-
我国能源供应以煤炭为主[1-2],且燃煤发电是煤炭消耗的较为清洁的利用方式,煤炭消耗中电煤比例达50%以上[3-4]。随着排放限值的渐趋严格,燃煤电厂排放的颗粒物、SO2、NOx等常规污染物减排幅度显著,尤其是超低排放实施以来,常规污染物控制技术水平得到大幅提升,排放指标远优于发达国家[5-8]。
值得注意的是,目前燃煤电厂对颗粒物的排放仅考核可过滤颗粒物(filterable particulate matter, FPM),并未涉及可凝结颗粒物(condensable particulate matter,CPM),而CPM的冷凝核一般都小于1 μm,也属于PM2.5[9],经烟囱排到大气环境后会迅速冷凝成固态或液态颗粒物,因此,根据美国环保署(EPA)规定,CPM和FPM均属于固定源排放的一次颗粒物。已有研究[10-11]发现,燃煤电厂排放的PM2.5中CPM占比达50%以上,且PM2.5通常还会富集各种重金属、有机物等,对环境及人类健康危害性极大[12-13],因此,CPM的排放也应引起足够的重视。
另外,燃煤烟气排放的Hg、SO3、有机物等也尚未得到广泛关注。这些污染物虽然排放浓度不高,但相关研究表明:燃煤电厂排放的Hg浓度在几至十几μg·m−3,主要以难以脱除的元素汞(Hg0)为主[14-17];燃煤电厂排放的SO3浓度在几至几十mg·m−3,配以低-低温电除尘器的超低排放机组SO3排放浓度普遍较低[18-22];燃煤电厂排放的有机物浓度多为0~20 mg·m−3,且有机物的种类与其总浓度没有明显关系[23-28]。因此,这些非常规污染物的排放及危害需要深入研究。
目前,针对燃煤电厂污染物减排的研究,多是针对常规污染物的超低排放,偶有涉及非常规污染物的报道,也大多仅讨论了1~2种非常规污染物,系统性不强。本研究针对某典型的超低排放机组,开展了不同工况条件下CPM、Hg、SO3、多环芳烃(PAHs)等非常规污染物的现场实测,对各类非常规污染物的梯级脱除特性开展了系统性研究,以期为后续燃煤电厂非常规污染物的排放控制提供参考。
某燃煤超低排放机组非常规污染物脱除
Unconventional pollutant removal from a coal-fired ultra-low emission unit
-
摘要: 燃煤电厂非常规污染物的排放尚未引起足够的重视。为全面表征燃煤电厂非常规污染物脱除性能,针对某1 000 MW燃煤超低排放机组,分别采用FPM和CPM一体化采样系统、安大略法(OHM)、控制冷凝法、HJ 646-2013规定的有机物测试方法,系统研究了CPM、Hg、SO3、PAHs等非常规污染物的梯级脱除特性。结果表明:100%、75%负荷时低-低温电除尘系统对CPM脱除率分别为87.15%、92.20%,湿法脱硫分别为49.65%、45.55%,不同负荷下FPM分别为3.6、4.4 mg·m−3,但CPM却分别达14.2、15.3 mg·m−3,CPM的浓度远超FPM;低-低温电除尘系统脱Hg效率为64.81%,整个系统的脱Hg效率为75.5%,Hgp全部被脱除,剩余的是难以脱除的Hg0、Hg2+,脱除率分别为为63.01%、64.29%,Hg0排放浓度为5.4 μg·m−3,Hg2+排放浓度为0.5 μg·m−3;SCR脱硝催化剂将SO2氧化成SO3的转化率约为0.7%,低-低温电除尘系统可脱除88.7%的SO3,湿法脱硫对SO3的脱除率为29.63%,最终SO3排放浓度为1.9 mg·m−3;全系统对16种PAHs脱除率达94.25%,其中,气相、固相脱除率分别为91.61%、99.27%,最终气相、固相PAHs排放浓度分别为2.39 μg·m−3和0.11 μg·m−3。现有超低排放设备对非常规污染物均有不同程度的协同脱除效果,满负荷条件下该机组CPM、Hg、SO3、PAHs排放浓度分别为14.2 mg·m−3、5.9 μg·m−3、1.9 mg·m−3、2.5 μg·m−3,Hg的排放浓度满足火电厂大气污染物排放标准(GB 13223-2011)中30 μg·m−3的要求,CPM、SO3、PAHs尚无国家强制排放标准。本研究结果可为燃煤电厂后续非常规污染物的控制提供参考。Abstract: The emission of unconventional pollutants from coal-fired power plants has not received enough attention. In order to fully characterize the removal characteristics of unconventional pollutants from coal-fired power plants, the step removal characteristics of CPM, Hg, SO3, PAHs and other abnormal pollutant from a 1 000 MW coal-fired ultra-low emission unit were systematically studied by using FPM and CPM integration sampling system, Ontario method (OHM), controlling condensate method, HJ 646-2013 unit test method. The results showed that at 100% and 75% loadings, the removal efficiencies of CPM were 87.15% and 92.20% by the low-low-temperature electric dust removal system, respectively, and wet desulfurization efficiencies were 49.65% and 45.55%, respectively. At different loadings, FPM emission concentrations were 3.6 and 4.4 mg·m−3, respectively, but CPM emission concentrations were 14.2 and 15.3 mg·m−3, the latter ones were much higher than the former ones. The Hg removal efficiency of low-low-temperature electric dust removal system was 64.81%, and the Hg removal efficiency of the whole system was 75.5%. Hgp was totally removed, and the remaining ones were Hg0 and Hg2+ being hard to remove, their removal efficiencies were 63.01% and 64.29%, respectively. The emission concentrations of Hg0 and Hg2+ were 5.4 μg·m−3 and 0.5 μg·m−3, respectively. The conversion rate of SO2 oxidized to SO3 by SCR denitration catalyst was about 0.7%. The low-low-temperature electric dust removal system could remove 88.7% SO3 in the gaseous state, the wet desulfurization could remove 29.63% SO3, the final SO3 emission concentration was 1.9 mg·m−3. The removal efficiency of 16 kinds of PAHs from the whole system reached 94.25%, of which the removal efficiencies of gas and solid phase PAHs were 91.61% and 99.27%, respectively, their corresponding emission concentrations were 2.39 and 0.11 μg·m−3, respectively. The existing ultra-low emission equipment had different levels of collaborative removal effect of unconventional pollutants, the emission concentrations of CPM, Hg, SO3 and PAHs of the unit at full loading were 14.2 mg·m−3, 5.9 μg·m−3, 1.9 mg·m−3 and 2.5 μg·m−3, respectively. The Hg emission concentration meets the standard of 30 μg·m−3 in Emission Standard for air pollutants from thermal power plants, and the national compulsory emission standard for the emission concentrations of CPM, Hg, SO3 and PAH have not yet settled. This study can provide a reference for the control of unconventional pollutants in coal-fired power plants.
-
表 1 煤种成分分析
Table 1. Analysis of coal composition
煤种 工业分析 元素分析 收到基低位
发热量/(kJ·kg−1)收到基
水分/%收到基
灰分/%收到基
挥发分/%收到基
碳/%收到基
氢/%收到基
氧/%收到基
氮/%收到基
全硫/%设计煤种 5.3 21.99 27.71 52.15 2.18 5.45 0.91 0.89 20 980 校核煤种 5.7 24.15 29.98 50.18 2.84 6.53 0.85 0.67 18 590 实验实烧煤种 5.5 22.09 28.97 51.72 2.51 5.81 0.89 0.71 19 240 表 2 不同负荷条件下颗粒物(FPM和CPM)测试结果
Table 2. Test results of particulate matter (FPM and CPM) at different loading conditions
测点 温度/℃ 负荷/% FPM质量浓度/(mg·m−3) CPM质量浓度/(mg·m−3) 合计质量浓度/
(mg·m−3)PM1 PM2.5 PM10 FPM 有机组分 无机组分 CPM ③ 121 100 187.1 389.7 957 8 648 121.7 97.8 219.5 8 867.5 122 75 112.5 309.1 1014 9 145 233.4 126.9 360.3 9 505.3 ④ 93 100 161.6 394.5 972 8 701 100.3 60.9 161.2 8 862.2 90 75 103.8 324.6 1 051 9 163 212.5 97.7 310.2 9 473.2 ⑤ 92 100 5.3 9.1 10.1 11.2 19.8 8.4 28.2 39.4 90 75 6.1 8.5 9.7 10.4 18.6 9.5 28.1 38.5 ⑥ 54 100 2.3 2.9 3.3 3.6 9.3 4.9 14.2 17.8 52 75 2.9 3.4 4.1 4.4 10.2 5.1 15.3 19.7 表 3 Hg测试结果
Table 3. Test results of Hg
测点 Hg0浓度/
(μg·m−3)Hg2+浓度/
(μg·m−3)Hgp浓度/
(μg·m−3)总Hg浓度/
(μg·m−3)① 14.6 1.4 7.6 23.6 ② 8.1 2.8 12.5 23.4 ③ 7.8 3.2 12.3 23.3 ④ 5.6 4.9 12.7 23.2 ⑤ 5.3 2.9 0 8.2 ⑥ 5.4 0.5 0 5.9 表 4 PAHs测试结果
Table 4. Test results of PAHs
环数 组分 测点③PAHs浓度/(μg·m−3) 测点⑤PAHs浓度/(μg·m−3) 测点⑥PAHs浓度/(μg·m−3) 气相 固相 合计 气相 固相 合计 气相 固相 合计 2 萘 22.13 0.69 22.82 2.79 0.12 2.91 2.14 0.01 2.15 3 苊 0.12 0.03 0.15 0.02 0.01 0.03 0.01 0 0.01 二氢苊 0.13 0.08 0.21 0.01 0 0.01 0 0 0 芴 0.42 0.14 0.56 0.02 0.01 0.03 0.01 0 0.01 菲 1.29 1.15 2.44 0.06 0.02 0.08 0.03 0.01 0.04 蒽 1.51 1.07 2.58 0.07 0.03 0.1 0.05 0.02 0.07 合计 3.47 2.47 5.94 0.18 0.07 0.25 0.1 0.03 0.13 4 荧蒽 0.29 0.61 0.9 0.04 0.02 0.06 0.01 0.01 0.02 芘 0.27 0.45 0.72 0.03 0.03 0.06 0 0.01 0.01 苯并(a)蒽 0.44 0.75 1.19 0.07 0.02 0.09 0.02 0.01 0.03 屈 0.29 1.15 1.44 0.04 0.02 0.06 0.01 0.01 0.02 合计 1.29 2.96 4.25 0.18 0.09 0.27 0.04 0.04 0.08 5 苯并(b)萤蒽 0.44 2.42 2.86 0.08 0.01 0.09 0.03 0 0.03 苯并(k)萤蒽 0.41 2.62 3.03 0.07 0.03 0.1 0.05 0.02 0.07 苯并(a)芘 0.51 0.77 1.28 0.05 0.02 0.07 0.03 0.01 0.04 二苯并(a,h)蒽 0.21 1.19 1.40 0 0 0 0 0 0 合计 1.57 7.00 8.57 0.2 0.06 0.26 0.11 0.03 0.14 6 茚并(1,2,3-cd)芘 0.02 0.78 0.80 0 0 0 0 0 0 苯并(g,h,i)苝 0.01 1.12 1.13 0 0 0 0 0 0 合计 0.03 1.9 1.93 0 0 0 0 0 0 PAHs合计 28.49 15.02 43.51 3.35 0.3 3.69 2.39 0.11 2.50 -
[1] 白建华, 辛颂旭, 刘俊, 等. 中国实现高比例可再生能源发展路径研究[J]. 中国电机工程学报, 2015, 35(14): 3699-3705. [2] 武传宝. 基于供需调整的区域能源系统优化管理研究[D]. 北京: 华北电力大学, 2017. [3] 靳舒葳. 混合单层/双层优化方法用于能源环境系统管理[D]. 北京: 华北电力大学, 2018. [4] 国家统计局. 中国统计年鉴: 2018[M]. 北京: 中国统计出版社, 2018. [5] 王树民, 张翼, 刘吉臻. 燃煤电厂细颗粒物控制技术集成应用及“近零排放”特性[J]. 环境科学研究, 2016, 29(9): 1256-1263. [6] 孙雪丽, 朱法华, 王圣, 等. 燃煤电厂颗粒物超低排放技术路线选择[J]. 环境工程技术学报, 2018, 8(2): 129-136. doi: 10.3969/j.issn.1674-991X.2018.02.017 [7] YANG Z D, ZHENG C H, ZHANG X F, et al. Highly efficient removal of sulfuric acid aerosol by a combined wet electrostatic precipitator[J]. RSC Advances, 2018, 8(1): 59-66. doi: 10.1039/C7RA11520B [8] 阮仁晖, 谭厚章, 段钰锋, 等. 超低排放燃煤电厂颗粒物脱除特性[J]. 环境科学, 2019, 40(1): 126-134. [9] U S A EPA. U S EPA method 202-condensable particulate matter[EB/OL]. [2020-03-01]. https://www.epa.gov/emc/method-202-condensable-particulate-matter. [10] YANG H H. Filterable and condensable fine particulate emissions from stationary sources[J]. Aerosol & Air Quality Research, 2014, 14(1): 59-66. [11] 裴冰. 燃煤电厂可凝结颗粒物的测试与排放[J]. 环境科学, 2015, 36(5): 1544-1549. [12] LARRY L. Char fragmentation and fly ash formation during pulverized-coal combustion[J]. Combustion & Flame, 1992, 90(2): 174-184. [13] 邓利群, 李红, 柴发合, 等. 北京东北部城区大气细粒子与相关气体污染特征研究[J]. 中国环境科学, 2011, 31(7): 1064-1070. [14] WU Q R, WANG S X, LI G L, et al. Temporal trend and spatial distribution of speciated atmospheric mercury emissions in China during 1978-2014[J]. Environmental Science & Technology, 2016, 50(1): 13428-13435. [15] WANG S M, ZHANG Y S, GU Y Z, et al. Using modified fly ash for mercury emissions control for coal-fired power plant applications in China[J]. Fuel, 2016, 181(2): 1230-1237. [16] ZHANG Y S, SHANG P F, WANG J W, et al. Trace element (Hg, As, Cr, Cd, Pb) distribution and speciation in coal-fired power plants[J]. Fuel, 2017, 208(5): 647-654. [17] ZHANG Y, YANG J P, YU X H, et al. Migration and emission characteristics of Hg in coal-fired power plant of China with ultra-low emission air pollution control devices[J]. Fuel Processing Technology, 2017, 8(2): 378-382. [18] 李小龙, 李军状, 段玖祥, 等. 燃煤电厂烟气中SO3协同控制情况及排放现状研究[J]. 中国电力, 2019, 32(6): 1-8. [19] 杨用龙, 苏秋凤, 张杨, 等. 燃煤电站典型超低排放工艺的SO3脱除性能及排放特性[J]. 中国电机工程学报, 2019, 39(10): 2962-2969. [20] 刘含笑, 陈招妹, 王少权, 等. 燃煤电厂SO3排放特征及其脱除技术[J]. 环境工程学报, 2019, 13(5): 1128-1138. doi: 10.12030/j.cjee.201812137 [21] 赵毅, 韩立鹏. 超低排放燃煤电站三氧化硫的迁移和排放特征[J]. 环境科学学报, 2019, 39(11): 3702-3708. [22] ZHENG C H, WANG Y F, LIU Y, et al. Formation, transformation, measurement, and control of SO3 in coal-fired power plants[J]. Fuel, 2019, 33(9): 327-346. [23] FERNANDEZ M G, LOPEZ M P, MUNIATEGUI L S, et al. Distribution of volatile organic compounds during the combustion process in coal-fired power stations[J]. Atmospheric Environment, 2001, 35(33): 5823-5831. doi: 10.1016/S1352-2310(01)00282-5 [24] WANG M, SHAO M, LU S, et al. Evidence of coal combustion contribution to ambient VOCs during winter in Beijing[J]. Chinese Chemical Letters, 2013, 24(9): 829-832. doi: 10.1016/j.cclet.2013.05.029 [25] PUDASAINEE D, KIM J, LEE S, et al. Hazardous air pollutants emission from coal and oil-fired power plants[J]. Asia-Pacific Journal of Chemical Engineering, 2010, 5(2): 299-303. doi: 10.1002/apj.268 [26] CHENG J, ZHANG Y, WANG T, et al. Emission of volatile organic compounds (VOCs) during coal combustion at different heating rates[J]. Fuel, 2018, 225: 554-562. doi: 10.1016/j.fuel.2018.03.185 [27] BARABAD M, JUNG W, VERSOZA M, et al. Emission characteristics of particulate matter, volatile organic compounds, and trace elements from the combustion of coals in mongolia[J]. International Journal of Environmental Research and Public Health, 2018, 15(8): 1706. doi: 10.3390/ijerph15081706 [28] YAN Y, YANG C, PENG L, et al. Emission characteristics of volatile organic compounds from coal-, coal gangue-, and biomass-fired power plants in China[J]. Atmospheric Environment, 2016, 143: 261-269. doi: 10.1016/j.atmosenv.2016.08.052 [29] LI J W, QI Z F, LI M, et al. Physical and chemical characteristics of condensable particulate matter from an ultralow-emission coal-fired power plant[J]. Energy & Fuels, 2017, 31(2): 1778-1785. [30] 隋子峰. 燃煤电厂亚微米颗粒物形成机理及释放规律研究[D]. 北京: 华北电力大学, 2018. [31] 李敬伟. 燃煤烟气中可凝结颗粒物及典型有机污染物的排放特性实验研究[D]. 杭州: 浙江大学, 2018. [32] GOODARZI F. The rates of emissions of fine particles from some Canadian coal-fired power plants[J]. Fuel, 2006, 85(4): 425-433. doi: 10.1016/j.fuel.2005.07.008 [33] THELLEFSEN N M, LIVBJERG H, LANGE F C, et al. Formation and emission of fine particles from two coal-fired power plants[J]. Combustion Science & Technology, 2002, 174(2): 79-113. [34] 朱法华, 李军状, 马修元, 等. 清洁煤电烟气中非常规污染物的排放与控制[J]. 电力科技与环保, 2018, 34(1): 23-26. doi: 10.3969/j.issn.1674-8069.2018.01.006 [35] 蒋靖坤, 邓建国, 李振, 等. 固定污染源排气中PM2.5采样方法综述[J]. 环境科学, 2014, 35(5): 2018-2024. [36] 蒋靖坤, 邓建国, 王刚, 等. 固定污染源可凝结颗粒物测量方法[J]. 环境科学, 2019, 40(12): 5234-5239. [37] 张滨渭, 李树然. 电除尘器在超低排放下的系统运行优化[J]. 高电压技术, 2017, 43(2): 493-498. [38] 刘含笑, 郦建国, 姚宇平, 等. 电除尘器飞灰粒径表征及细颗粒降温团聚[J]. 化工进展, 2018, 37(6): 2413-2425. [39] 张宇博, 延禹, 胡芳芳, 等. 低低温系统中粉尘颗粒团聚特性研究[J]. 热力发电, 2019, 48(1): 36-42. [40] SRIVASTAVA R, MILLER C, ERICKSON C, et al. Emissions of sulfur trioxide from coal-fired power plants[J]. Journal of the Air & Waste Management Association, 2004, 54(6): 750-762. [41] LEE S H, RHIM Y J. Carbon-based novel sorbent for removing gas-phase mercury[J]. Fuel, 2006, 85(2): 219-226. doi: 10.1016/j.fuel.2005.02.030 [42] YAN R, LIANG D T, TSEN L, et al. Bench-scale experimental evaluation of carbon performance on mercury vapor adsorption[J]. Fuel, 2004, 83: 2401-2409. doi: 10.1016/j.fuel.2004.06.031 [43] 陈自祥, 王儒威, 孙若愚, 等. 淮南燃煤电厂汞分配、富集与释放通量[J]. 环境化学, 2018, 37(2): 193-199. [44] RICHARDSON C, MACHALEK T, MILLER S, et al. Effect of NOx control processes on mercury speciation in utility flue gas[J]. Journal of the Air & Waste Management Association, 2002, 52(8): 941-947. [45] ZHHANG Y, LAUMB J, LIGGETT R, et al. Impacts of acid gases on mercury oxidation across SCR catalyst[J]. Fuel Processing Technology, 2007, 88(10): 929-934. doi: 10.1016/j.fuproc.2007.03.010 [46] 赵毅, 韩立鹏. 超低排放燃煤电厂低低温电除尘器协同脱汞研究[J]. 动力工程学报, 2019, 39(4): 319-323. [47] 刘玉坤, 禚玉群, 陈昌和, 等. 燃煤电站脱硫系统的脱汞性能[J]. 中国电力, 2011, 44(12): 68-72. doi: 10.3969/j.issn.1004-9649.2011.12.015 [48] ARDITSOGLOU A, PETALOTI C H, TERZI E, et al. Size distribution of trace elements and polycyclic aromatic hydrocarbons in fly ashes generated in Greek lignite-fired power plants[J]. Science of the Total Environment, 2004, 323(1): 153-167.