AO-SBR短程硝化反硝化垃圾渗滤液预处理中试应用

赵晴, 周浩, 吕慧, 张鑫, 孟了, 刁兴兴. AO-SBR短程硝化反硝化垃圾渗滤液预处理中试应用[J]. 环境工程学报, 2021, 15(2): 545-552. doi: 10.12030/j.cjee.202004110
引用本文: 赵晴, 周浩, 吕慧, 张鑫, 孟了, 刁兴兴. AO-SBR短程硝化反硝化垃圾渗滤液预处理中试应用[J]. 环境工程学报, 2021, 15(2): 545-552. doi: 10.12030/j.cjee.202004110
ZHAO Qing, ZHOU Hao, LYU Hui, ZHANG Xin, MENG Liao, DIAO Xingxing. Pilot-scale test of partial nitrification-denitrification-based AO-SBR process for landfill leachate pretreatment[J]. Chinese Journal of Environmental Engineering, 2021, 15(2): 545-552. doi: 10.12030/j.cjee.202004110
Citation: ZHAO Qing, ZHOU Hao, LYU Hui, ZHANG Xin, MENG Liao, DIAO Xingxing. Pilot-scale test of partial nitrification-denitrification-based AO-SBR process for landfill leachate pretreatment[J]. Chinese Journal of Environmental Engineering, 2021, 15(2): 545-552. doi: 10.12030/j.cjee.202004110

AO-SBR短程硝化反硝化垃圾渗滤液预处理中试应用

    作者简介: 赵晴 (1983—),女,博士,副教授。研究方向:污水生物处理技术。E-mail:gzdx_zq@163.com
    通讯作者: 吕慧 (1982—),男,博士,教授。研究方向:环境生物处理理论与技术。E-mail:lvhui3@mail.sysu.edu.cn
  • 基金项目:
    国家自然科学基金资助项目 (42077155);黑龙江省自然科学基金资助项目 (QC2017060);深圳市科技计划项目 (JSGG20170824101458515);哈尔滨市科技创新人才研究专项资金项目 (2017RAQXJ020)
  • 中图分类号: X703.1

Pilot-scale test of partial nitrification-denitrification-based AO-SBR process for landfill leachate pretreatment

    Corresponding author: LYU Hui, lvhui3@mail.sysu.edu.cn
  • 摘要: 针对某垃圾渗滤液处理厂现有氨吹脱预处理工艺存在的脱氮效果不佳、运行费用高、易产生二次污染等问题,开展了基于短程硝化反硝化的AO-SBR垃圾渗滤液预处理中试研究,考察了反应系统的脱氮效能,分析了氮素的迁移转化途径,计算长期稳定时预处理工艺的主要运行成本。在中试实验中,垃圾渗滤液进水氨氮浓度为1 000~2 500 mg·L−1,控制SBR池pH为 6.5~7.5、DO为 1.0~1.5 mg·L−1,投加甲醇调节进水碳氮比为1.4~2.0,通过FNA抑制实现了短程硝化反硝化中试系统的启动和稳定运行。稳定阶段系统中的亚硝化率为90%以上,氨氮去除率为80%以上,总氮去除率为50%左右。典型周期氮元素平衡分析结果表明,通过短程硝化反硝化途径和硝化反硝化途径去除的总氮负荷分别占据总氮去除负荷的74.8%和13.5%。AO-SBR短程硝化反硝化作为垃圾渗滤液预处理工艺可以满足后续工艺流程进水要求,最终出水达到纳管标准,该垃圾渗滤液预处理工艺运行成本比氨吹脱降低约30%。短程硝化反硝化工艺替代氨吹脱工艺进行垃圾渗滤液预处理具有技术及经济可行性。以上研究结果可为垃圾渗滤液处理厂预处理工艺的升级改造提供技术支持。
  • 丹江口水库是南水北调中线工程水源地,水质保护十分重要。随着库区点源逐步得到治理,面源污染对丹江口水库水质的影响越来越大[1]。缓坡型库岸是丹江口水库重要的库岸类型,大坝加高前一直都是库周群众重要的土地资源[2]。由于农业生产强度较大,植被覆盖度低,缓坡型库岸面源输出强度较高。已有研究显示,丹江口库区面源污染产生的TN和TP负荷分别达到3.7×104 t和1.9×103 t,其中以缓坡型库岸面积最大的河南淅川县污染强度最高[3]。2013年,丹江口大坝加高工程完工,坝顶高程从162 m加高至176.6 m,丹江口水库水位抬升后,大量农田耕地将被淹没。然而,近年来水库水位始终没有达到170 m的水位目标,消落区无序耕种现象依然时有发生[4],加剧了库周面源污染输入。此外,新淹没区域土壤的氮磷释放[5]、库周土壤侵蚀[6]、以及周边农村生活[7]等面源污染都成为威胁库区水质的重要因素。

    开展库岸生态屏障建设,恢复植被系统和污染阻控能力,是控制库周面源污染的有效途径。在国外,河湖岸边带生态修复和保护技术推广应用较为普及[8-9];我国从20世纪90年代开始开展岸边带保护与修复技术的研究与应用[10-11],探索出设置植被缓冲带、调整土地利用、优化种植结构等有效措施[12-15]。丹江口水库缓坡型库岸农业生产强度大,土地资源利用和水质保护存在矛盾;同时新形成的消落区因水文情势改变将进入新一轮植被演替过程[16-17],若不加以人工干预,植被恢复过程漫长且生态效益有限[18-19]。针对上述特点,国内外尚没有成熟的治理模式可供参考。本研究基于丹江口水库缓坡型库岸特殊的水文条件及其土地资源价值,选择典型区域探索生态屏障构建的技术方案,以期为南水北调中线水源地保护提供依据,亦为我国其他湖库岸带生态建设提供借鉴和参考。

    丹江口水库横跨河南、湖北两省,由汉江库段(汉库)和丹江库段(丹库)2部分组成。丹江口水利枢纽分初期工程和大坝加高工程两期建设,初期工程于1973年底竣工,水库正常蓄水位157 m;大坝加高工程于2013年建成,正常蓄水位为170 m,最低水位为160 m。大坝加高后,160~170 m水位线区间成为新的消落区。根据水库运行调节方式,每年5月初至6月21日,水库水位逐渐降低到夏季汛限水位160 m;8月21—31日逐渐抬高到秋季汛限水位163.5 m;10月1日以后,逐渐充蓄到正常蓄水位170 m。

    从地形条件看,汉库库岸以陡坡型为主,库岸曲折、立地陡峭,多为石质坡面,土地类型多为林地;丹库库岸以缓坡型为主,库岸地势平缓,消落区宽度从数百米到几公里,大坝加高前土地类型多为自然荒草漫滩和农耕用地。缓坡型库岸土壤肥沃、水分充足,农业耕种比较普遍。根据各库周各区县统计资料,大坝加高前160~170 m高程范围耕种面积25.67 km2,占消落区总面积的10.52%,主要分布在淅川、丹江口、郧阳3区县,其中淅川县14.4 km2,丹江口市5.00 km2,郧阳区6.27 km2(见图1)。根据国务院南水北调办2010年5月批准的《南水北调中线一期工程丹江口水库初步设计阶段建设征地移民安置规划设计报告》,丹江口水库淹没涉及的区域应全部实施征地移民。2013年,水库移民征地工作全部完成,并完成了库底清理工作,为水库蓄水奠定了良好基础。然而,由于近年来上游来水量不足,最高水位仅达到167 m左右。由于消落区管理办法尚不完善,加上库周土地资源紧张,消落区无序耕种的现象依然存在。

    图 1  丹江口水库库岸坡度分布(170 m高程以下范围)和项目区位置
    Figure 1.  Distribution of Danjiangkou Reservoir bank slope (range below 170 m elevation) and location of the project area

    缓坡型库岸受水文情势变化的影响,消落区植被系统退化,拦滤吸收和阻滞净化能力丧失或下降。库岸土地无序耕种造成土壤侵蚀和化肥流失,形成的面源污染对库区水质也会造成威胁。生态屏障构建的关键在于恢复消落区植被系统,强化库岸面源阻控能力,在此基础上形成消落区土地资源的可持续利用模式,协调水质保护和库周群众生存发展的关系(见图2)。

    图 2  丹江口水库缓坡型库岸面源生态阻控总体思路
    Figure 2.  General idea of ecological resistance control for non-point source pollution in the gentle slope bank of Danjiangkou Reservoir

    1)构建消落区植被系统。水库调度造成的水文条件变化阻断了消落区植被的自然演替过程,可能造成植被群落退化消亡。通过植物群落的合理搭配和布局,能够引导库岸植被适应水文变化规律,促进群落的稳定化和生态环境效益的充分发挥。植被带布局以水库调度方式为依据,按照淹水时间的长短,在不同高程布设具有不同耐淹能力的植物群落,对草本、灌丛、乔木等不同植物群落类型进行合理搭配和种植。植被群落的优选配置过程中,应选择污染物吸收效率高、径流拦截能力强、根系固土能力强,并适应于库岸带地形地质条件的群落类型。

    2)充分利用微地形条件构建库周生态水系统。针对库岸带面源负荷高,坑塘沟道阻控能力差的问题,对自然的汇水沟道和坑塘湿地系统进行适当人工改造,形成基于生态塘/生态沟道/近自然湿地的生态水系统,增强库岸污染阻滞能力。生态水系统构建过程中,要结合消落区地形特征,合理搭配生态塘、生态沟道、近自然湿地等措施。针对水库水位变幅较大的特点,要基于不同措施的功能特点,合理安排水体系统的空间布局,保证在不同水位条件下都能够实现污染阻滞效果。

    3)建立消落区土地保护利用模式。根据国务院颁布的《全国大中型水利水电工程建设征地补偿和移民安置条例》,大中型水利水电工程建成后形成的水面和水库消落区土地属于国家所有,这些土地可以在服从水库统一调度和保证工程安全、符合水土保持和水质保护要求的前提下,通过当地县级人民政府优先安排给当地农村移民使用。当前,丹江口水库消落区尚存在无序耕种的问题,要建立合理的保护利用模式,有效引导库周群众积极参与,保障库岸生态屏障建设的可持续开展。

    植被恢复过程中,将消落区划分为拦滤净化带、固岸缓冲带、保土持水带和适度利用带。拦滤净化带位于160~163.5 m高程范围内,淹水时间最长,主要种植生长速度快、养分吸收能力强的草本植物。此区域可拦截上游来水中夹带的枯枝落叶以及碎屑颗粒物,同时通过根系作用吸收净化水体中的营养物质。固岸缓冲带位于163.5~165 m范围内,淹水时间减少,植物群落以乔草群落为主。此区域位于拦滤净化带和保土持水带之间,具有较强的缓冲作用;同时乔木的发达根系能够抵抗风浪,对库岸能够起到良好的固定作用。保土持水带位于165~167 m高程范围内,淹水时间较短,植物群落为乔灌草群落。乔灌草群落层次分明,对降水缓冲作用明显,能够减少降雨对土壤的侵蚀,起到保土持水的作用。适度利用带位于167~170 m高程范围,淹水时间最短,植物群落以经济苗木为主,能够实现一定的经济效益。该区带严格实施管护制度,禁止使用化肥农药及其他可能污染土壤和水体的行为。

    生态水系统由生态塘、近自然湿地、生态透水坝和生态沟道等组成。生态塘是对天然塘堰加以人工修整,强化植物措施,径流在塘内滞留沉降,有机物通过植物和微生物降解[20]。近自然湿地是对低洼沼泽地进行微地形改造,强化已有植被条件,提升水力停留时间,形成径流净化系统[21]。生态透水坝利用砾石或碎石在河道中适当位置人工垒筑坝体,通过调节坝体的过流量,减缓径流流速,强化拦滤和沉降过程,控制面源污染[22]。生态沟道是对现有汇水沟道进行适当改造,增加水力停留和植物吸收,实现面源径流净化[23]

    植被功能带是库岸生态屏障的主要部分,生态水系统是重要补充。二者构通过拦截过滤、沉降吸收等作用对消落区土壤本身的存量污染和库周汇入径流污染起到深度净化作用,保证入库径流水质良好。植被功能带的建设能够杜绝消落区无序耕种的行为,减少了新的污染源输入,而适度利用带的设置缓解了土地利用和水质保护的矛盾。上述保护利用模式应由县级人民政府统一规划,乡政府和村委会具体实施,通过引入企业投资、建立合作社等模式[24],实现大面积推广。

    香花镇库岸位于河南省淅川县,紧邻丹江口水库,同时紧靠南水北调中线工程陶岔取水口;地理坐标为北纬32°44′30″~33°45′50″,东经110°39′40″~110°41′15″,高程为160~170 m,面积为2.16 km2。项目区由3个小流域组成,分别为大任沟流域,小任沟流域和陈岗流域(见图1)。区内主要土地利用类型为农耕用地,伴随着少量的林地、村庄和自然坑塘斑块,是缓坡型库岸带的典型代表。

    根据课题组对丹江口水库消落区恢复适宜物种的筛选成果[18],结合区域主要经济苗木类型,确定消落区的植被恢复物种。选择乔木物种16种,分别为落羽杉、池杉、竹柳、旱柳、枫杨、乌桕、大叶女贞、梨树、五角枫、油松、广玉兰、楝树、柿树、白蜡、罗汉松、樟树、杨树;选择灌木物种6种,分别为桑树、紫穗槐、石榴、紫薇、紫荆、夹竹桃;选择草本物种4种,分别为狗牙根、香根草、芦苇、芦竹。

    各植被功能带的植物群落模式有:拦滤净化带以香根草、芦苇、芦竹为主要种植物种,分别布置在不同的库湾,既可以满足生态截污及净化作用,又便于对3种耐水湿草本植物的水体净化效果进行对比研究;固岸缓冲带以竹柳、旱柳、落羽杉、池杉、桑树、狗牙根、香根草作为主要建群物种,分别营造以竹柳-香根草、竹柳-狗牙根、旱柳-香根草、旱柳-狗牙根、落羽杉-香根草、落羽杉-狗牙根、池杉-香根草、池杉-狗牙根、桑树-香根草、桑树-狗牙根为主的10种不同群落类型;保土持水带以落羽杉、池杉、竹柳、旱柳、枫杨、乌桕、桑树、紫穗槐、香根草、狗牙根作为主要建群物种,主要营造竹柳-桑树-香根草、竹柳-桑树-狗牙根、旱柳-桑树-香根草、旱柳-桑树-狗牙根、竹柳+旱柳-香根草、竹柳+旱柳-狗牙根、枫杨-桑树-狗牙根、枫杨+乌桕-紫穗槐-狗牙根+美人蕉+黄菖蒲、旱柳+乌桕-紫穗槐+桑树-狗牙根+黄菖蒲、枫杨+旱柳-紫穗槐+桑树-狗牙根、枫杨+旱柳+乌桕-桑树+紫穗槐-狗牙根、枫杨+竹柳-紫穗槐+桑树-狗牙根等群落配置模式;适度利用带植物以罗汉松、油松、樟树、大叶女贞、梨树、五角枫、广玉兰、楝树、柿树、白蜡、杨树、石榴、紫薇、紫荆、夹竹桃作为主要选育物种,同时结合场地现状条件,部分图斑搭配种植枫杨、乌桕、旱柳、桑树、紫穗槐等营造示范区特色景观林。

    植被恢复共涉及113个图斑,32种群落配置模式(见图3)。其中160~163.5 m淹没区图斑17个,总面积约71.80 hm2;163.5~165 m淹没区图斑32个,总面积约29.92 hm2;165~167 m淹没区图斑30个,总面积约43.46 hm2;167~170 m淹没区图斑34个总面积约72.34 hm2

    图 3  香花镇缓坡型库岸生态屏障构建措施布局
    Figure 3.  Distribution of ecological barriers measures in the gentle slope bank of Xianghua Town

    结合项目区水系汇流情况及坑塘分布现状带,对流域内已有的沟渠、坑塘进行简单人工修整改造,形成“塘-湿地”水系统,共布设9处水系统措施(见图3)。

    大任沟布设生态塘3处(位于170 m高程),近自然湿地1处(位于164 m高程),生态沟道1处(位于160~163.5 m高程);小任沟布设生态塘1处(位于170 m高程),近自然湿地1处(位于164 m高程),生态沟道1处(位于160~163.5 m高程);陈岗小流域地形起伏较大,仅在坡降最大处(位于165 m高程)布设生态透水坝1处。构建的生态水系统能够在不同水文情景下满足面源阻控需求。正常蓄水位170 m条件下,生态塘来对上游沟道来水发挥阻控作用。秋季汛限水位163.5 m条件下,“生态塘-近自然湿地-生态透水坝”系统共同发挥生态阻控作用。夏季汛限水位160 m条件下,生态沟道可在“生态塘-近自然湿地”系统的基础上,进一步发挥阻控作用,确保入库径流水质优良。

    生态塘主要是对原有坑塘进行生态化改造[25],改造内容包括:对排水沟进行疏浚清理,连通生态塘与主沟道;修整进水沟渠,保证周边农田径流能够进入生态塘;对边坡进行平整,水面以上部分种植美人蕉,形成缓冲区;生态塘内种植香蒲。近自然湿地主要是对原有低洼沼泽湿地进行修整[26],内容包括:中间修建土埂,用于导流,延长水力停留时间;导流土埂之间种植水生植物,土埂上植草;湿地浅水区种植挺水植物,深水区种植沉水植物;对排水沟进行疏浚清理,保证上游沟道和周边径流能够汇入湿地系统。生态透水坝位于田间废弃河道,坝体分为控制层、溢流层、稳定层和过滤层,分别由不同粒径碎石和砾石构成[27]。生态沟道针对项目区溪沟泥沙淤积,边坡坍塌等问题,开展清淤及加固防护,并在沟道种植芦苇、香蒲等湿生植物,控制沟道侵蚀、减少水土流失和面源污染。

    利用输出系数法[28]估算项目区3条沟道流域范围的面源污染负荷产生量。基于项目区1∶2 000地形图,统计得到170 m高程以上各地类面积;170 m高程以下消落区全部按林地计算。降雨量取南阳地区多年平均降雨量800.5 mm。根据丹江口水库调度规程,170、163.5和160 m水位大致对应冬春季、秋季和夏季,结合淅川县降雨季节分布特征[29],3种水位对应的降雨量占比约为10%、30%、60%。按照该比例分配年均降雨量,计算3种水位的面源负荷产生量,结果见表1。面源负荷主要集中在163.5 m和160 m 2个水位时期,170 m水位时负荷量较少。

    表 1  香花镇缓坡型库岸生态屏障面源负荷阻控效果评估
    Table 1.  Evaluation of load resistance control effect of non-point source of ecological barriers in the gentle slope bank of Xianghua Town
    小流域季节水位/m面源负荷产生量/(t·a−1)阻控措施和污染物去除率面源负荷削减量/(t·a−1)
    TSSTNTPTSSTNTP
    大任沟冬春季17012.780.170.02生态塘5.420.060.01
    秋季163.553.610.720.04生态塘+植被功能带+近自然湿地51.970.670.04
    夏季16062.680.840.05生态塘+植被功能带+近自然湿地+生态沟道62.300.810.05
    全年129.071.730.11119.691.540.1
    小任沟冬春季1705.120.080.01生态塘2.170.030.00
    秋季163.545.940.620.03生态塘+植被功能带+近自然湿地44.540.580.03
    夏季16055.020.740.04生态塘+植被功能带+近自然湿地+生态沟道54.680.720.04
    全年106.081.440.08101.391.330.07
    陈岗冬春季17011.670.160.020.000.000.00
    秋季163.552.490.710.04植被功能带41.990.500.03
    夏季16061.560.830.05植被功能带+生态透水坝52.710.580.04
    全年125.721.70.1194.71.080.07
    合计冬春季17029.570.410.04污染物去除率:TSS 26%,TN 21%,TP 21%7.590.090.01
    秋季163.5152.042.050.12污染物去除率:TSS 91%,TN 85%,TP 80%138.511.740.10
    夏季160179.262.410.14污染物去除率:TSS 95%,TN 87%,TP 88%169.692.110.12
    全年360.874.870.30污染物去除率:TSS 88%,TN 81%,TP 77%315.793.940.23
     | Show Table
    DownLoad: CSV

    研究表明,生态塘对TN、TP、TSS去除率分别为34.7%、34.8%[30]和42.4%[31];近自然湿地对TN、TP、TSS去除率分别为62.9%、54.7%、73.5%[32];生态透水坝对对TP、TSS去除率分别为19.0%、28.1%[33];植被功能带对TN、TP、TSS去除率分别约为70%、64%、80%[34];生态沟道对TN、TP、TSS去除率分别53.2%、71.8%、80.2%[35]。各项措施按照串联关系逐级累积,计算得到不同水文情境下的污染负荷去除量,结果如表1所示。项目区全年对TN、TP、TSS的削减量分别为3.94、0.23、315.79 t·a−1,各污染物去除率在77%~88%;夏季(160 m水位)项目区对TN、TP、TSS的削减量分别为2.11、0.12、169.69 t·a−1,各污染物去除率在85%以上。虽然冬春季(170 m水位)污染物去除能力相对较弱,但由于面源产生量较少,对面源负荷削减需求较低,所以不会造成面源负荷大量输入。

    1)丹江口水库缓坡型库岸生态屏障建设的关键在于消落区植被恢复和库岸生态水系统构建。植被恢复将消落区划分为拦滤净化带、固岸缓冲带、保土持水带和适度利用带,适度利用带能够解决消落区土地土地无序耕种的问题。生态水系统通过坑塘沟道的微地形生态化改造,形成生态塘、近自然湿地、生态透水坝和生态沟道等,能够对库周面源径流起到阻控作用。

    2)香花镇缓坡型库岸的生态屏障构建选择16种乔木、6种灌木、4种草本植物进行消落区植被恢复,布设生态塘4处、近自然湿地2处、生态透水坝1处、生态沟道2处形成生态水系统。

  • 图 1  AO-SBR示意图和现场照片

    Figure 1.  Schematic diagram and site photo of the AO-SBR reactor

    图 2  AO-SBR中氮化物浓度及亚硝化率

    Figure 2.  Nitrogen concentration and nitrosation rate in the AO-SBR

    图 3  AO-SBR中总氮浓度及其去除率的变化

    Figure 3.  Changes of total nitrogen mass concentration and its removal rate in the AO-SBR

    图 4  典型周期反应器内氮素转化

    Figure 4.  Nitrogen conversion in a typical cycle

    图 5  系统最终出水水质

    Figure 5.  Water quality of final system effluent

    表 1  典型周期反应器进出水水质情况

    Table 1.  Water quality of influent and effluent in a typical cycle mg·L−1

    水样碱度COD总氮氨氮亚硝态氮硝态氮
    反应器进水10 023.502 4862 4422 160.4100
    反应器出水1 0061 356.421 01526959736
    水样碱度COD总氮氨氮亚硝态氮硝态氮
    反应器进水10 023.502 4862 4422 160.4100
    反应器出水1 0061 356.421 01526959736
    下载: 导出CSV

    表 2  系统各工艺段出水水质

    Table 2.  Water quality of effluent from each process section of the system mg·L−1

    工艺段名称COD氨氮亚硝态氮硝态氮总氮
    原水1 442±5361 735±426001 950±430
    AO-SBR1 759±411234±106524±12615±5835±210
    EGSB1 145±506232±11049±145±1354±152
    AO-MBR837±52212±706±445±12
    NF65±183±201.5±125±9
    工艺段名称COD氨氮亚硝态氮硝态氮总氮
    原水1 442±5361 735±426001 950±430
    AO-SBR1 759±411234±106524±12615±5835±210
    EGSB1 145±506232±11049±145±1354±152
    AO-MBR837±52212±706±445±12
    NF65±183±201.5±125±9
    下载: 导出CSV

    表 3  AO-SBR与氨吹脱工艺的主要运行费用比较

    Table 3.  Comparison of main operating costs between AO-SBR and ammonia stripping

    工艺名称数量单价费用/(元·m−3)费用合计/(元·m−3)
    AO-SBR甲醇1.2 kg·m−34元·kg−14.8009.571
    电费5 kWh·m−30.732元·(kWh)−13.660
    人工费定员1人4 000元·月−11.111
    氨吹脱石灰18 kg·m−30.3元·kg−15.40013.669
    98%硫酸8 kg·m−30.3元·kg−12.400
    电费6.5 kWh·m−30.732元·(kWh)−14.758
    人工费定员1人4 000元·月−11.111
    工艺名称数量单价费用/(元·m−3)费用合计/(元·m−3)
    AO-SBR甲醇1.2 kg·m−34元·kg−14.8009.571
    电费5 kWh·m−30.732元·(kWh)−13.660
    人工费定员1人4 000元·月−11.111
    氨吹脱石灰18 kg·m−30.3元·kg−15.40013.669
    98%硫酸8 kg·m−30.3元·kg−12.400
    电费6.5 kWh·m−30.732元·(kWh)−14.758
    人工费定员1人4 000元·月−11.111
    下载: 导出CSV
  • [1] MORO G D, PRIETO-RODRIGUEZ L, SANCTIS M D, et al. Landfill leachate treatment: Comparison of standalone electrochemical degradation and combined with a novel biofilter[J]. Chemical Engineering Journal, 2016, 288: 87-98. doi: 10.1016/j.cej.2015.11.069
    [2] LUO H, ZENG Y, CHENG Y, et al. Recent advances in municipal landfill leachate: A review focusing on its characteristics, treatment, and toxicity assessment[J]. Science of the Total Environment, 2020, 703: 135468. doi: 10.1016/j.scitotenv.2019.135468
    [3] 王凯, 武道吉, 彭永臻, 等. 垃圾渗滤液处理工艺研究及应用现状浅析[J]. 北京工业大学学报, 2018, 44(1): 1-12.
    [4] MONTUSIEWICZ A, BIS M, PASIECZNA-PATKOWSKA S, et al. Mature landfill leachate utilization using a cost-effective hybrid method[J]. Waste Management, 2018, 76: 652-662. doi: 10.1016/j.wasman.2018.03.012
    [5] 刘华, 李静, 孙丽娜, 等. 蒸氨/氨吹脱两级工艺处理高浓度氨氮废水[J]. 中国给水排水, 2013, 29(20): 96-99.
    [6] 雷芳, 冯新, 熊春晖. 垃圾渗滤液吹脱预处理联合城市污水厂处理生产性研究[J]. 水处理技术, 2018, 44(1): 88-90.
    [7] HASAR H, UNSAL S A, IPEK U, et al. Stripping/flocculation/membrane bioreactor/reverse osmosis treatment of municipal landfill leachate[J]. Journal of Hazardous Materials, 2009, 171(1/2/3): 309-317.
    [8] EI-GOHARY F A, KAMEL G. Characterization and biological treatment of pre-treated landfill leachate[J]. Ecological Engineering, 2016, 94: 268-274. doi: 10.1016/j.ecoleng.2016.05.074
    [9] 杜昱, 李洪君, 李大利, 等. 垃圾渗滤液处理亟需解决的问题及发展方向[J]. 中国给水排水, 2015, 31(22): 33-36.
    [10] GONG L, JUN L, YANG Q, et al. Biomass characteristics and simultaneous nitrification-denitrification under long sludge retention time in an integrated reactor treating rural domestic sewage[J]. Bioresource Technology, 2012, 119: 277-284. doi: 10.1016/j.biortech.2012.05.067
    [11] VOETS J P, VANSTAEN H, VERSTRAETE W. Removal of nitrogen from highly nitrogenous wastewaters[J]. Journal of Water Pollution Control Federation, 1975, 47(2): 394-398.
    [12] ZHANG Z, ZHANG Y, CHEN Y. Recent advances in partial denitrification in biological nitrogen removal: From enrichment to application[J]. Bioresource Technology, 2020, 298: 122444. doi: 10.1016/j.biortech.2019.122444
    [13] TOMASZEWSKI M, CEMA G, ZIEMBINSKA -BUCZYNSKA A. Influence of temperature and pH on the anammox process: A review and meta-analysis[J]. Chemosphere, 2017, 182: 203-214. doi: 10.1016/j.chemosphere.2017.05.003
    [14] 赵群英, 赵炎. 低C/N垃圾渗滤液短程硝化最佳DO与温度的研究[J]. 西安工业大学学报, 2014, 34(12): 1002-1006. doi: 10.3969/j.issn.1673-9965.2014.12.012
    [15] WANG Z, PENG Y, MIAO L, et al. Continuous-flow combined process of nitritation and ANAMMOX for treatment of landfill leachate[J]. Bioresource Technology, 2016, 214: 514-519. doi: 10.1016/j.biortech.2016.04.118
    [16] 吴莉娜, 史枭, 张杰, 等. UASB1-A/O-UASB2深度处理垃圾渗滤液[J]. 环境科学研究, 2015, 28(8): 1331-1336.
    [17] DUAN H, GAO S, LI X, et al. Improving wastewater management using free nitrous acid (FNA)[J]. Water Research, 2020: 171.115382.
    [18] LIU Y, NGO H H, GUO W, et al. The roles of free ammonia (FA) in biological wastewater treatment processes: A review[J]. Environment International, 2019, 123: 10-19. doi: 10.1016/j.envint.2018.11.039
    [19] 国家环境保护总局. 水和废水监测分析方法[M]. 4版. 北京: 中国环境科学出版社, 2002.
    [20] ZHOU Y, OEHMEN A, LIM M, et al. The role of nitrite and free nitrous acid (FNA) in wastewater treatment plants[J]. Water Research, 2011, 45(15): 4672-4682. doi: 10.1016/j.watres.2011.06.025
  • 加载中
图( 5) 表( 3)
计量
  • 文章访问数:  6090
  • HTML全文浏览数:  6090
  • PDF下载数:  84
  • 施引文献:  0
出版历程
  • 收稿日期:  2020-04-23
  • 录用日期:  2020-05-22
  • 刊出日期:  2021-02-10
赵晴, 周浩, 吕慧, 张鑫, 孟了, 刁兴兴. AO-SBR短程硝化反硝化垃圾渗滤液预处理中试应用[J]. 环境工程学报, 2021, 15(2): 545-552. doi: 10.12030/j.cjee.202004110
引用本文: 赵晴, 周浩, 吕慧, 张鑫, 孟了, 刁兴兴. AO-SBR短程硝化反硝化垃圾渗滤液预处理中试应用[J]. 环境工程学报, 2021, 15(2): 545-552. doi: 10.12030/j.cjee.202004110
ZHAO Qing, ZHOU Hao, LYU Hui, ZHANG Xin, MENG Liao, DIAO Xingxing. Pilot-scale test of partial nitrification-denitrification-based AO-SBR process for landfill leachate pretreatment[J]. Chinese Journal of Environmental Engineering, 2021, 15(2): 545-552. doi: 10.12030/j.cjee.202004110
Citation: ZHAO Qing, ZHOU Hao, LYU Hui, ZHANG Xin, MENG Liao, DIAO Xingxing. Pilot-scale test of partial nitrification-denitrification-based AO-SBR process for landfill leachate pretreatment[J]. Chinese Journal of Environmental Engineering, 2021, 15(2): 545-552. doi: 10.12030/j.cjee.202004110

AO-SBR短程硝化反硝化垃圾渗滤液预处理中试应用

    通讯作者: 吕慧 (1982—),男,博士,教授。研究方向:环境生物处理理论与技术。E-mail:lvhui3@mail.sysu.edu.cn
    作者简介: 赵晴 (1983—),女,博士,副教授。研究方向:污水生物处理技术。E-mail:gzdx_zq@163.com
  • 1. 广州大学土木工程学院,广州 510006
  • 2. 中山大学环境科学与工程学院,广州 510275
  • 3. 中山大学深圳研究院,深圳 518057
  • 4. 黑龙江工程学院土木与建筑工程学院,哈尔滨 150050
  • 5. 深圳市下坪固体废弃物填埋场,深圳 518047
  • 6. 深圳市利赛实业发展有限公司,深圳 518029
基金项目:
国家自然科学基金资助项目 (42077155);黑龙江省自然科学基金资助项目 (QC2017060);深圳市科技计划项目 (JSGG20170824101458515);哈尔滨市科技创新人才研究专项资金项目 (2017RAQXJ020)

摘要: 针对某垃圾渗滤液处理厂现有氨吹脱预处理工艺存在的脱氮效果不佳、运行费用高、易产生二次污染等问题,开展了基于短程硝化反硝化的AO-SBR垃圾渗滤液预处理中试研究,考察了反应系统的脱氮效能,分析了氮素的迁移转化途径,计算长期稳定时预处理工艺的主要运行成本。在中试实验中,垃圾渗滤液进水氨氮浓度为1 000~2 500 mg·L−1,控制SBR池pH为 6.5~7.5、DO为 1.0~1.5 mg·L−1,投加甲醇调节进水碳氮比为1.4~2.0,通过FNA抑制实现了短程硝化反硝化中试系统的启动和稳定运行。稳定阶段系统中的亚硝化率为90%以上,氨氮去除率为80%以上,总氮去除率为50%左右。典型周期氮元素平衡分析结果表明,通过短程硝化反硝化途径和硝化反硝化途径去除的总氮负荷分别占据总氮去除负荷的74.8%和13.5%。AO-SBR短程硝化反硝化作为垃圾渗滤液预处理工艺可以满足后续工艺流程进水要求,最终出水达到纳管标准,该垃圾渗滤液预处理工艺运行成本比氨吹脱降低约30%。短程硝化反硝化工艺替代氨吹脱工艺进行垃圾渗滤液预处理具有技术及经济可行性。以上研究结果可为垃圾渗滤液处理厂预处理工艺的升级改造提供技术支持。

English Abstract

  • 垃圾渗滤液是生活垃圾在卫生填埋或堆放过程中,由于垃圾内有机物分解、自身水分、以及落在垃圾上的大气降水所形成的一种高浓度废水。垃圾渗滤液水质受垃圾的组成、填埋时间、地质情况、温度和含水量等多种因素影响而变化[1],但其一般特点是高氨氮(氨氮质量浓度为1 000~3 000 mg·L−1)、低碳氮比(老龄垃圾渗滤液COD/N<0.1),有机物种类多且复杂等。垃圾渗滤液若不经处理或处理不当排放至自然环境中,将严重威胁填埋场区域水、土环境的安全[2]

    目前,垃圾渗滤液处理主要采用物化法与生化法相结合的方式,通过预处理、生化处理、深度处理等系列工序达到排放标准[3-4]。吹脱法脱氨效果稳定、氨去除率高,常被用作垃圾渗滤液预处理工艺[5-6]。但吹脱法亦存在明显的缺点[7-8]:操作过程需要大幅度调节 pH、耗费大量酸碱调节药剂、增加成本;使用石灰药剂产生水垢,增大设备维护难度;吹脱产生气态氨,易造成大气污染等。而生物法因为其操作简单、工艺成本低、脱氮高效稳定等特点,逐渐成为国内外填埋场渗滤液脱氮的核心处理技术。但由于垃圾渗滤液碳氮比低,直接采用传统硝化反硝化脱氮工艺处理时,存在碳源投加量大、运行能耗高、脱氮效率低等问题[9-10]。短程硝化反硝化(PND)工艺是指将硝化过程控制在亚硝态氮阶段,再利用反硝化作用直接将亚硝态氮转化为氮气的过程[11]。与传统硝化反硝化相比,理论上可节约25%的耗氧量和40%的碳源量[12]。尽管一些研究者对短程硝化反硝化处理垃圾渗滤液进行了大量研究,通过控制pH、温度、溶解氧、FNA(游离亚硝酸)、FA(游离氨)、污泥龄等条件[13-18]实现亚硝态氮的积累,但研究多为实验室小试实验,大规模应用研究还鲜见报道。

    本研究针对深圳市某垃圾渗滤液处理厂氨吹脱预处理工艺存在的脱氮效果不佳、运行费用较高等实际问题,开展了基于短程硝化反硝化的垃圾渗滤液预处理的中试研究。中试处理水量最高可达200 m3·d−1,相当于小型垃圾渗滤液处理厂规模。由于垃圾渗滤液处理厂大多采用膜生物反应器(MBR)多级硝化反硝化技术,为方便渗滤液处理厂进行技术改造,本研究选用AO-SBR反应器开展中试实验。考察了短程硝化反硝化垃圾渗滤液预处理工艺启动及稳定运行控制的影响因素,解析了典型反应周期氮素平衡关系,探讨了短程硝化反硝化作为垃圾渗滤液预处理工艺的可行性。本研究将为垃圾渗滤液处理厂预处理工艺的升级改造提供实验基础与经验参考。

  • AO-SBR工艺主要由调节池、缺氧池、SBR池(好氧池)和储水池组成,各部分有效容积分别为10、95、285、10 m3,实验装置示意图和现场照片见图1。老龄渗滤液取自深圳某垃圾填埋场,主要水质参数为pH=8.3~8.6、碱度7 000~12 000 mg·L−1、COD 1 200~3 000 mg·L−1、总氮1 200~2 700 mg·L−1、氨氮1 000~2 500 mg·L−1。实验中通过气动泵分别在缺氧池和储水池投加甲醇,以提高原水可生化性。接种污泥取自渗滤液处理厂二级AO-MBR好氧池,污泥MLSS浓度为7 086 mg·L−1,MLVSS浓度为5 668 mg·L−1,污泥呈棕黄色。

    反应器单个周期运行工序为进水(非限制性曝气)8 h、曝气2 h、沉淀0.5 h、滗水1.5 h,每天运行2个周期。反应器回流比约为4∶1,沉淀与滗水工序时关闭回流。水池外壁安装保温层保持系统温度为35~38 ℃,通过调节鼓风机频率使SBR池DO保持为1~1.5 mg·L−1,通过调节进水量使SBR池pH保持为6.5~7.5。反应器启动阶段不排泥,生化池中污泥浓度始终维持在5 000~6 000 mg·L−1。反应器试运行阶段(1~10 d)主要解决工程问题,并未严格按设计工序运行,因此下述实验数据及分析从运行第11天开始。

  • 实验期间定期采样,COD、氨氮、亚硝态氮、碱度等常规水质指标均按国家标准方法[19]进行测定分析;硝态氮采用离子色谱仪(IC-AS23阴离子检测器,DIONEX ICS-600)测定;总氮由总有机碳分析仪(TOC-L CPH/CPN测定仪)测定;DO含量和pH分别使用溶解氧仪 (model 6308DT,Jenco)和pH计(model 3675,Jenco)进行在线测定。

  • 系统典型反应周期氮素平衡计算所涉及的生物脱氮反应方程式如式(1)~式(4)所示。亚硝化反应见式(1),硝化反应见式(2),硝化总过程见(3),反硝化过程反应见式(4)。

  • 根据进水负荷和脱氮性能,可将AO-SBR反应器运行过程分为3个阶段,各阶段的平均进水氨氮负荷分别为0.376、0.511、0.489 kg·(m3·d)−1;平均水力停留时间(HRT)分别约为5、3.6、3.1 d。

    第Ⅰ阶段为启动期(11~60 d),在此阶段的前10 d,氨氮去除率由75%升高至95%,硝态氮质量浓度明显下降,亚硝化率由41.9%升高至99.2%(图2)。这说明此时系统脱氮路径正由全程硝化向短程硝化转变,氧化亚硝态氮的NOB菌活性受到抑制。第21天后亚硝态氮积累率稳定保持在95%以上,标志着系统内短程硝化启动成功。从第30天开始,氨氮去除率下降至90%左右,通过计算发现,第30天SBR池FNA质量浓度最高可达0.221 mg·L−1,处于硝化作用受到抑制的FNA浓度[20]范围内(0.22~0.28 mg·L−1)。但氨氮去除率并未持续下降,这说明硝化作用并没有完全被抑制。第Ⅱ阶段为负荷提升期(61~100 d),该阶段内氨氮去除率由90%下降至80%,进水氨氮负荷增加成为影响硝化反应的主要因素。第Ⅲ阶段为稳定运行期(101~190 d),受填埋场气候及渗滤液水质(尤其氨氮质量浓度)波动的影响,该阶段氨氮去除率不稳定,但基本保持在80%以上。在运行至第146天时,进水氨氮质量浓度高达3 300 mg·L−1,生化反应剧烈放热导致各反应池水温升至最高,为40 ℃,SBR池pH上升至8.0左右。紧急从二级AO-MBR好氧池中回流泥水混合物至SBR池稀释降温。应急处理后系统逐渐恢复正常,当天出水硝态氮质量浓度为60 mg·L−1。除突发情况外,其他运行时段亚硝化率稳定保持在90%以上。在反应器启动初期,出水亚硝态氮质量浓度约为200 mg·L−1,通过调节水量降低SBR池内pH,使FNA质量浓度最高达到0.111 mg·L−1,其处于NOB菌活性完全受到抑制的浓度[20]范围内(0.026~0.22 mg·L−1),而AOB菌活性并未受到影响,因此,使系统中NOB菌逐渐被洗淘,这说明在中试规模下通过控制高浓度FNA可以实现垃圾渗滤液短程硝化反硝化的快速启动和稳定运行。

    由于垃圾渗滤液尤其是老龄垃圾渗滤液碳氮比失调,在实验中通过投加甲醇调节原水碳氮比,以提高原水可生化性、实现反应系统高效脱氮,实验结果如图3所示。在第Ⅰ阶段,系统平均COD/N约为2,总氮去除率由70%下降至60%。该阶段内的亚硝态氮逐渐积累,FNA浓度逐渐升高至0.247 mg·L−1。虽然高浓度FNA会影响反硝化菌的活性[20],但总氮去除率没有持续降低,这说明反硝化菌对高浓度FNA产生抗性。第Ⅰ阶段平均ΔCOD/ΔN约为2.1,小于传统硝化反硝化消耗碳氮比2.86,这也侧面证明短程硝化反硝化已经发生。在第Ⅱ阶段,系统平均COD/N下降为1.4,平均ΔCOD/ΔN低至1.8,总氮去除率低至40%,此时COD/N成为制约反硝化脱氮效率的主要因素。在第Ⅲ阶段,平均COD/N上升至1.8,平均ΔCOD/ΔN约为2,总氮去除率基本维持在50%以上。剩余亚硝态氮将在后续EGSB厌氧生物反应器中继续进行反硝化去除。在反应系统运行过程中,垃圾渗滤液原水水质受气候影响变化波动较大,但系统仍能保持稳定脱氮效果,说明该预处理工艺具有一定耐冲击负荷能力。

  • 系统中氨氮的去除可能存在多种途径,除了短程硝化反硝化、传统硝化反硝化等生物脱氮路径,反应器利用池底鼓风曝气增加溶解氧的同时,也会使部分游离氨通过曝气方式从水中直接逸散。因此,有必要分析反应系统氮素物料平衡关系,明确氮类污染物主要去向、判断反应器运行状态。

    以第Ⅲ阶段稳定运行期第120天的进出水数据(表1)为例,根据生物脱氮反应方程(式(1)~式(4)),由碱度、COD消耗及进出水氮元素物料平衡关系计算,得到AO-SBR典型周期内氮素转化情况(图4)。氮平衡计算结果表明:当AO-SBR反应器进水总氮负荷为0.739 kg·(m3·d)−1时,通过短程硝化反硝化途径去除的总氮负荷为0.323 kg·(m3·d)−1,占据总氮去除负荷的74.8%;而全程硝化反硝化脱氮途径去除的总氮负荷占据总氮去除负荷的13.5%。由此可知,短程硝化反硝化反应是AO-SBR中试反应器脱氮的主要路径。在系统脱氮过程中,COD实际消耗量(2 375.65 mg·L−1,含投加甲醇1 246.07 mg·L−1)远小于仅发生传统脱氮反硝化的理论耗碳量(3 602.94 mg·L−1),节省约34%有机碳源。

  • 垃圾渗滤液经AO-SBR预处理工艺脱氮后,还需通过EGSB厌氧生物反应器+AO-MBR+纳滤(NF)等工序,以完成渗滤液处理。EGSB厌氧生物反应器将去除预处理出水中剩余的亚硝态氮和部分COD,预处理+EGSB将共同完成80%总氮去除的任务,AO-MBR工艺去除剩余20%总氮与难降解COD,经NF后的最终出水水质达到《生活垃圾填埋场污染控制标准》即可纳管排放。在中试期间,系统各工艺段出水水质见表2,垃圾渗滤液处理系统出水水质见图5。短程硝化反硝化预处理工艺出水经过后续工艺处理后,均可达到排放标准。以上结果说明,短程硝化反硝化工艺代替氨吹脱方法进行垃圾渗滤液预处理在技术上是可行的。

    AO-SBR工艺主要运行成本包括药剂费(甲醇)、电费和人工费;氨吹脱工艺主要运行成本包括药剂费(石灰、硫酸)、电费和人工费。在长期稳定运行的情况下,2种预处理工艺的主要运行费用见表3。未考虑其他少量药剂、设备折旧、日常维修和大修等费用时,AO-SBR作为垃圾渗滤液脱氮预处理工艺,其主要运行成本是氨吹脱的70%左右。此外,AO-SBR工艺自动化程度较高且操作简单。氨吹脱工艺容易产生水垢问题,导致其大修次数远多于AO-SBR工艺;吹脱产生自由氨需要硫酸溶液吸收处理,也会增加相应的人工成本。因此,在整体工艺出水满足纳管要求前提下,作为垃圾渗滤液预处理工艺,AO-SBR较氨吹脱具有明显的经济优势。

  • 1)中试规模的AO-SBR短程硝化反硝化垃圾渗滤液预处理工艺脱氮效果良好。当平均进水氨氮负荷为0.489 kg·(m3·d)−1时,氨氮去除率可达80%以上,且碳氮比为1.8时,总氮去除率为50%左右,满足后续工序进水要求。

    2)当AO-SBR反应器进水总氮负荷为0.739 kg·(m3·d)−1时,通过短程硝化反硝化途径去除的总氮负荷为0.323 kg·(m3·d)−1,占据总氮去除负荷的74.8%,系统以短程硝化反硝化脱氮途径为主。

    3) AO-SBR短程硝化反硝化预处理工艺出水经过后续EGSB厌氧生物反应器、二级AO-MBR、NF工艺处理后可以满足排放标准,AO-SBR主要运行成本为9.571元·m−3,是氨吹脱工艺主要运行成本的70%。

参考文献 (20)

返回顶部

目录

/

返回文章
返回