[1] |
白建华, 辛颂旭, 刘俊, 等. 中国实现高比例可再生能源发展路径研究[J]. 中国电机工程学报, 2015, 35(14): 3699-3705.
|
[2] |
武传宝. 基于供需调整的区域能源系统优化管理研究[D]. 北京: 华北电力大学, 2017.
|
[3] |
靳舒葳. 混合单层/双层优化方法用于能源环境系统管理[D]. 北京: 华北电力大学, 2018.
|
[4] |
国家统计局. 中国统计年鉴: 2018[M]. 北京: 中国统计出版社, 2018.
|
[5] |
王树民, 张翼, 刘吉臻. 燃煤电厂细颗粒物控制技术集成应用及“近零排放”特性[J]. 环境科学研究, 2016, 29(9): 1256-1263.
|
[6] |
孙雪丽, 朱法华, 王圣, 等. 燃煤电厂颗粒物超低排放技术路线选择[J]. 环境工程技术学报, 2018, 8(2): 129-136. doi: 10.3969/j.issn.1674-991X.2018.02.017
|
[7] |
YANG Z D, ZHENG C H, ZHANG X F, et al. Highly efficient removal of sulfuric acid aerosol by a combined wet electrostatic precipitator[J]. RSC Advances, 2018, 8(1): 59-66. doi: 10.1039/C7RA11520B
|
[8] |
阮仁晖, 谭厚章, 段钰锋, 等. 超低排放燃煤电厂颗粒物脱除特性[J]. 环境科学, 2019, 40(1): 126-134.
|
[9] |
U S A EPA. U S EPA method 202-condensable particulate matter[EB/OL]. [2020-03-01]. https://www.epa.gov/emc/method-202-condensable-particulate-matter.
|
[10] |
YANG H H. Filterable and condensable fine particulate emissions from stationary sources[J]. Aerosol & Air Quality Research, 2014, 14(1): 59-66.
|
[11] |
裴冰. 燃煤电厂可凝结颗粒物的测试与排放[J]. 环境科学, 2015, 36(5): 1544-1549.
|
[12] |
LARRY L. Char fragmentation and fly ash formation during pulverized-coal combustion[J]. Combustion & Flame, 1992, 90(2): 174-184.
|
[13] |
邓利群, 李红, 柴发合, 等. 北京东北部城区大气细粒子与相关气体污染特征研究[J]. 中国环境科学, 2011, 31(7): 1064-1070.
|
[14] |
WU Q R, WANG S X, LI G L, et al. Temporal trend and spatial distribution of speciated atmospheric mercury emissions in China during 1978-2014[J]. Environmental Science & Technology, 2016, 50(1): 13428-13435.
|
[15] |
WANG S M, ZHANG Y S, GU Y Z, et al. Using modified fly ash for mercury emissions control for coal-fired power plant applications in China[J]. Fuel, 2016, 181(2): 1230-1237.
|
[16] |
ZHANG Y S, SHANG P F, WANG J W, et al. Trace element (Hg, As, Cr, Cd, Pb) distribution and speciation in coal-fired power plants[J]. Fuel, 2017, 208(5): 647-654.
|
[17] |
ZHANG Y, YANG J P, YU X H, et al. Migration and emission characteristics of Hg in coal-fired power plant of China with ultra-low emission air pollution control devices[J]. Fuel Processing Technology, 2017, 8(2): 378-382.
|
[18] |
李小龙, 李军状, 段玖祥, 等. 燃煤电厂烟气中SO3协同控制情况及排放现状研究[J]. 中国电力, 2019, 32(6): 1-8.
|
[19] |
杨用龙, 苏秋凤, 张杨, 等. 燃煤电站典型超低排放工艺的SO3脱除性能及排放特性[J]. 中国电机工程学报, 2019, 39(10): 2962-2969.
|
[20] |
刘含笑, 陈招妹, 王少权, 等. 燃煤电厂SO3排放特征及其脱除技术[J]. 环境工程学报, 2019, 13(5): 1128-1138. doi: 10.12030/j.cjee.201812137
|
[21] |
赵毅, 韩立鹏. 超低排放燃煤电站三氧化硫的迁移和排放特征[J]. 环境科学学报, 2019, 39(11): 3702-3708.
|
[22] |
ZHENG C H, WANG Y F, LIU Y, et al. Formation, transformation, measurement, and control of SO3 in coal-fired power plants[J]. Fuel, 2019, 33(9): 327-346.
|
[23] |
FERNANDEZ M G, LOPEZ M P, MUNIATEGUI L S, et al. Distribution of volatile organic compounds during the combustion process in coal-fired power stations[J]. Atmospheric Environment, 2001, 35(33): 5823-5831. doi: 10.1016/S1352-2310(01)00282-5
|
[24] |
WANG M, SHAO M, LU S, et al. Evidence of coal combustion contribution to ambient VOCs during winter in Beijing[J]. Chinese Chemical Letters, 2013, 24(9): 829-832. doi: 10.1016/j.cclet.2013.05.029
|
[25] |
PUDASAINEE D, KIM J, LEE S, et al. Hazardous air pollutants emission from coal and oil-fired power plants[J]. Asia-Pacific Journal of Chemical Engineering, 2010, 5(2): 299-303. doi: 10.1002/apj.268
|
[26] |
CHENG J, ZHANG Y, WANG T, et al. Emission of volatile organic compounds (VOCs) during coal combustion at different heating rates[J]. Fuel, 2018, 225: 554-562. doi: 10.1016/j.fuel.2018.03.185
|
[27] |
BARABAD M, JUNG W, VERSOZA M, et al. Emission characteristics of particulate matter, volatile organic compounds, and trace elements from the combustion of coals in mongolia[J]. International Journal of Environmental Research and Public Health, 2018, 15(8): 1706. doi: 10.3390/ijerph15081706
|
[28] |
YAN Y, YANG C, PENG L, et al. Emission characteristics of volatile organic compounds from coal-, coal gangue-, and biomass-fired power plants in China[J]. Atmospheric Environment, 2016, 143: 261-269. doi: 10.1016/j.atmosenv.2016.08.052
|
[29] |
LI J W, QI Z F, LI M, et al. Physical and chemical characteristics of condensable particulate matter from an ultralow-emission coal-fired power plant[J]. Energy & Fuels, 2017, 31(2): 1778-1785.
|
[30] |
隋子峰. 燃煤电厂亚微米颗粒物形成机理及释放规律研究[D]. 北京: 华北电力大学, 2018.
|
[31] |
李敬伟. 燃煤烟气中可凝结颗粒物及典型有机污染物的排放特性实验研究[D]. 杭州: 浙江大学, 2018.
|
[32] |
GOODARZI F. The rates of emissions of fine particles from some Canadian coal-fired power plants[J]. Fuel, 2006, 85(4): 425-433. doi: 10.1016/j.fuel.2005.07.008
|
[33] |
THELLEFSEN N M, LIVBJERG H, LANGE F C, et al. Formation and emission of fine particles from two coal-fired power plants[J]. Combustion Science & Technology, 2002, 174(2): 79-113.
|
[34] |
朱法华, 李军状, 马修元, 等. 清洁煤电烟气中非常规污染物的排放与控制[J]. 电力科技与环保, 2018, 34(1): 23-26. doi: 10.3969/j.issn.1674-8069.2018.01.006
|
[35] |
蒋靖坤, 邓建国, 李振, 等. 固定污染源排气中PM2.5采样方法综述[J]. 环境科学, 2014, 35(5): 2018-2024.
|
[36] |
蒋靖坤, 邓建国, 王刚, 等. 固定污染源可凝结颗粒物测量方法[J]. 环境科学, 2019, 40(12): 5234-5239.
|
[37] |
张滨渭, 李树然. 电除尘器在超低排放下的系统运行优化[J]. 高电压技术, 2017, 43(2): 493-498.
|
[38] |
刘含笑, 郦建国, 姚宇平, 等. 电除尘器飞灰粒径表征及细颗粒降温团聚[J]. 化工进展, 2018, 37(6): 2413-2425.
|
[39] |
张宇博, 延禹, 胡芳芳, 等. 低低温系统中粉尘颗粒团聚特性研究[J]. 热力发电, 2019, 48(1): 36-42.
|
[40] |
SRIVASTAVA R, MILLER C, ERICKSON C, et al. Emissions of sulfur trioxide from coal-fired power plants[J]. Journal of the Air & Waste Management Association, 2004, 54(6): 750-762.
|
[41] |
LEE S H, RHIM Y J. Carbon-based novel sorbent for removing gas-phase mercury[J]. Fuel, 2006, 85(2): 219-226. doi: 10.1016/j.fuel.2005.02.030
|
[42] |
YAN R, LIANG D T, TSEN L, et al. Bench-scale experimental evaluation of carbon performance on mercury vapor adsorption[J]. Fuel, 2004, 83: 2401-2409. doi: 10.1016/j.fuel.2004.06.031
|
[43] |
陈自祥, 王儒威, 孙若愚, 等. 淮南燃煤电厂汞分配、富集与释放通量[J]. 环境化学, 2018, 37(2): 193-199.
|
[44] |
RICHARDSON C, MACHALEK T, MILLER S, et al. Effect of NOx control processes on mercury speciation in utility flue gas[J]. Journal of the Air & Waste Management Association, 2002, 52(8): 941-947.
|
[45] |
ZHHANG Y, LAUMB J, LIGGETT R, et al. Impacts of acid gases on mercury oxidation across SCR catalyst[J]. Fuel Processing Technology, 2007, 88(10): 929-934. doi: 10.1016/j.fuproc.2007.03.010
|
[46] |
赵毅, 韩立鹏. 超低排放燃煤电厂低低温电除尘器协同脱汞研究[J]. 动力工程学报, 2019, 39(4): 319-323.
|
[47] |
刘玉坤, 禚玉群, 陈昌和, 等. 燃煤电站脱硫系统的脱汞性能[J]. 中国电力, 2011, 44(12): 68-72. doi: 10.3969/j.issn.1004-9649.2011.12.015
|
[48] |
ARDITSOGLOU A, PETALOTI C H, TERZI E, et al. Size distribution of trace elements and polycyclic aromatic hydrocarbons in fly ashes generated in Greek lignite-fired power plants[J]. Science of the Total Environment, 2004, 323(1): 153-167.
|