氨法脱硫产物对制备脱硝氧化剂ClO2的影响

何学娟, 党小庆, 张艳平, 王凌峰, 张浩, 黄家玉, 张凡. 氨法脱硫产物对制备脱硝氧化剂ClO2的影响[J]. 环境工程学报, 2021, 15(1): 245-252. doi: 10.12030/j.cjee.202003095
引用本文: 何学娟, 党小庆, 张艳平, 王凌峰, 张浩, 黄家玉, 张凡. 氨法脱硫产物对制备脱硝氧化剂ClO2的影响[J]. 环境工程学报, 2021, 15(1): 245-252. doi: 10.12030/j.cjee.202003095
HE Xuejuan, DANG Xiaoqing, ZHANG Yanping, WANG Lingfeng, ZHANG Hao, HUANG Jiayu, ZHANG Fan. Effect of ammonia desulfurization products on preparation of denitration oxidant ClO2[J]. Chinese Journal of Environmental Engineering, 2021, 15(1): 245-252. doi: 10.12030/j.cjee.202003095
Citation: HE Xuejuan, DANG Xiaoqing, ZHANG Yanping, WANG Lingfeng, ZHANG Hao, HUANG Jiayu, ZHANG Fan. Effect of ammonia desulfurization products on preparation of denitration oxidant ClO2[J]. Chinese Journal of Environmental Engineering, 2021, 15(1): 245-252. doi: 10.12030/j.cjee.202003095

氨法脱硫产物对制备脱硝氧化剂ClO2的影响

    作者简介: 何学娟(1995—),女,硕士研究生。研究方向:大气污染控制。E-mail:hexihxj@163.com
    通讯作者: 党小庆(1964—),男,博士,教授。研究方向:大气污染控制。E-mail:dangxq@163.com
  • 基金项目:
    中国环境科学研究院中央级公益性科研院所基本科研业务专项(2020YSKY-019)
  • 中图分类号: X701

Effect of ammonia desulfurization products on preparation of denitration oxidant ClO2

    Corresponding author: DANG Xiaoqing, dangxq@163.com
  • 摘要: 为探究氨法脱硫产物亚硫酸铵制备脱硝氧化剂ClO2的可行性及其特性,采用实验室自行搭建的反应系统,重点考察了反应温度、反应时间、H2SO4浓度及(NH4)2SO3浓度等因素对吸收液中ClO2浓度、收率及纯度的影响。结果表明:在反应温度为50 ℃,H2SO4浓度为9 mol·L−1,(NH4)2SO3浓度为1.25 mol·L−1,反应时间为30 min的条件下,吸收液中ClO2的浓度最高可达1 336 mg·L−1,可满足ClO2氧化脱硝的要求;在各种影响因素中,H2SO4浓度对ClO2影响最大,当H2SO4浓度由6 mol·L−1升高至9 mol·L−1时, 吸收瓶中ClO2浓度由222.59 mg·L−1上升至1 335.55 mg·L−1,可升高83.33%。以上研究结果可为ClO2氧化脱硝中的氧化剂ClO2的制备提供参考。
  • 在油田和炼油厂的生产、储运以及含油污水处理过程中,会产生大量含油污泥。妥善处理与处置含油污泥,避免造成环境污染一直是油田和环保部门非常重视的问题[1]。含油污泥主要分为落地油泥、罐底油泥和炼油厂油泥。沉积在储罐罐底的油泥会直接影响油品质量,所以罐底的定期清理必不可少[2]。传统的射流清洗方法会造成水资源浪费,使用化学清洗剂可能造成二次污染。而气泡清洗法具有低能耗和自身清洁的特点,为罐底油泥的去除与清洗提供了新的手段。

    气泡清洗法已被广泛应用在金属表面清洗、瓷器清洗等固体表面清洗领域。张学发等[3]验证了微气泡在金属脱脂应用上的可行性和优越性;CHAHINE等[4]建立了空化气泡清洁表面颗粒的力学模型;黄河等[5]的研究验证了气泡清洗瓷器表面的安全性。除了实验验证和应用研究,很多学者也对气泡清洗过程和机理做过论证。TUZIUTI[6]研究了微米级气泡清洗表面油脂的过程;YAMASHITA等[7]发现空化气泡的物理作用是去除材料表面附着颗粒的主要因素;REUTER等[8]研究了单个气泡去除玻璃表面附着颗粒机理;MAEKAWA等[9]认为微小气泡的上浮并带走油脂是固体表面清洗的机制之一。以上研究都表明气泡清洗在固体表面清洗领域具有应用潜力。

    为明确气泡清洗技术在罐底底泥清洗中的应用情况,本研究考察了气泡尺寸差异对固体表面清洗效果的影响。通过搭建玻璃表面油污气泡清洗可视化实验装置,设计了可产生多种尺寸分布的气泡发生器,以研究不同尺寸气泡对固体表面粘附性污染物清洗效果的差异,并分析清洗时间、距离和角度等参数对清洗效果的影响,为高效处理油泥污染问题提供理论和实践参考。

    常用的气泡产生方法有加压溶气法和流体剪切法[10]。加压溶气法的原理是在对流体加压使气体过饱和溶解后,突然释放压力使气体以微小气泡的形式逸出,产生的气泡尺寸一般在100 μm以下[11];流体剪切法是依靠湍流剧烈的剪切力在气液流体中产生气泡,比较常见的是文丘里式和涡流式[12-13],产生的气泡尺寸大约为数百微米[14]。本研究参考现有气泡发生的方法和原理,优化设计了气泡发生器。发生器的主要结构包括文丘里结构的入口部分和具有中心圆柱的旋流腔(见图1),通过调节气泡发生器的气液比产生不同尺寸的气泡。

    图 1  气泡发生器结构示意图
    Figure 1.  Schematic diagram of bubble generator structure

    图1为实验采用的自制气泡发生器的结构示意图。气泡发生器的长宽高为58 mm×26 mm×61 mm,使用树脂材料3D打印技术制作完毕供实验使用。水通过水泵送至气泡发生器左侧的液体入口,空气通过空气压缩机送至右侧的气体入口。入口部分的文丘里结构能够使流体在以不同气液比例进入喷头时实现稳定混合;气液流体向下一起进入下部的旋流腔体,依靠旋流作用,部分空气在中心螺旋圆柱的表面被挤压,压力增大使更多空气溶入水中,并在出口处因突然释压以微小气泡形式析出,未溶解的部分空气也因流体剪切力被分割为气泡形态,从而实现调节进气和进水的比例获得不同尺寸范围的气泡。

    本研究搭建了气泡对玻璃表面油脂及颗粒污染物的可视化清洗实验装置(见图2)。污染物是黏度为0.350 Pa·s的硅油和粒径为5~50 μm的二氧化硅颗粒的均匀混合物。水经过水泵(江苏威乐泵业科技有限公司YE2-80M1-2,中国)通过气泡发生器进入水箱,再由水箱出口回到水泵,形成循环。水箱为玻璃材质,尺寸为40 cm×30 cm×30 cm,边壁挂有槽,用于固定微气泡发生喷头的位置和放置带有污染物的基底,水槽距离底部17 cm,距离水面8 cm。涂有污染物的玻璃基底放在气泡发生器出口的正前方,通过调整基底到气泡发生器出口处的距离和基底的倾斜角度来研究不同因素对清洗效果的影响。控制液体流量保持2.500 L·min−1不变,调节进气流量从0.125 L·min−1至1.000 L·min−1,从而研究不同气液比下产生的不同尺寸气泡对清洗效果的影响。通过高速摄像机拍摄产生的气泡图像,使用MATLAB软件统计气泡尺寸分布,并通过显微镜观察清洗前后玻璃表面污染物的变化。

    图 2  实验流程示意图
    Figure 2.  Schematic of experimental setup

    通过图像方法[14]测量气泡尺寸。使用配有微透镜(AF Micro-Nikkor,60 mm,f / 2.8D)的高速相机(Photron Fastcam SA-X2,日本)记录气泡的运动,并通过定位摄像机焦点位置的标尺来测定每个实验的长度像素。由于气泡边界清晰,可将气泡分离成单独和重叠的气泡,用MATLAB分析图像获得气泡的几何尺寸[15],然后再根据图像分析结果统计出不同操作条件下产生的气泡尺寸分布情况。

    污染物清洗效果的测量分析分为直接观测和称重量化两个部分。在清洗前后使用显微镜(上海光学仪器一厂XSP-8CA,中国)直接观察基底上的污染物。由于污染物中混有二氧化硅颗粒,可以直观地表征污染物的残留量、分布和位置变化。每次实验时,在同一基底上涂抹0.100 0 g污染物,误差控制在1%以内,并在每次清洗前后用电子天平称出污染物质量,按照式(1)计算去除率。

    R=m清洗前m清洗后m清洗前×100% (1)

    式中:R为去除率;m清洗前为清洗前玻璃基底上污染物的质量,g;m清洗后为清洗后玻璃基底上残留污染物的质量,g。

    在相同液体流量下,进气流量控制在0.125~1.000 L·min−1进行实验,产生的气泡经高速摄像拍摄后图像如图3所示,气泡的尺寸分布数据见图4。由图3图4可见,随着气液比的增大,气泡尺寸也逐渐增大;当气液比为0.05时,气泡尺寸较小,平均尺寸小于100 μm;随着气量的增加,大气泡从无到有,并且逐渐增多,而微小气泡的数量变化不大。当进气量较小时,进入喷头的气体在旋流作用下被挤压在中心实体圆柱表面,增大的压力使其溶于水中,并在出口常压释放时以微气泡的形态析出,此类气泡尺寸一般为数十微米[16]。然而,由于溶解度和固定接触面积的限制,只有一定量的气体能够溶入水中。随着进入喷头的气量增大,剩余气体被高速流体剪切为气泡,此类气泡尺寸较大,并随操作条件的变化而变化。根据该结果,当气液比为0.05~0.4时,可分别得到平均尺寸约为80、250、500、800及1 200 μm的不同尺寸气泡分布状态。这一结果可为后续实验对清洁效果的对比提供控制参数。

    图 3  气液比分别为0.05~0.4的气泡图像
    Figure 3.  Bubble images at gas-liquid ratio of 0.05~0.4
    图 4  气液比分别为0.05~0.4的气泡尺寸分布
    Figure 4.  Bubble size distribution at gas-liquid ratio of 0.05~0.4

    当控制清洗时间为60 s、液体流量为2.5 L·min−1时,在与水流垂直的方向放置基底玻璃片,并使之与气泡发生喷嘴出口相距10 cm,每次实验固定初始污染物为0.100 0 g,考察污染物的清洗效果。图5为不同气液比下,清洗前后污染物在玻璃载片上残留样貌的显微镜图像;图6为清洗后玻璃载片上污染物的残留量。当仅使用水流清洗时,污染物仍残留0.095 5 g,且通过对比清洗前后的显微镜照片可知,污染物样貌并无明显变化;当调节气液比为0.05时,清洗效果与仅用水清洗时的效果相近,污染物残留量仅降低到0.092 4 g;当调节气液比为0.1时,污染物残留降低到0.067 8 g,清洗效果有明显提升;而当气液比大于0.2时,玻璃基底上开始出现部分清洁区域,并且因硅油减少而使油膜变薄,未被去除的颗粒物在流体冲击作用下形成污染物聚集;当气液比为0.3和0.4时,玻璃基底表面出现大部分清洁区域,污染物质量降低到0.035 0 g以下,所以在这两种工况下玻璃基底上油污清洗的强化作用很明显。

    图 5  玻璃基底上污染物的显微图像
    Figure 5.  Microscopic images of contaminants on the glass substrate
    图 6  不同气液比下清洗后玻璃基底上污染物的残留量
    Figure 6.  Residual contaminants on glass substrates after cleaning at different gas-liquid ratios

    通过对气泡清洗玻璃基底上污染物去除率的计算,可以更直观地观察气泡尺寸差异的影响(见图7)。水清洗的去除效率仅为4.5%,加入平均直径为80 μm的微小气泡后,对去除效率的影响也非常有限,去除率仅为7.8%。然而,随着气泡尺寸的增加,去除率也随之逐步提高。平均尺寸为800 μm的气泡对污染物的清洗效果最好,去除效率达到了68.3%。而气液比为0.4时,气泡平均尺寸为1 200 μm,去除率却略低于800 μm的气泡。分析其原因,可能是由于此时的气泡更大,但数量相对减少,更容易破裂和上浮,在玻璃基底上的作用范围相对减小。根据实验现象和结果,结合现有研究分析,气泡清洗固体表面油脂的过程和机制如图8所示。流体夹带气泡接触油脂层,气泡流动引起气水界面快速变化[6],当较大气泡溃灭时,形成微小水射流并在周围形成涡流[8,17]。根据FOLDYNA等[18]的研究,与连续的液体射流相比,一滴或一团液体撞击目标会产生更高的冲击压力,从而对油脂带来额外冲击并促使其脱落;另外,尺寸微小的气泡具有比表面积大、表面带负电荷等特性,能够粘附脱落的油脂[3],与尾流夹带作用携带的油脂一起上浮[19],最终完成清洗去除过程。

    图 7  不同尺寸气泡清洗玻璃基底上污染物的去除率
    Figure 7.  Removal efficiency of cleaning contaminants on glass substrates by bubbles with different sizes
    图 8  清洗过程和机制示意图
    Figure 8.  Schematic diagram of cleaning process and mechanism

    在相同操作条件下,产生的气泡在不同位置有不同的尺寸分布,且处理时间的变化也会影响对污染物的去除,所以又进一步研究了清洗距离和时间对清洗效果的影响。实验条件为,控制气体流量至0.750 L·min−1,即保持气液比为0.3固定不变,每次实验固定初始污染物为0.100 0 g,分别把玻璃基底放置于距离气泡发生器出口8 cm和10 cm处,并分别处理30、60和90 s。表1为不同实验条件下,清洗后玻璃基底上污染物残留量;图9为不同清洗时间和距离条件下的去除率。结果表明,随着清洗时间的增加,去除效果是增强的。当处理时间固定在30 s时,清洗距离为8 cm的条件下,去除效率为39.5%,高于清洗距离为10 cm的去除率(19.1%);而当处理时间为60 s时,清洗距离为8 cm的条件下去除效率提高至71.0%,而清洗距离为10 cm条件下去除效率也有较大提升,两者相差仅2.8%;当处理时间增加至90 s时,清洗距离10 cm条件下去除效率达到89.0%,反而高于8 cm距离条件下的81.4%。分析其原因,距离10 cm处的气泡分布更为分散,作用范围更大,在处理时间更充足的情况下会累积更好的清洗效果。由此说明,继续增加处理时间也不能较大幅度地提升清洗效果,而气泡清洗作用是有距离限制的,即在其他反应条件不变的情况下,存在一个最佳清洗距离,所以在清洗过程中应选择合适的清洗距离和时间。

    表 1  不同时间和距离清洗后玻璃基底上污染物的残留量
    Table 1.  Residual contaminants on glass substrates after cleaning at different times and distances
    清洗距离/cm清洗时间/s污染物残留量/g
    8300.060 5
    600.029 0
    900.018 6
    10300.080 9
    600.031 8
    900.011 0
     | Show Table
    DownLoad: CSV
    图 9  不同时间和距离清洗玻璃基底上污染物的去除率
    Figure 9.  Removal efficiency of cleaning contaminants on glass substrates at different times and distances

    另外,基底放置的角度对清洗效果也有影响。玻璃基底表面与清洗水流流动方向的夹角即清洗角度。清洗角度为0,即指玻璃片平行于水流方向放置;清洗角度90°,即指垂直于水流方向放置。控制气液比为0.3、清洗距离为10 cm、清洗时间为60 s不变,分别在清洗角度为0.0、22.5°、45.0°、67.5°和90.0°时进行实验。清洗后玻璃表面污染物残留量如表2所示,去除率如图10所示。结果显示,不管是水清洗还是气泡清洗,当清洗角度设置为45°,都获得了更好的清洗效果。尤以水清洗的对比更为明显,当放置角度为0和90°时,去除效率均不到5.0%;而放置角度为45°时,去除效率提高至35.0%。因此,为便于污染物从表面去除,应将基底按特定角度放置。

    表 2  不同角度清洗后玻璃基底上污染物的残留量
    Table 2.  Residual contaminants on glass substrates before and after cleaning at different angles
    清洗角度/(°)水清洗后污染物残留量/g气泡清洗后污染物残留量/g
    0.00.098 60.034 4
    22.50.085 10.026 5
    45.00.065 00.023 4
    67.50.080 10.026 9
    90.00.095 50.031 8
     | Show Table
    DownLoad: CSV
    图 10  不同角度清洗玻璃基底上污染物的去除率
    Figure 10.  Removal efficiency of cleaning contaminants on glass substrates at different angles

    1)调节气泡发生器的入水气液比,可以得到不同尺寸的气泡。当比值在0.05~0.4内调节时,利用高速摄像机和图像处理软件可测得气泡的平均尺寸为80~1 200 μm。

    2)设置清洗距离为10 cm,在与水流垂直的方向放置基底,在清洗时间为60 s、液体流量为2.5 L·min−1的条件下,采用单独水洗和微小气泡清洗两种方式对污染物的去除率均不到10%,且清洗效果随气泡尺寸的增大而增强。当气液比为0.3,即气泡平均尺寸约为800 μm时,清洗效果最好,污染物的去除率达到68.3%。

    3)当处理时间为较短的30 s时,清洗距离选择8 cm,清洗效果更好;而当处理时间为较充足的90 s时,由于清洗距离为8 cm处的气泡更为分散,作用范围更大,该条件下气泡清洗效果更好。另外,当把基底放置在与水流方向呈45°夹角时,清洗效果最好。

  • 图 1  实验装置图

    Figure 1.  Diagram of experimental equipment

    图 2  H2SO4浓度对ClO2制备的影响

    Figure 2.  Effect of H2SO4 concentration on the preparation of ClO2

    图 3  反应温度对ClO2制备的影响

    Figure 3.  Effect of reaction temperature on the preparation of ClO2

    图 4  (NH4)2SO3浓度对ClO2制备的影响

    Figure 4.  Effect of (NH4) 2SO3 concentration on the preparation of ClO2

    图 5  反应时间对ClO2制备的影响

    Figure 5.  Effect of reaction time on the preparation of ClO2

    表 1  实验工况

    Table 1.  Working conditions of the experiment

    H2SO4浓度/(mol·L−1)反应温度/℃(NH4)2SO3浓度/(mol·L−1)反应时间/min
    6100.520
    7200.7540
    8301.060
    9401.2580
    1050100
    11120
    12
    H2SO4浓度/(mol·L−1)反应温度/℃(NH4)2SO3浓度/(mol·L−1)反应时间/min
    6100.520
    7200.7540
    8301.060
    9401.2580
    1050100
    11120
    12
    下载: 导出CSV
  • [1] DESHWAL B R, LEE H K. Manufacture of chlorine dioxide from sodium chlorate: State of the art[J]. Journal of Industrial and Engineering Chemistry, 2005, 11(3): 330-346.
    [2] GORDON G, ROSENBLATT R G K A. The chemistry of chlorine dioxide[J]. Progress in Inorganic Chemistry, 2007, 15: 201-286.
    [3] COUNCIL T A C. Chlorine Dioxide[M]. Denver, CO: The Foundation and American Water Works Association, 2002.
    [4] VENKATNARAYANAN S, SRIYUTHA MERTHY P, KIRUBAGARAN R, et al. Chlorine dioxide as an alternative antifouling biocide for cooling water systems: Toxicity to larval barnacle Amphibalanus reticulatus (Utinomi)[J]. Marine Pollution Bulletin, 2017, 124(2): 803-810. doi: 10.1016/j.marpolbul.2017.01.023
    [5] BERG E M A A. A Review of chlorine dioxide in drinking water treatment[J]. American Water Works Association, 1986, 6: 62-72.
    [6] 李广培, 秘密, 董勇, 等. 二氧化氯对NO和Hg的气相氧化性能的实验研究[J]. 中国电机工程学报, 2015, 35(13): 3324-3330.
    [7] 潘理黎, 李玲, 金月祥, 等. ClO2液相氧化协同氨法烟气脱硫脱硝研究[J]. 浙江工业大学学报, 2018, 46(6): 683-686. doi: 10.3969/j.issn.1006-4303.2018.06.017
    [8] 孙淑君, 马素霞, 杨秉川, 等. 液相ClO2脱除烟气中NOx的实验研究[J]. 化学工程, 2020, 48(2): 1-5. doi: 10.3969/j.issn.1005-9954.2020.02.001
    [9] 莫正波, 胡松涛, 胡德栋. 低浓度下亚氯酸钠与盐酸制备二氧化氯的试验研究[J]. 山东大学学报(工学版), 2017, 47(2): 100-105.
    [10] 鞠婷, 戈学珍, 韩明贺, 等. 我国氯酸钠还原法制备高纯二氧化氯的研究进展及应用[C]//全国化工标准物质委员会二氧化氯专业委员会, 中国城镇供水排水协会科学技术委员会, 中国二氧化氯学会. 2017年全国水质安全与二氧化氯应用技术研讨会论文集. 青岛, 2017: 3-7.
    [11] 闫云涛, 马春元. 二氧化氯制备过程中氯酸盐控制技术[J]. 净水技术, 2018, 37(8): 56-60.
    [12] 钱宇, 陈赟, 江燕斌, 等. 过氧化氢法制备二氧化氯的反应机理及动力学[J]. 化工学报, 2004, 55(10): 1719-1722. doi: 10.3321/j.issn:0438-1157.2004.10.017
    [13] 姚诚毅. 化学法二氧化氯制备方法的比较[J]. 科学之友, 2012(11): 37-38.
    [14] TILAK B V, RADER K V A C. On the mechanism of sodium chlorate formation[J]. Journal of the Electrochemical Society, 1981, 128(6): 1228-1232. doi: 10.1149/1.2127599
    [15] 陈赟. 过氧化氢法制备环境友好氧化剂二氧化氯工艺及反应动力学研究[D]. 广州: 华南理工大学, 2003.
    [16] 杜小旺, 张燕. 乙醇还原法制备消毒剂二氧化氯的研究[J]. 重庆师范大学学报(自然科学版), 2013, 30(4): 119-122.
    [17] 朱明新, 朱媛, 徐炎华. 过氧化氢法制备高纯度二氧化氯的研究[J]. 工业水处理, 2006, 26(8): 38-41. doi: 10.3969/j.issn.1005-829X.2006.08.012
    [18] AIETA E M, ROBERTS P V, HERNANDEZ M. Determination of chlorine dioxide, chlorine, chlorite, and chlorate in water[J]. American Water Works Association, 1984, 76(1): 64-70. doi: 10.1002/j.1551-8833.1984.tb05263.x
    [19] 潘理黎, 文静, 章晶晓, 等. ClO2湿法同时脱硫脱硝试验及反应过程分析[J]. 浙江工业大学学报, 2017, 45(2): 195-199. doi: 10.3969/j.issn.1006-4303.2017.02.015
    [20] CHIEN T W, CHU H, HSUEH H T. Kinetic study on absorption of SO2 and NOx with acidic NaClO2 solutions using the spraying column[J]. Journal of Environmental Engineering, 2003, .129(11): 967-974. doi: 10.1061/(ASCE)0733-9372(2003)129:11(967)
    [21] DESHWAL B R, JIN D S, LEE S H, et al. Removal of NO from flue gas by aqueous chlorine-dioxide scrubbing solution in a lab-scale bubbling reactor[J]. Journal of Hazardous Materials, 2008, 150(3): 649-655.
    [22] 吴建春, 杨佳财. 二氧化氯制备方法研究进展[J]. 环境科学与管理, 2012, 37(7): 92-95. doi: 10.3969/j.issn.1673-1212.2012.07.025
    [23] LENZI F, RAPSON W H. Further studies on the mechanism of formation of chlorine dioxide[J]. Pulp and Paper Canada, 1962, 63(9): 442-448.
  • 加载中
    Created with Highcharts 5.0.7访问量Chart context menu近一年内文章摘要浏览量、全文浏览量、PDF下载量统计信息摘要浏览量全文浏览量PDF下载量2024-052024-062024-072024-082024-092024-102024-112024-122025-012025-022025-032025-040Highcharts.com
    Created with Highcharts 5.0.7Chart context menu访问类别分布DOWNLOAD: 2.6 %DOWNLOAD: 2.6 %HTML全文: 81.7 %HTML全文: 81.7 %摘要: 15.7 %摘要: 15.7 %DOWNLOADHTML全文摘要Highcharts.com
    Created with Highcharts 5.0.7Chart context menu访问地区分布其他: 81.7 %其他: 81.7 %Akishima: 0.1 %Akishima: 0.1 %Amherst: 0.1 %Amherst: 0.1 %Baraki: 0.1 %Baraki: 0.1 %Beijing: 6.7 %Beijing: 6.7 %Birmingham: 0.1 %Birmingham: 0.1 %Boulder: 0.1 %Boulder: 0.1 %Brooklyn: 0.1 %Brooklyn: 0.1 %Bunkyo-ku: 0.1 %Bunkyo-ku: 0.1 %Chang'an: 0.1 %Chang'an: 0.1 %Changchun: 0.1 %Changchun: 0.1 %Changqiao: 0.1 %Changqiao: 0.1 %College Park: 0.1 %College Park: 0.1 %Dali Baizu Zizhizhou: 0.1 %Dali Baizu Zizhizhou: 0.1 %Dalian: 0.1 %Dalian: 0.1 %Dongshan: 0.1 %Dongshan: 0.1 %Dongying Shi: 0.1 %Dongying Shi: 0.1 %Edmonton: 0.1 %Edmonton: 0.1 %Gaocheng: 0.1 %Gaocheng: 0.1 %Haidian: 0.1 %Haidian: 0.1 %Hamilton: 0.1 %Hamilton: 0.1 %Hangzhou: 0.6 %Hangzhou: 0.6 %Hefei: 0.1 %Hefei: 0.1 %Hongkou: 0.1 %Hongkou: 0.1 %Hyderabad: 0.3 %Hyderabad: 0.3 %Jinan: 0.1 %Jinan: 0.1 %Jinrongjie: 0.4 %Jinrongjie: 0.4 %Kudus: 0.3 %Kudus: 0.3 %La Puente: 0.2 %La Puente: 0.2 %Luwan: 0.1 %Luwan: 0.1 %Moscow: 0.1 %Moscow: 0.1 %Mountain View: 0.3 %Mountain View: 0.3 %New York: 0.1 %New York: 0.1 %São Carlos: 0.1 %São Carlos: 0.1 %Shanghai: 0.6 %Shanghai: 0.6 %Shenyang: 0.1 %Shenyang: 0.1 %Shijiazhuang: 0.1 %Shijiazhuang: 0.1 %Singapore: 0.1 %Singapore: 0.1 %Taiyuan: 0.1 %Taiyuan: 0.1 %The Bronx: 0.1 %The Bronx: 0.1 %Tokyo: 0.1 %Tokyo: 0.1 %Weinan: 0.4 %Weinan: 0.4 %Xi'an: 0.1 %Xi'an: 0.1 %Xingfeng: 0.1 %Xingfeng: 0.1 %XX: 3.4 %XX: 3.4 %Yamato: 0.1 %Yamato: 0.1 %Yokohama: 0.1 %Yokohama: 0.1 %Yuncheng: 0.2 %Yuncheng: 0.2 %Zhengzhou: 0.1 %Zhengzhou: 0.1 %上海: 0.1 %上海: 0.1 %临汾: 0.1 %临汾: 0.1 %内网IP: 0.1 %内网IP: 0.1 %北京: 0.3 %北京: 0.3 %北海: 0.1 %北海: 0.1 %平顶山: 0.1 %平顶山: 0.1 %廊坊: 0.1 %廊坊: 0.1 %济南: 0.1 %济南: 0.1 %深圳: 0.1 %深圳: 0.1 %漳州: 0.1 %漳州: 0.1 %运城: 0.1 %运城: 0.1 %郑州: 0.6 %郑州: 0.6 %阳泉: 0.1 %阳泉: 0.1 %其他AkishimaAmherstBarakiBeijingBirminghamBoulderBrooklynBunkyo-kuChang'anChangchunChangqiaoCollege ParkDali Baizu ZizhizhouDalianDongshanDongying ShiEdmontonGaochengHaidianHamiltonHangzhouHefeiHongkouHyderabadJinanJinrongjieKudusLa PuenteLuwanMoscowMountain ViewNew YorkSão CarlosShanghaiShenyangShijiazhuangSingaporeTaiyuanThe BronxTokyoWeinanXi'anXingfengXXYamatoYokohamaYunchengZhengzhou上海临汾内网IP北京北海平顶山廊坊济南深圳漳州运城郑州阳泉Highcharts.com
图( 5) 表( 1)
计量
  • 文章访问数:  4845
  • HTML全文浏览数:  4845
  • PDF下载数:  47
  • 施引文献:  0
出版历程
  • 收稿日期:  2020-03-14
  • 录用日期:  2020-05-07
  • 刊出日期:  2021-01-10
何学娟, 党小庆, 张艳平, 王凌峰, 张浩, 黄家玉, 张凡. 氨法脱硫产物对制备脱硝氧化剂ClO2的影响[J]. 环境工程学报, 2021, 15(1): 245-252. doi: 10.12030/j.cjee.202003095
引用本文: 何学娟, 党小庆, 张艳平, 王凌峰, 张浩, 黄家玉, 张凡. 氨法脱硫产物对制备脱硝氧化剂ClO2的影响[J]. 环境工程学报, 2021, 15(1): 245-252. doi: 10.12030/j.cjee.202003095
HE Xuejuan, DANG Xiaoqing, ZHANG Yanping, WANG Lingfeng, ZHANG Hao, HUANG Jiayu, ZHANG Fan. Effect of ammonia desulfurization products on preparation of denitration oxidant ClO2[J]. Chinese Journal of Environmental Engineering, 2021, 15(1): 245-252. doi: 10.12030/j.cjee.202003095
Citation: HE Xuejuan, DANG Xiaoqing, ZHANG Yanping, WANG Lingfeng, ZHANG Hao, HUANG Jiayu, ZHANG Fan. Effect of ammonia desulfurization products on preparation of denitration oxidant ClO2[J]. Chinese Journal of Environmental Engineering, 2021, 15(1): 245-252. doi: 10.12030/j.cjee.202003095

氨法脱硫产物对制备脱硝氧化剂ClO2的影响

    通讯作者: 党小庆(1964—),男,博士,教授。研究方向:大气污染控制。E-mail:dangxq@163.com
    作者简介: 何学娟(1995—),女,硕士研究生。研究方向:大气污染控制。E-mail:hexihxj@163.com
  • 1. 西安建筑科技大学环境与市政工程学院,西安 710055
  • 2. 中国环境科学研究院大气污染控制技术研究中心,北京 100012
  • 3. 菏泽市环境保护科学研究所,菏泽 274000
基金项目:
中国环境科学研究院中央级公益性科研院所基本科研业务专项(2020YSKY-019)

摘要: 为探究氨法脱硫产物亚硫酸铵制备脱硝氧化剂ClO2的可行性及其特性,采用实验室自行搭建的反应系统,重点考察了反应温度、反应时间、H2SO4浓度及(NH4)2SO3浓度等因素对吸收液中ClO2浓度、收率及纯度的影响。结果表明:在反应温度为50 ℃,H2SO4浓度为9 mol·L−1,(NH4)2SO3浓度为1.25 mol·L−1,反应时间为30 min的条件下,吸收液中ClO2的浓度最高可达1 336 mg·L−1,可满足ClO2氧化脱硝的要求;在各种影响因素中,H2SO4浓度对ClO2影响最大,当H2SO4浓度由6 mol·L−1升高至9 mol·L−1时, 吸收瓶中ClO2浓度由222.59 mg·L−1上升至1 335.55 mg·L−1,可升高83.33%。以上研究结果可为ClO2氧化脱硝中的氧化剂ClO2的制备提供参考。

English Abstract

  • 二氧化氯(ClO2)是一种黄绿色的气体,易溶于水,在水中的溶解度约为Cl2的5倍,是一种有效的绿色氧化剂,可用于饮用水的消毒和纸浆漂白等[1-5]。近年来,不少研究报道将ClO2应用于烟气脱硫脱硝。李广培等[6]进行了ClO2对NO和Hg的气相氧化性能研究,发现在ClO2/NO为0.8时,NO的氧化效率高达82%;潘理黎等[7]对ClO2液相氧化协同氨法烟气脱硫脱硝进行了研究,发现其脱硝效率可达93.2%;孙淑君等[8]采用鼓泡反应器进行液相ClO2脱除烟气中NOx的实验研究,发现相比于其他氧化剂(KMnO4、NaClO2、H2O2),ClO2在较低的质量浓度下对NO转化效率即可保持100%。上述研究表明,ClO2应用于烟气脱硝可取得较好的效果,但由于实际中ClO2性质较为活泼,不易运输与存储,通常采取现场制备方式,而在制备过程中又常伴随着副产物氯气的逸出[1],具有一定的环境风险,此外,目前的ClO2制备工艺也具有较高的经济成本。

    关于ClO2的制备,在1843年就有研究提出,氯酸钾与盐酸反应可生成ClO2和Cl2的混合气体,其原理为氯酸盐在酸性条件下被还原剂还原而生成ClO2[1],此后便陆续出现了以NaClO2[9]、NaClO3[10-11]为原料制备ClO2的方法。目前主流的方法是以NaClO3为原料,与还原剂在酸性条件下生成ClO2。使用NaClO3还原法制备ClO2,因使用的还原剂不同,此法又分为很多种,如HCl法、SO2法、NaCl法、Na2SO3、CH3OH法以及H2O2[12-13]等。这些方法都各有优势,但同时也存在一定的弊端。HCl法、NaCl法在制备过程中,Cl被氧化后,会有大量Cl2逸出,造成二次污染[1, 14];CH3OH法的副产物甲醛、甲酸会给工厂带来二次水污染[15]的问题;H2O2法中H2O2不稳定易分解且价格昂贵;SO2法虽然能避免Cl2逸出和二次水污染,但其具有制备过程繁杂、原料购置成本高等缺点,使其在工程应用中受到限制。因此,寻求一种绿色经济的ClO2制备方法将是ClO2应用于烟气脱硫脱硝领域的关键。

    氨法脱硫使用氨水吸收烟气中的SO2气体,先进行酸碱中和反应,即氨和SO2反应生成(NH4)2SO3,因具有脱硫速度快、效率高、能耗低等优点而广受企业欢迎。但由于氨法脱硫在脱硫过程中生成的(NH4)2SO3性能不稳定,会重新分解为SO2,造成二次污染,因此,将(NH4)2SO3氧化为更稳定的(NH4)2SO4,使其能够直接用作氮肥以实现资源化利用,是目前氨法脱硫中的研究热点。

    本研究综合考虑ClO2的制备原理,在Na2SO3法和SO2法制备ClO2的基础上,探索将氨法脱硫的产物(NH4)2SO3应用于脱硝剂ClO2制备的可行性和影响因素,考察H2SO4浓度、(NH4)2SO3浓度、反应温度及反应时间对(NH4)2SO3法制备脱硝中氧化剂ClO2的影响;在研究过程中,将氨法脱硫产物(NH4)2SO3用于ClO2烟气氧化脱硝中氧化剂ClO2的制备,为后续烟气脱硝的脱硝剂ClO2的制备提供廉价还原剂,降低了ClO2制备过程的成本,同时也解决了氨法脱硫中(NH4)2SO3的氧化问题,为氨法脱硫和ClO2氧化脱硝工艺的组合运行提供了参考。

  • 试剂包括氯酸钠(AR)、亚硫酸铵(AR)、硫酸(98%)、碘化钾(AR)、硫代硫酸钠(AR)、淀粉(5%)、盐酸(37%)、pH=7的磷酸盐缓冲液;仪器包括四口烧瓶(500 mL)、恒温加热磁力搅拌器(DF-101S)、恒温低温槽(DC-1006)、抽气泵(压力为−68~−92 kPa)。

    实验装置如图1所示。实验系统由反应发生装置、ClO2吸收装置及末端气体吸收装置构成。反应在四口烧瓶中进行,通过恒温加热磁力搅拌器来控制反应温度,H2SO4经分液漏斗缓慢滴加入反应器中[16-17];制得的ClO2气体用冷藏的−5~0 ℃去离子水吸收,尾气用10%的NaOH吸收。系统末端采用气泵抽气,使得系统处于负压状态(−80~−72 kPa),从而促进ClO2气体的吸收,同时防止反应中气体的逸出而影响实验结果。

  • 在实验中,反应发生器为500 mL的四口烧瓶,发生器中反应原液的体积为50 mL(其中NaClO3 和(NH4)2SO3混合液25 mL, H2SO4 溶液25 mL)。ClO2吸收液及末端尾气吸收液的体积均为500 mL,反应温度为50 ℃,反应时间为30 min,抽气泵的压力为−68~−92 kPa。反应的理论方程式[12]见式(1)和式(2),总反应见式(3)。

    实验在固定其他因素不变的情况下,分别考察H2SO4浓度、反应温度、(NH4)2SO3浓度、反应时间对制备ClO2的影响,具体工况如表1所示。

    通过五步碘量法[18]测定ClO2吸收液中ClO2及Cl2的浓度,ClO2的纯度和收率由式(4)和式(5)计算。

    式中:μ为ClO2的纯度;CClO2为吸收液中ClO2的浓度,mg·L−1CCl2为吸收液中Cl2的浓度,mg·L−1μ1为 ClO2的收率;mClO2实际为实验条件下实际ClO2的产量,mg·L−1mClO2理论为实验条件下理论上ClO2的产量,mg·L−1

  • 实验固定NaClO3浓度为2 mol·L−1,(NH4)2SO3浓度为1.25 mol·L−1,反应温度为50 ℃,分别在H2SO4浓度为6、7、8、9、10、11、12 mol·L−1的条件下,考察了H2SO4浓度对ClO2制备的影响,结果如图2所示。由图2(a)可看出,ClO2吸收液中的ClO2浓度随着硫酸浓度的增加呈现先上升后下降的趋势,其中硫酸浓度在10 mol·L−1时的效果最好,制备的ClO2浓度最高可达1 336 mg·L−1。此外,各种硫酸浓度下吸收液中的ClO2浓度均随反应时间呈逐渐上升的趋势,大部分在30 min时浓度最高。硫酸浓度为8 mol·L−1时,在反应时间由5 min延长至30 min时,ClO2吸收液中ClO2浓度由74 mg·L−1上升至1187 mg·L−1,升高了93.77%。

    图2(b)可以看出,ClO2的收率及纯度均随着H2SO4浓度的增加呈先上升后下降的趋势。H2SO4浓度由6 mol·L−1增至9 mol·L−1时,吸收液中ClO2的收率由3.3%增至19.9%,纯度由85.09%增至96.4%,说明硫酸对此反应的影响很大,这与DESHWAL等[1]的研究结果一致。但H2SO4浓度大于9 mol·L−1后,ClO2的收率和纯度便开始下降。这可能是因为:随着H2SO4投加量的逐渐增大,产生的SO2逐渐增多,继而产生的ClO2逐渐增多;而当H2SO4投加量继续增大时,(NH4)2SO3与H2SO4反应速度加快,产生大量SO2,SO2一部分未来得及参与NaClO3的液相反应而从液相中逃逸,另一部分则与ClO2发生副反应,生成H2SO4和HCl[19-21],其反应方程见式(6)。

  • 在实验中,设置NaClO3浓度为2 mol·L−1,(NH4)2SO3浓度为1.25 mol·L−1,H2SO4浓度为9 mol·L−1,分别在反应温度为10、20、30、40、50 ℃的条件下,考察了反应温度对ClO2制备的影响,结果如图3所示。

    图3(a)可看出,反应温度由10 ℃增至40 ℃时,吸收液中的ClO2浓度由1 262 mg·L−1降至965 mg·L−1,而温度继续增至50 ℃时,吸收液中的ClO2浓度会再次呈现升高趋势。由图3(b)可看出,随反应温度的升高,ClO2收率呈现逐渐下降的趋势。当温度由10 ℃升高至50 ℃时,ClO2的收率则由18.8 %下降至14.4 %,下降了4.4 %。这可能是由于反应温度过高,反应比较剧烈,瞬时产生的ClO2量过大,ClO2气体来不及进入后续吸收装置,从而导致分解[22]

  • 在实验中,设置NaClO3浓度为2 mol·L−1,H2SO4浓度为9 mol·L−1,反应温度为50 ℃,分别在(NH4)2SO3浓度为0.5、0.75、1.0、1.25 mol·L−1的条件下,考察了(NH4)2SO3浓度对ClO2制备的影响,结果如图4所示。

    图4(a)可看出,随着反应器中(NH4)2SO3浓度的不断增大,吸收液中的ClO2浓度越来越高,反应器中(NH4)2SO3的浓度由0.5 mol·L−1增至1.25 mol·L−1时,吸收液中ClO2的浓度由519.38 mg·L−1上升至1 336 mg·L−1,升高了61%。由图4(a)中的数据趋势可以看出,(NH4)2SO3浓度由0.75 mol·L−1增至1 mol·L−1时,吸收液中的ClO2浓度变化最为明显。图4(b)显示,随着(NH4)2SO3浓度的增高,ClO2的收率逐渐增高,此外(NH4)2SO3的浓度由0.5 mol·L−1增至1.25 mol·L−1时,ClO2的纯度可由60%增加至84%。这是因为(NH4)2SO3的增加会使SO23的浓度增加,从而与H2SO4反应,产生更多的SO2,SO2与NaClO3反应,产生更多的ClO2气体。

  • 在实验中,设置NaClO3浓度为2 mol·L−1,(NH4)2SO3浓度为1.25 mol·L−1,H2SO4浓度为9 mol·L−1,反应温度为50 ℃,分别使反应原料在发生器中反应20、40、60、80、100、120 min,测定反应后吸收液中ClO2的浓度,考察反应时间对ClO2制备的影响,结果如图5所示。

    图5(a)可看出,吸收液中ClO2的浓度随反应的进行呈现先升高而后降低的趋势。在反应开始至60 min时,吸收液中ClO2浓度由965 mg·L−1迅速上升至1 113 mg·L−1,而当反应时间由60 min继续延长至120 min时,吸收液中ClO2浓度由1 113 mg·L−1下降至742 mg·L−1。这可能是因为,随反应时间的延长,反应物料逐渐消耗,反应速率逐渐降低,从而产生的气体量逐渐减少,但系统仍处于负压状态,产生的气体被抽出,溶解于吸收液中的ClO2也有部分随之逸出;也有可能是因为产生的ClO2与SO2发生了化学反应。此外,Cl2在水中的溶解度远小于ClO2,因此,随着反应系统在负压条件下的运行,Cl2更容易由水溶液中逸出,故ClO2的纯度会呈现上升趋势。

  • 本研究以(NH4)2SO3为还原剂,在酸性条件下 (NH4)2SO3与NaClO3发生间接的氧化还原反应,从而制备ClO2,研究是在SO2以还原剂制备ClO2的基础上进行的。根据LENZI等[23]给出的还原剂在酸性条件下还原氯酸钠制备的普遍化机理,可知本研究的反应机理,反应见式(7)~式(12)。

    为验证此反应机理与本实验反应机理的一致性,实验中将NaClO3溶液与(NH4)2SO3溶液混合加入反应器,在不加入H2SO4的情况下,观察到反应器内无黄绿色气体产生,此时在对应的ClO2吸收液中也并未测得ClO2;在不加入(NH4)2SO3的情况下,仅在反应器中加入NaClO3溶液,再缓慢加入H2SO4,也并未在吸收液中测得ClO2;而将NaClO3溶液与(NH4)2SO3溶液混合加入反应器,再逐渐加入H2SO4,反应器内便会开始产生黄绿色气体,对ClO2吸收液进行测定也发现其中含较高浓度的ClO2和少量的Cl2。综上所述,本实验的反应机理与式(7)~式(11)保持一致,(NH4)2SO3在有H2SO4存在的情况下被氧化为(NH4)2SO4,同时产生了SO2。产生的SO2作为有效还原剂,与NaClO3反应,生成(NH4)2SO4和ClO2(式(13)和式(14)),总反应见式(15)。

  • 1)实验结果表明,使用NaClO3、H2SO4和(NH4)2SO3制备脱硝氧化剂ClO2的方法是可行的。在NaClO3浓度为2 mol·L−1,H2SO4浓度为9 mol·L−1,(NH4)2SO3浓度为1.25 mol·L−1,反应温度为50 ℃的条件下,ClO2吸收液中的ClO2浓度可达1 336 mg·L−1,满足ClO2氧化脱硝要求。

    2)在反应过程中,吸收液中ClO2的浓度随着反应器中H2SO4的加入量、反应时间的升高呈现先升高后降低的趋势,随(NH4)2SO3浓度的增加呈现不断上升状态,随反应温度的增高呈波动变化状态;在20 ℃之前呈上升趋势,20~50 ℃呈下降趋势,之后再回升,20 ℃和50 ℃时均具有较好的实验效果。为避免温度过高导致(NH4)2SO3的分解,因此,选择温度为20 ℃。

    3)实验中硫酸浓度对制备ClO2的反应有很大的影响。H2SO4浓度由6 mol·L−1升至9 mol·L−1时,吸收瓶中ClO2浓度由222.59 mg·L−1上升至1 335.55 mg·L−1,升高了83.33%;反应器中(NH4)2SO3的浓度由0.5 mol·L−1增至1.25 mol·L−1时,吸收液中ClO2的浓度可由519.38 mg·L−1上升至1 298.45 mg·L−1,升高了60%。

参考文献 (23)

返回顶部

目录

/

返回文章
返回