了浮石的催化能力。其作用原理是:该负载材料通过羟基氧化铁催化了臭氧分解。DBD产生的等离子气体中含有较高浓度的臭氧,这些进入溶液的臭氧能否被该材料催化,尚未有相关的研究报道。

    基于此,本文对湿壁介质阻挡放电(DBD)协同铁负载浮石降解水中DEET进行了研究。并对影响降解体系的因素进行了研究,分析浮石载羟基氧化铁在反应体系中的作用,并初步探究了DBD协同浮石载羟基氧化铁处理DEET的机制,以期为DEET降解的应用提供参考。

  • DEET购于上海阿拉丁试剂有限公司,通过将DEET溶解在超纯水中来模拟废水,实验中所用的浮石(pumice)产地为河北省行唐县。用于HPLC与LC-MS分析的试剂都是高效液相色谱级别。其他化学试剂均是分析纯。

    天然浮石粉末都是经过300目标准检验筛(江苏省南京市雄晨筛网厂)的筛分后的颗粒,本研究通过将浮石浸渍在碱性的铁溶液中来制备浮石载羟基氧化铁(Fe-coated pumice)[14,18]。首先,将天然浮石粉末用蒸馏水超声清洗2次,然后在80 ℃下干燥12 h。其次,将经过上述预处理的浮石浸渍于0.1 mol·L−1的硝酸铁溶液中,用10 mol·L−1的氢氧化钠调节溶液pH到11,并室温下静置72 h。最后用超纯水冲洗直到pH和电导率维持稳定,并在80 ℃下烘干48 h,烘干后材料在真空下保存。

  • 与之前的研究[9]相同,实验装置如图1所示,主要包括同轴线筒式双介质阻挡等离子体反应器、等离子体电源和液体循环系统。圆筒反应器由2个内径分别为6 mm和25 mm的石英管组成。内外石英管厚度均为2 mm,内管插入直径为5 mm的铝杆,外管用长120 mm的铜弹簧紧密包裹。等离子体发生器的高压电极与铝棒连接,接地电极与铜弹簧连接,内外石英管的中间区域为放电区域,本研究使用的等离子体电源(CTP-2000 K,南京苏曼电子有限公司,中国)是一种高压交流电源。

  • 图1所示,向进料水箱中加入300 mL 20 mg·L−1的DEET溶液,并加入一定量的浮石载羟基氧化铁,DEET溶液通过蠕动泵循环输送,从进料水箱到反应池,然后在外石英管内壁形成一层遍及整个放电区域的湿壁流,同时生成的等离子气体通过气泵输送到DEET溶液中,待溶液在反应器内均匀循环流动时,开启等离子电源对水样进行处理,每隔3 min取一次样,使用H2SO4和NaOH调节pH。

    DEET浓度分析采用高效液相色谱法(HPLC, Agilent 1200,USA),流动相为30%超纯水和70%的甲醇,流速为1 mL·min−1,柱温25 ℃,进样量为20 μL,色谱柱为安捷伦C18柱(4.6 mm×150 mm,5 μm),保留时间为3.41 min,检测波长为230 nm。

    水溶液中的臭氧浓度采用靛蓝褪色法进行测定;催化剂溶出总铁离子(Fe2+/Fe3+)浓度采用石墨炉原子吸收光谱仪(Thermo Solaar M6, USA)配备空心阴极灯(Thermo Fe, USA)进行测定;样品材料中元素的组成使用ARL-9800型X射线荧光光谱进行测定分析;使用Swiss ARL X’TRA型X射线衍射仪测定样品存在的晶型结构进行物相分析;Hitachi S-3400N II型扫描电镜观察样品的表面形貌和微观结构;样品的官能团由USA NICOLET NEXUS 870型傅里叶红外光谱仪检测;样品的孔径分布和比表面积由ASAP 2020型比表面积分析仪测定。

  • 浮石和浮石载羟基氧化铁催化剂通过SEM、XRF、XRD、FT-IR和BET等技术进行了表征分析。图2是浮石和浮石载羟基氧化铁的SEM图。由图2可知,纯浮石呈现为块状结构,表面比较光滑,宽度在20 μm左右。当引入羟基氧化铁后,浮石的块状结构遭受破坏,可能是被高浓度氢氧化钠腐蚀所致,且表面变得粗糙,有许多不规则分布的孔道,与纯浮石结构明显不同。

    为了进一步研究样品的表面形貌和孔容,对样品进行BET分析,浮石和浮石载羟基氧化铁催化剂的物理吸附等温线如图3所示。浮石及浮石载羟基氧化铁的吸附等温线呈现出具有磁滞回线的Ⅳ型特点,这说明其均是介孔材料。表1展示了浮石和浮石载羟基氧化铁的比表面积和孔容,相比于纯浮石,浮石载羟基氧化铁的比表面积由0.56 m2·g−1提高到9.56 m2·g−1,孔容变大3.66倍。而浮石载羟基氧化铁的作用主要是催化臭氧氧化,是一种表面反应[19-20]。增加的比表面积和孔容也为臭氧提供更多的活性位点,从而提高其催化臭氧氧化效率。

    XRF的表征结果表明浮石主要由O(35.1%)、Si(17.9%)、Ca(11.7%)、Mg(5.9%)、Al(4.5%)和Fe(1.8%)构成。与之相比,浮石载羟基氧化铁含有的元素包括O(35.1%)、Si(17.4%)、Ca(11.2%)、Mg(5.8%)、Al(4.3%) 和Fe(3.3%)。浮石与浮石载羟基氧化铁的XRD的表征结果如图4所示。浮石的主要物相为结晶长石和硅铝酸盐。而浮石载羟基氧化铁催化剂与纯浮石却不相同,铁的负载导致浮石表面生成了与铁元素有关的α-FeOOH晶体[18]

    表面羟基在红外光谱中常于3 200~3 650 cm−1处出现峰值。由图5可知,浮石载羟基氧化铁和浮石在3 450 cm−1处均有吸收峰,主要为水分子和表面羟基(Si—OH、Ca—OH、Mg—OH或Fe—OH)的拉伸运动[18],而1 620 cm−1处的波峰对应于羟基的弯曲模式[21]。浮石载羟基氧化铁表面羟基官能团峰高的增加,表明α-FeOOH含量的增加。1 020 cm−1处附近的峰代表Si—O—Al键的伸缩振动[15],880 cm−1处的峰可能是由于Al—OH的振动[22],Fe—OH键的弯曲振动和Fe—O键的伸缩振动导致催化剂在500~800 cm−1出现吸收峰[23],这些结果与以前的研究结果[18]相一致。

  • 催化剂的投加量会影响DEET的去除速率和效果。DBD协同不同量的浮石载羟基氧化铁降解DEET的速率对比如图6所示,DEET的去除速率随着催化剂投加量的增加而上升,无催化剂投加的情况下,DBD降解DEET的一级动力学反应速率常数为0.053 min−1,而当浮石载羟基氧化铁投加量增加到0.45 g时,DBD协同浮石载羟基氧化铁的一级动力学反应速率常数为0.086 min−1,这可能是因为催化剂量的增加,提高了表面反应的位点数目,加速臭氧分解形成·OH。当催化剂添加量达到0.6 g时,DBD协同浮石载羟基氧化铁的一级动力学反应速率常数为0.098 min−1,DEET的去除速率只有轻微的提升,这可能是由于当持续增加催化剂添加量时,臭氧吸附位点富余,催化剂的利用率变低。

    图7为DBD分别协同浮石、浮石载羟基氧化铁降解DEET的去除率随时间变化曲线,浮石和浮石载羟基氧化铁的添加均提高了DEET的去除率,这可能是浮石和浮石载羟基氧化铁催化DBD中产生的臭氧气体分解得到的·OH导致。同时浮石载羟基氧化铁具有更好的催化性能,该实验结果与前述的催化剂表征相匹配(更大的比表面积为臭氧提供更多的活性位点、更高的表面羟基含量)。为了去除催化剂对DEET吸附的影响,使用浮石和浮石载羟基氧化铁对DEET进行30 min的暗吸附实验,结果表明,浮石和浮石载羟基氧化铁吸附对DEET的去除率分别为3.82%和3.34%。

  • 图8反映了pH和放电电压对DEET去除率的影响。如图8(a)所示,DEET的去除率随着pH由3增加到9而降低,其原因可能是等离子放电在pH较低时能产生更多的·OH[24]。另一方面,随着OH浓度的增加,一些·OH可以与OH结合形成水,从而降低DEET的去除率[25]。而当pH 为9~11时,DEET的去除率反而提升可能是因为臭氧分解产生·OH速率随着溶液中碱性的增强而变快[26-27]。由图8(a)可知,在pH为3~11时,浮石载羟基氧化铁均能提供稳定的催化性能。

    图8(b)所示,放电电压增加也表明放电功率的增加,随着放电电压的提高,DEET的去除率也有明显增加。放电电压为18 kV时DEET的去除率为放电电压为12 kV的1.23倍。等离子体中的自由电子通过碰撞使氧和水分发生强电离产生大量的活性物种(·O、O3和·OH等)[28]。当放电电压增加时,电子在放电区域会获得更多的能量,从而增加碰撞的概率,形成更多的活性物种,进而提高DEET的去除率。

  • 为了研究浮石载羟基氧化铁的稳定性,在相同的条件下对催化剂进行4次循环实验。每次循环后的样品经过离心收集后,用超纯水洗涤、干燥以备下次使用。如图9所示,材料经过4次循环后,DEET的去除率仅有轻微的降低。同时为了进一步检测材料的稳定性,使用石墨炉原子吸收光谱仪测定每次反应液中溶出铁的浓度,每0.45 g催化剂反应一次铁的损失量在0.21~0.24 mg,相比于前述表征中催化剂中铁的含量占比较小,由此可见,合成的浮石载羟基氧化铁具有良好的催化性能,且具有较好的重复使用稳定性。

  • 使用异丙醇(IPA)作为羟基自由基的捕获剂。同时为了推测浮石载羟基氧化铁在体系中的作用,设计3种反应器运行模式:M1仅将放电区域产生的等离子气体通过气泵输送到进料水槽中,不存在液循环进入放电区域;M2存在液循环进入放电区域,但气泵停止工作;M3为上述实验方法中所述。

    在之前的研究中[9],M1中臭氧浓度最高为7.125 μmol·L−1,M3中臭氧浓度略低于M1,为4.312 μmol·L−1,而M2中臭氧浓度很低,仅有1.416 μmol·L−1图10(a)为不同模式下协同浮石载羟基氧化铁降解DEET的去除速率对比。相比于单独的介质阻挡放电,M2协同浮石载羟基氧化铁的一级动力学反应速率几乎没有提升。而M1协同浮石载羟基氧化铁的一级动力学反应速率常数提高1.94倍。由此可知,相比于DBD,协同体系处理DEET的速率提升可能主要归因于浮石载羟基氧化铁的催化臭氧氧化作用。由图10(b)可知,在反应体系中,·OH是主要的活性物种,在纯M3体系内,·OH对DEET的去除率约36%,但在M3体系中加入了浮石载羟基氧化铁后,该复合体系中·OH对DEET的去除率约50%,由此可见,浮石载羟基化铁的加入为体系中引入了更多的·OH。

    DBD中引入浮石载羟基氧化铁提高了DEET的去除率,说明体系存在明显的协同效应,而协同效应的产生主要因为浮石载羟基氧化铁的表面羟基官能团起着催化臭氧的作用,其与臭氧反应产生HO3·和氧气[17],HO3·再分解产生·OH和氧气,同时,等离子放电过程还会在体系中产生H2O2,羟基氧化铁还能诱发类芬顿反应从而形成·OH [29],进一步加速DEET的降解。所涉及的反应过程如式(1)~式(5)所示。

  • 1)湿壁介质阻挡放电协同浮石载羟基氧化铁对DEET有着较高的去除效果和一定的协同作用,同时浮石载羟基氧化铁在初始pH为3~11时均有稳定的催化性能。协同体系去除DEET的一级动力学常数是单独等离子体系的1.62倍。在27 min实验后,协同作用去除率提高了13.74%。

    2)在一定范围内,增加浮石载羟基氧化铁的投加量,可以提升DEET的去除率。

    3)加入羟基自由基清除剂可显著降低DEET的去除率,且湿壁介质阻挡放电协同浮石载羟基氧化铁体系中,DEET的去除率要高于单一的湿壁介质阻挡放电体系。

    4)浮石载羟基氧化铁在协同体系中的主要作用是催化作用,其表面羟基官能团能促进等离子气中的臭氧最终分解成·OH,从而提高DEET的去除率。

参考文献 (29)

返回顶部

目录

/

返回文章
返回